用户名: 密码: 验证码:
表面粗糙度对高精度微波电子装备电性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子装备向高频段、高增益、高密度、小型化方向的发展,其电磁与机械结构因素的相互影响、相互制约关系变得越来越突出。在影响电子装备电性能指标的诸多机械结构因素中,表面粗糙度因其存在的普遍性、分布的随机性及对电性能影响机理的复杂性而备受瞩目。本文在多个国家重点项目的支持下,以电子装备中四种典型工程案例——金属波导、腔体滤波器、反射面天线和平板裂缝阵天线为研究对象,针对设计与分析的过程中存在的表面粗糙度对其电性能影响问题进行了深入的研究与探索,主要研究内容包括以下三部分。一是表面粗糙度数学模型的建立,二是表面粗糙度对电子装备电性能的影响机理,三是基于影响机理的电子装备表面面向电性能的功能性设计。
     (1)提出了表面粗糙度机电耦合建模方法
     针对腔体结构表面粗糙度,首先根据研究对象的工作频率及材料属性确定其趋肤深度,继而由趋肤深度值确定腔体表面原始粗糙度中对腔体内电流流动路径产生较大影响的成分。构造合适的高斯滤波函数以及滤波频率的上下限,对表面粗糙度原始轮廓进行滤波,将对电流流动路径产生较大影响的粗糙度成分从表面原始粗糙度中分离出来,去除粗糙度中对电性能影响较小的噪声成分,得到相对有效的粗糙度信息,建立了表面粗糙度对电性能产生实质影响的机电耦合理论建模。
     (2)提出了表面粗糙度多尺度建模方法
     针对面板结构表面粗糙度特殊的形成机理与分布特点,提出了一种面板广义粗糙度的概念。面板结构表面粗糙度根据其误差来源和幅相特征可分为三种尺度,一是面板在加工过程中由材料属性与加工工艺过程中产生的高频低幅粗糙度误差;二是面板在装配过程中产生的低频低幅波纹度误差;三是面板在外界载荷作用下产生的低频高幅几何形状误差,本文将这三种误差统称为广义粗糙度。应用小波分析法,基于不同尺度误差的幅相特征,对包含三种尺度误差的面板测试数据进行频谱划分,根据各尺度误差信息选用合理的小波基,确定小波分解次数,对表面粗糙度中三种尺度的误差成分进行有效地分离与重构,建立了表面粗糙度多尺度理论模型。
     (3)建立了表面粗糙度对波导传输性能的影响关系理论模型
     应用表面粗糙度机电耦合建模方法,基于二维高斯函数,建立了波导腔体内壁的表面粗糙度模型。研究发现,表面粗糙度对波导传输损耗的影响实质在于增加了波导内壁表面电流的流动路径,将粗糙度数学模型作为电磁场计算的边界条件,通过求解有效电流路径得到腔体的有效电导率,分别针对矩形和圆形金属波导,导出了粗糙度对波导功率传输损耗的影响关系,并对局部存在任意形状粗糙度的特殊情况进行了研究,导出了相应的计算公式。最后,研制加工了一批不同材质与加工工艺的七阶矩形金属波导滤波器,对上述建模方法和影响关系理论模型的正确性与有效性进行了验证。
     (4)建立了表面粗糙度对滤波器传输性能的影响关系理论模型
     应用表面粗糙度机电耦合建模方法,分别建立了滤波器腔体内壁的一维和二维表面粗糙度模型,提出了相关长度作为评价粗糙度除均方根值(rms)之外的另一评价参数。基于粗糙度数学模型,导出了粗糙度影响下的滤波器阻抗值,进而得到了粗糙度对滤波器无载Q值的影响关系公式;此外,以电阻矩阵作为中间变量,研究了粗糙度对滤波器传输参数的影响,导出了考虑粗糙度情况下的滤波器S11、S21等相关参数的计算公式。最后,以一个Ku频段的电调双工滤波器为工程案例,进行了相关测试实验,在课题组研制的数据挖掘软件工具的帮助下扩展了相关数据量,解决了滤波器研究过程中面临的实测数据严重不足的问题,最终验证了上述方法的正确性与优越性。
     (5)建立了表面粗糙度对反射面天线辐射性能的影响关系理论模型
     针对反射面天线面板的实际工况,应用表面粗糙度多尺度建模方法,建立了反射面面板包含三种尺度误差信息的表面粗糙度模型。首先将粗糙度信息转化为物理光学法中的光程差,进而转化为电磁场计算中的相位差,然后以相位差的形式进入到反射面天线的电性能计算中;导出了粗糙度对反射面天线远场辐射场的影响关系公式。研究了不同尺度,不同幅度的粗糙度对天线远场方向图各参数的影响。最后分别以一3.7m口径的反射面天线为工程案例,验证了所提方法的正确性。
     (6)建立了表面粗糙度对平板裂缝阵天线辐射性能的影响关系理论模型
     针对平板裂缝阵天线的特点,一方面应用表面粗糙度机电耦合建模方法建立了天线辐射波导内壁表面粗糙度的模型。基于模型,推导出考虑辐射波导内部表面粗糙度影响情况下辐射波导内部散射场的具体计算公式;另一方面,应用表面粗糙度多尺度建模方法建立了天线辐射阵面的粗糙度模型。通过坐标转换技术,推导出了表面粗糙度对辐射缝的位置偏移与角度偏转信息的影响,进而求出辐射缝位置偏移量和指向偏移量,将新的相位误差与辐射缝信息引入到理想天线的电磁分析中,得到阵面粗糙度对天线电性能的影响关系公式。最后,通过研制加工的一个10×11cm的弹载平板裂缝阵天线,验证了所提方法的正确性。
     (7)提出了非理想天线机电综合建模仿真分析方法
