用户名: 密码: 验证码:
高性能导电铝合金的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了耐热铝合金导线在国内外的研究近况,介绍了耐热铝合金导线中金属锆和稀土的有益作用,以及直接电解生产含微量合金元素的铝基合金优点。提出通过在铝电解槽中添加合金元素的化合物,直接电解含锆和稀土的电工铝合金的技术思路和工艺方案。
     为了论证用电解法生产含锆和稀土的电工铝合金的可行性,对其电化学过程进行研究。采用循环伏安法和计时电流法对锆和稀土在冰晶石熔盐体系中石墨电极上的电化学还原过程进行研究。研究结果表明:Zr~(4+)在冰晶石熔盐体系中石墨电极上的还原过程中是分两步进行的,且两步均是可逆过程,在-0.7V得到两个电子还原成为Zr~(2+),并在-1.1V再得到两个电子还原成Zr单质;而Ce~(3+)在冰晶石中熔盐体系中石墨电极上的还原过程中两步均为不可逆过程,其还原电位分别为-0.3V和-1.3V。氧化锆和氧化铈的还原电位与同温度下氧化铝的分解电压十分接近。因而在直接电解含锆和稀土的电工铝合金时,氧化物不致在电解质中产生大量积累,保证电解过程能够顺利稳定运行。
     在实验室条件下,采用与工业电解铝相似的工艺参数,进行铝锆铈多元合金的电解试验,以期了解电解铝锆铈多元合金同电解纯铝的工艺差别。试验在10A电流下持续电解7h,共得到锆和稀土含量分别为1.18%和0.77%的铝合金15.5g,其电流效率为66.0%,与实验室条件下电解纯铝的电流效率相当,并计算出电解质中锆和铈氧化物的平衡浓度分别为0.51%和0.24%,可以认为在该平衡浓度下,不会对电解质中氧化铝的溶解性造成影响。
     在以上理论分析的基础上,在160KA预焙阳极电解槽上进行了含锆和稀土电工铝合金的工业电解试验。工业试验结果表明,以适当的方式向电解槽中添加氧化锆和碳酸稀土粉末,工业电解生产含锆和稀土的铝基合金是可行的。经过4个出铝周期的生产,共得到近10吨合金,其中锆含量0.11%-0.12%,稀土含量0.12%-0.15%,电解槽各参数与电解纯铝的参数基本相当,表明锆和稀土的含量均在0.1%左右的铝锆稀土电工铝合金可以在纯铝电解技术条件下进行生产。
     用电解得到的铝锆稀土电工铝合金进行耐热导线的制备和性能研究,研究发现电解法同溶配法生产的耐热导线导电率基本相当,其抗拉强度和耐热性优于溶配法。
     应某电缆公司要求,对铝镁硅系高强电工铝合金的热处理工艺参数进行优化,使该高强电工铝合金能够进行拉拔加工,且导线性能达到国家标准。通过固溶热处理工艺,铝镁硅系高强电工铝合金的冷加工性能得到明显改善,可以顺利进行拉拔加工,且在拉拔成丝的过程中没有断杆、起皮及倒刺等现象发生,经520℃固溶0.5小时,并经150℃时效8h使该高强电工铝合金达到企业对材料加工性能和力学性能的要求。
The usage of heat-resistant Al conductor is investigated at home and abroad, and the beneficial effects of zirconium (Zr) and rare earths (RE) are introduction. A project of producing Al conductor with Zr and RE by electrolysis is putted forward.
     The electrochemistry processes of directly electrolytic heat-resistant Al-Zr-Ce conductors are investigated by means of cyclic voltammetry and chronoamperometry. The results show that the processes of deoxidation of Zr and Ce on the graphite electrode have two steps in the melts of cryolite. The processes of deoxidation of Zr are reversible, and two electrons per step are transferred at -0.7 Volt and -1.1 Volt in the reduction process of Zr element; however, the processes of deoxidation of Ce are nonreversible and the reduction potentials of Ce are -0.3 Volt and -1.3 Volt. The processes of deoxidation of Zr and Ce are independence and they are not affected each other. The reduction potentials of ZrO_2 and RE_2O_3 are close to the reduction potential of Al_2O_3, so the oxide don't be accumulated in electrolyte, and the electrolysis will be circulate jar less when electrolyzing Al-Zr-RE alloy.
     In laboratory, Al-Zr-RE alloy is electrolyzed at industrial electrolysis parameters, and the difference has been investigated between laboratorial and industrial. The experiment lasts 7 hours in 10A current, and there is 15.5g alloy which is electrolyzed with 1.18% zirconium and 0.77% cerium. The current efficiency is 66.0% in this progress, which is equal to the current efficiency of pure aluminum in the same qualification. The balance consistence of Zr and Ce are 0.51% and 0.24%, and the solubility of aluminum in electrolyte won't be influenced at this balance consistence.