     针对现有天线仿真分析所使用的相关商业软件存在结构分析与电磁分析相分离,对非理想模型不能引入误差信息继而进行准确建模与分析的缺陷,通过将本文作者研制的软件模块嵌入到有限元分析与电磁分析商业软件中,可方便地将制造误差融入到结构参数中,进行非理想天线的几何造型;通过施加合适的环境载荷控制系统误差,完成结构分析,得到变形结构模型;应用模型转换模块,将变形结构模型转换为电磁分析模型;进行电磁分析,得到天线的电性能,最终实现了非理想天线的机电综合建模仿真与分析;针对包含多子阵的大型平板裂缝阵天线物理尺寸庞大,结构复杂,子阵数目繁多,在建模分析的过程中可能会遇到的一些通用问题,例如计算方法的选用,网格密度的划分,辐射边界的施加,各子阵单元间互耦关系的考虑等问题进行了对比分析,给出了简单而有效的建模分析准则。
     (8)提出了电子装备表面面向电性能的功能性设计方法
     基于上述表面粗糙度对电子装备电性能影响机理的研究成果,提出了一种新的电子装备表面设计方法。根据电子装备的性能要求给出电子装备表面设计指标要求,该设计指标包括结构设计指标与电性能设计指标两部分;通过选用合适的材料与安排合理的加工工艺流程来保证结构设计指标的实现,通过选用合适的涂覆材料与加工工艺来实现其电性能设计指标;通过结构造型和涂覆两种方式相结合得到电子装备表面的实体边界;基于此实体边界得到真正对电性能产生影响的表面电磁边界,并将其应用于电性能计算,最终得到电子装备的电性能。
In recent years, with the high frequency, high density and high power development of theelectronic equipments, relationship of the acting on or influencing each other between theelectronic performance and the mechanical structural factors became more and moreprotruding. Among several mechanical structural factors which influencing the electronicperformance of the electronic equipments, the roughness attracted mucha attention of thescientist because of its widespread presence, random distribution and complicated influences.With strong economic support of several state key construction projects, take the waveguide,filter, reflector antenna and planar slot array antenna as the research case, this dissertation ismainly concerned with effect of roughness on the electronic equipments in the process of thedesign and analysis. The author’s major contributions as follows:
     1. Electromechanical coupling modeling of roughness in cavity was built. According tothe constructional feature of roghness in cavity, the value of skin depth determined by theworking frequency and material properties of the cavity structure based on the microwavesurface theory, and then the roghness scope, roghness in which has an important influence onthe flow path of the surface current, was determined. Secondly, the roughness component,which has little effect on the flow path, was filtered off from the original roughness by usingthe Gaussian function as the filter tool. Finally, the effective roughness component was gainedand the electromechanical coupling modeling of roughness was built.
     2. Multi-scale roughness modeling of roughness on panel was built. To the specialformation mechanism and distribution form of roghness in cavity, a concept of generalizedroughness was put forward. Roghness on the panel structure can be devided into three scalesbased on the different error sources and phase-amplitude characteristics. One was theroughness error in high frequency and low amplitude, which determined by the materialproperties and machining process; Two was the waviness error in low frequency and lowamplitude produced by the antenna assembling process; Three was the error in low frequencyand high amplitude, which by the external loads. The three scales errors together were calledas generalized rughness in the dissertation. Firstly, the frequency spectrum division was madeon the plane test data including three-scale roughness error by using the wavelet as theanalysis tool. Secondly, the wavelet base and decomposition times were determined by eachscale roughness. Based on the wavelet function, the three roghness error were separated andreconstructed, the multi-scale roughness modeling of roughness was built.
     3. Effect of the roughness on the electronic performance of the waveguide has beenstudied. Based on two dimensional fractal function, an electromechanical coupling modeling was built to simulate the roughness on the inner surface of the waveguide. Research showedthat effect essence of the roughness on the waveduide was prolonging the flow path of thesurface current. So, the mathmetics model of the roughness was taken as the boundarycondition, the effective conductivity was gained by the effective current path. According tothe circular and square waveguide, two effect formulas of the roughness on the power losswere given separately. In addition, also to the local roughness, the computation formula of thepower loss has been presented. Finally, a seven-step waveguide filter prototype wasconstructed to validate the feasibility of the modeling methods and the effect formulations.
     4. Effect of the roughness on the electronic performance of the filter has been studied.Firstly, one and two dimensional electromechanical coupling modeling were built to simulatethe roughness on the inner surface of the filter. The persistence length was introduced as acomplementary parameter for the root means quare, which is used as the only Assessmentparameter the roughness. Secondly, the impedance of the filter with roughness was gained andthe effect formulas of the roughness on the quality factor was deduced. The dissertation thenderived the calculation formulas of the S11and S21of the filter with roughness. Finally, anelectronic tuning duplex filter prototype was constructed to validate the feasibility andefficiency of the modeling methods and the effect formulations.
     5. Effect of the roughness on the electronic performance of the reflector antenna has beenstudied. With the consideration of actual working conditions, the multi-scale modeling wasbuilt to simulate the three scales roughness on the reflector surface of the antenna. Firstly, theroughness was converted into the optical path difference in the physical optics method, andthen it was transformed into the phase difference in the computational electromagnetism.Secondly, the effect formulas of the roughness on the radiation field was deduced based on thephase difference. In addition, effect of the different scale and amplitude of roughness on theantenna radiation patter was studied. Finally, a3.7m reflector antenna prototype is constructedto validate the feasibility and efficiency of the modeling methods and the effect formulations.