     On the base of the theory hereinbefore, the industrial experiment of aluminum conductor with Zr and RE on 160KA electrolytic cell has been investigated. The results show that the electroanalysis of Al alloy with Zr and RE in it is feasible, when the proper addition of ZrO_2 and RE_2O_3 is adopted. After 4 days producing, there is 10t alloy which is been produced, and there is 0.11% to 0.12% Zr and 0.12% to 0.15% RE in it. The parameter of electrolytic cell is similar to that in the process of electrolyzing pure Al. It is feasible that Al alloy with 0.1% Zr and 0.1% RE is electrolyzed in the technology of electrolyzing pure Al.
     The conductivity of heat-resistant wire made by electrolysis alloy is equal to which made by melting Al-Zr and Al-RE master alloys, but the strength and heat-resistance are superior to which by melting.
     In conformity with request of one cable company, the heat treatment parameter of Al-Mg-Si high-strength alloy would be optimized, to adapt the preparation of the high-strength aluminum conductor, and it's performance reaches the national standard. After solution heat-treatment, the performance of the Al-Mg-Si high-strength alloy by cold working has been improved, and it could be drawn smoothly, and there are not breakings, peelings and barbs in the wire. The intensity and toughness of the high strength aluminum alloy meet requirements for national standard after 0.5 hours solution heat-treatment under 520℃and 8 hours aging heat-treatment under 150℃.
引文
[1] 李晓波,李江波,陈灵娟,等.一种热法炼铝及钠制备的研究[J].世界有色金属,1999(5):39.
    [2] 王礼堂.世界各地区原铝产量及逐年总产能利用率[J].轻金属,2000.8:16.
    [3] 秦臻.电解低钛铝合金几个物理化学问题研究[D].2006,郑州大学硕士学位论文:郑州:2.
    [4] Fioriai, P. WIRE INDUSTRY[M]. 1979. 4: 265-268.
    [5] 王祝堂.导电铝材的进展[J].有色金属加工,1988.1:1-8.
    [6] 中国电线电缆网.我国电力建设对电力电缆和钢芯铝绞线的需求预测与展望.2007.
    [7] 二宅保彦.铝线的进步技术[J].轻金属.1986.1:36-40.
    [8] 李玉华.微合金元素对铝圆杆性能的影响[D].2005,昆明理工大学硕士论文:昆明.3.
    [9] 王守礼.钢芯铝合金绞线在高海拔重冰线路上的应用[J].电线电缆,1987.5:14-16.
    [10] 刘士璋.钢绞线、钢芯铝绞线交直流电阻及载流量的计算[J].电线电缆,1988.6:6-12.
    [11] 水利电力部华东电力设计院.特轻型导线在SOOKV线路上的应用.1986.
    [12] 张云都,易辉.我国大截面与耐热导线输电技术的现状及展望[J].高电压技术,2005.8:24-26.
    [13] 上海电缆研究所.导电用稀土铝合金研究成果简介[J].电线电缆,1990.1:27-34.
    [14] 尤传永.耐热铝合金导线的耐热机理及其在输电线路中的应用[J].电力建设,2003.24(8):4-8.
    [15] 弗里德良捷尔.变形结构铝合金[M].科学技术文献出版社重庆分社.1989,重庆.
    [16] 谢优华,杨守杰.锆元素在铝合金中的应用[J].航空材料学报,2002.12:56-61.
    [17] NESE. Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloys[J]. Acta Metallurgic, 1972.20(4): 499-506.
    [18] HIDEO YOSHIDA, Y.B. The role of zirconium to improve strength and stress-corrosion resistance of Al-Zn-Mg and Al-Zn-Mg-Cu alloys[J]. Transactions of the Japan Institute of Metals, 1982.23(10): 620-630.
    [19] RYUM.N. Precipitation and recrystallization in an Al-0.5wt%Zr-alloy[J]. Acta Metallurgica, 1969.17(3): 269-278.
    [20] 余琨,李松瑞,黎文献,等.微量Sc和Zr对2618铝合金再结晶行为的影响[J].中国有色金属学报,1999.9(4):709-713.
    [21] CHEN C Q, K.J.F. Effects of dispersoid particles on toughness of high-strength aluminum alloys[J]. Metal Science, 1981.15(8): 357-364.
    [22] RIVATSAN T S, S.S. VEERARAGHAVAND, Microstructure, tensile deformation behaviors of aluminum alloy 7055[J]. Mater Science, 1997. 32: 2883-2894.
    [23] DORWARD R C, B.D.J., Grain structure and quench-rate effects on strength and toughness ofAA7050 Al2Zn2Mg2Cu2Zr alloy plate[J] Metallurgicaland Materials Trans2actions, 1995.26A(9): 2481-2484.