     6. Effect of the roughness on the electronic performance of the planar slot array antennahas been studied. On the one hand, the electromechanical coupling modeling was built tosimulate the roughness on inner surface of the radiating waveguide; Firstly, the disturbance ofincident wave in radiating waveguide caused by the roughness will originates the forward andbackscattering wave. So, the normalized admittance of the radiating slot can be gained by thereflection and transmission coefficient, and then the effect formulas of roughness on theradiating voltage can be deduced. On the other hand, the multi-scale modeling was built tosimulate the roughness on the radiation array surface of the antenna. The position and direction offset of the radiation slot were studied in consideration of the roughness. The newphase error and radiating pattern were added into the electromagnetic analysisi model of theideal antenna.So that, the effect formulas of roughness on the electronic performance can begained. Finally, a11*10cm planar slot array antenna prototype is constructed to validate thefeasibility and efficiency of the modeling methods and the effect formulations.
     7. Modelig and simulation of the nonideal electronic equipments has been studied. Inaccordance with the present problems of the business softwares, the nonideal electronicequipment is hard to simulate and the divorce of structural analysis from electromagneticanalysis. Firstly, the machining error is added into antenna in the process of geometricmodeling, and the error was set by the description precision. And then, when the structureanalysis of the antenna is carried out, the loading error was added, and the deformed structuremodel of the antenna is gained by the structure analysis. The assemble error is added on thedeformed model with the model modify module. Finally, the deformed structure model istranslated into the electromagnetic analysis model, and the electrical property of the antennais gained. Moreover, aiming at the large planar slot arrar antenna, which contains manysubarrays, has huge physical size and complex structure, some actual problems exsiting inprocess of simulation has been studied. Some comparative analysis experiments were madeon the choosing method of calculation, meshing of the grid, applying of the radiationboundary and the effect of mutual coupling among the subarrays. Finally, the simple andeffective modeling criterion was proposed.
     8. A rudimentary functional design method of electronic equipments surface was putforward. Based on the research results of the roughness modeling and effect relationshipbuiding, a functional degign flowchart was presented as follow: Firstly, on the basis ofperformance requirements, the design indexs of the electronic equipments were given, and thedesign indexs included the structural design indexs and the electronic design indexs. Secondly,the structural design indexs were implemented by choosing the good material and soundworkmanship, while the latter were implemented by choosing the appropriate coating materialand technology. Thirdly, the solid boundary was obtained by structure modeling and surfacecladding, and then the electromagnetic boundary was gained based on the solid boundary.Finally, the electronic performance of the electronic equipment was got by using theelectromagnetic boundary.
引文
[A1] Morgan S P. Jr. Effect of surface roughness on eddy current losses at microwavefrequencies[J]. Journal of Applied Physics,1949,20(3):352-362.
    [A2] Hammerstad E.O, Bekkadal F. A microstrip handbook[M]. ELAB Report, STF44A74169. Norway: University of Trondheim,1975.98-110.
    [A3] Chen C D, Tzuang C K C. Peng, S T. Full-Wave Anslysis of a Lossy RectangularWaveguide Containing Rough Inner Surfaces[J]. IEEE Microwave and Guided WaveLetters,1992,2(5):180-181.
    [A4] Holloway C L, Kuester E F. Power Loss Associated with Conducting andSuperconducting Rough Interfaces[J]. IEEE Transactions. Microwave Theory andTechniques,2000,48(10):1601-1610.
    [A5] Bakolas V. Numerical generation of arbitrarily oriented nonGaussian threedimensional rough surfaces[J]. Wear,2003,254(5-6):546-554.
    [A6] Sayles R, Thomas T R. Surface topography as a non-stationary random process[J].Nature,1978,271(2):431-434.
    [A7] Stout K J, Sullivan P L, Dong W P. The development methods for the characterizationof roughness in three dimensions[R]. EUR15178EN Report.1993.
    [A8] Thomas T R. Rough Surfaces[M]. Second Edition, London: Imperial College Press,1999.
    [A9] Bendat J S. Principles and Applications of Random Noise Theory[M], John Wiley andSons, Inc.,1958.
    [A10] Whitehouse D J, Archard J F. The properties of random surface of significance intheir contact[J]. Royal Society of London Proceedings Series A,1970,A316(1524):97–121.