    [24] HORNBOGENE, S.J. Theory assisted design of high strength low alloy aluminum[J] Acta Metal, 1993.41(1): 1-16.
    [25] 李慧中,张新明.Zr含量对2519铝合金组织与力学性能的影响[J].金属热处理,2004.29(11):11-14.
    [26] 杜晓东.锆对输电铝合金蠕变行为的影响[J].机械工程材料,1997.10:28-29,48.
    [27] 杜晓东.架空铝导线性能提高途径及机理研究[J].电线电缆,1998.6:2-6.
    [28] 杜晓东,刘永忻.微量锆对导电铝合金耐热性的影响[J].热加工工艺,1995.2:20-21.
    [29] 岳怡雁.应用耐热铝合金导线提高输送容量[J].吉林电力,2001.12:36-39.
    [30] 李丰庆.硼对铝中杂质元素的作用及其对导电率的影响[D],硕士学位论文.2003,大连理工大学:大连:23.
    [31] 汪良宣.稀土铝合金导体材料在电线电缆中的应用概况[J].中国稀土学报,1995.7(13):404-407.
    [32] 王桂芹,李丰庆,李长茂,等.硼对含硅铝和含铁铝导电性能的影响[J].特种铸造及有色合金,2003.3:15-17.
    [33] 朱长榕,张炳根.稀土在电工用铝母线中的应用实践[J].轻合金加工技术,2004.6:40-42.
    [34] 唐定骧,王成辉.我国独具特色的稀土电工铝和铝稀土合金[J].四川有色金属,2003.2:19-24.
    [35] NIE Zuoren, J.T. Development on research of advanced rare—earth aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2003. Jun: 509-514.
    [36] 汪良宣,霍成章.梁沛然,等.稀土提高铝导体导电率的研究[J].中国稀十学报,1995.7(13):412-417.
    [37] 陈文鹏,朱元风,张学光,等.稀土高强高导耐热抗拉铝合金电缆的研究[J].昆明冶金高等专科学校学报,1996.12(1):16-27.
    [38] 陈秀琴,方莲华,黄崇棋,等.稀土对提高铝导体导电率的作用机理[J].电线电缆,1995.Z1(008):29-32.
    [39] 王庆良.稀土对铝导电性能和力学性能的影响[J].上海有色金属,1995.16(4):229-231,239.
    [40] 王庆良,王大庆.稀土铝导线工业试验研究[J].金属热处理,2000(9).
    [41] 郭文坚,徐绍贤.稀土铝导线在电力工程中的应用[J].中国稀土学报,1995.7:408-411.
    [42] 康福伟,王丽萍.微量稀土元素对工业纯铝电阻率的影响[J].哈尔滨理工大学学报,2003.12:112-114.
    [43] 杨绮琴.冶金.in全国冶金物理化学学术会议.1994.广州.
    [44] 电工圆铝杆,in GB/T 3954.2001:China.
    [45] 重熔用铝稀土合金锭,in YS/T 309-1998 1998.
    [46] 陈本孝.电解法制取铝硅稀土铸造铝合金[J].江西冶金,1989.5:p.16-19.
    [47] Liu Zhongxia, W.M., Weng Yonggang. Production and mechanical properties of in-situ Ti alloying A356 alloys[J]. Materials Science Forum, 2005. 475:321-324.
    [48] Xie Jingpei, Li Jiweng, L.Z. The investigation on aluminium alloys automobile wheel with low-titanium content produced by electrolysis[J]. Materials Science Forum, 2005.479: 317-320.
    [49] 杨异,杨冠群.电解法生产铝基合金[J].特种铸造及有色合金,2001.2:102-104.
    [50] 王明星,刘智勇,宋天福,等.电解生产低钛铝合金工业试验及产品中钛分布的均匀性分析[J].轻金属,2003.4:41-44.
    [51] 孙海安,杨金魁,等.均匀化制度对导线用耐热铝合金电导率的影响[J].轻金属,2002.9:58-61.
    [52] 徐秀芝,魏绪钧,冯法伦,等.在氟盐体系中镧粒子极过程的研究[J].稀土,1994.15(4):26-28.
    [53] 龚竹青.理论电化学导论[M].1988:中南工业大学出版社.
    [54] 中山大学.电化学及其研究方法[M].1984.
    [55] G.S.Picard. 168th Meeting the Electrochemical Society. in Caesars Palace. 1985.
    [56] 李清.大型预焙槽炼铝生产工艺与操作实践[M].中南大学出版社.2005,长沙.
    [57] 刘志勇,工业电解低钛铝基合金细化效果、细化原理及其应用研究[D].2003,郑州大学博士学位论文.
    [58] 邱竹贤.铝电解[M].冶金工业出版社.1995.138-150.
    [59] 赵忠.金属材料及热处理[M].机械工业出版社2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700