    [A11] Whitehouse D J, Phillips M J. Discrete properties of random surfaces[J].Philosophical Transactions of the Royal Society of London Series A,1978,A290(1369):267–298.
    [A12] Watson W, Spedding T A. The Time Series Modelling of NonGaussian EngineeringProcesses[J]. Wear,1982,83(2):215-231.
    [A13] Watson W, King T G, Spedding T A, et al. The Machined Surface--Time SeriesModelling[J]. Wear,1979,57(1):195-205.
    [A14] Hu Y Z, Tonder K. Simulation of3-D random surface by2-D digital filter andFourier analysis[J]. International Journal of Machine Tools and Manufacture,1992,32(1):82-90.
    [A15] Sayles R S, Thomas T R. Surface Topography as a Nonstationary Random Process[J].Nature,1978,271(2):431-434.
    [A16] Thomas A P, Thomas T R. Engineering surface as fractals, fractal aspects ofmaterials[M]. Pittsburgh: Materials Research Society,1986,75-77.
    [A17] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between roughsurfaces[J]. Journal of Tribology,1991,113(1):1-11.
    [A18] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization andcontactmechanics of surfaces[J]. Journal of Tribology,1990,112(2):205-216.
    [A19] Vandenberg S, Osborne C F. Digital image processing techniques, fractaldimensionality and scale-space applied to surface roughness[J]. Wear,1992,159(1):17-30.
    [A20] Zhou G Y, Leu M C. Fractal geometry model for wear prediction[J]. Wear,1993,170(1):1-14.
    [A21] Srinivasan R S, Wood K L. Fractal based geometric tolerancing for mechanicaldesign[C]. Proceedings of the1992ASME DTM Conference,1992,107-115.
    [A22] Srinivasan R S. A form tolerancing theory using fractals and wavelets[J]. ASMEJournal of Mechanical Design,1997,119(1):185-192.
    [A23] Fahl C F. Motif Combination-a New Approach Tosurface Profile Analysis[J]. Wear,1982,83(1):165-179.
    [A24] Abbott E J, Firestone F A. Specifying surface quality: a method based on accuratemeasurement and comparison[J]. Mechanical Engineering,1933,55(1):569-572.
    [A25] DIN Measurement of surface Roughness; Parameters Rk, Rpk, Rvk, Mr1, Mr2forthe description of the Material Portion in the roughness, German standard, DIN4776,1990.
    [A26] Millar R F. The Rayleigh hypothesis and a related least-squares solution to scatteringproblems for periodic surfaces and other scatterers[J]. Radio Science,1973,8(8):785-796.
    [A27] Zahouani H. Spectral and3D Motifs Identification of Anisotropic TopographicalComponents.Analysis and Filtering of Anisotropic Patterns by Morphological RoseApproach[J]. International Journal of Machine Tools and Manufacture,1998,38(5-6):615-623.
    [A28] Tong QY, Gosele U, Reiche M, et.al. The Role of Surface Chemistry in Bonding ofStandard Silicon Wafers[J]. Journal of the Electrochemical Society,1997,144(1):384-389.
    [A29] Trautwein R. Characteristic values for determining and evaluating the surface ofcylinder bores[M], Mahle GmbH, Stuttgart,1981.
    [A30] Hammerstad EO, Bekkadal F. A microstrip handbook [M]. ELAB Report, STF44A74169, University of Trondheim, Norway,1975:98-110.
    [A31] Hollmann D, Haffa S, Rostan F, and et al. The Introduction of Surface Resistance inthe Three-Dimensional Finite-Difference Method in Frequency Domain[J]. IEEETransactions on Microwave Therory and Techniques,1993,4(5):893-895.
    [A32] Christopher L H, Edward F K. Power Loss Associated with Conducting andSuperconducting Rough Interfaces[J]. IEEE Transactions on Microwave Therory andTechniques,2000,48(10):1601-1610.
    [A33] Zhu Z H, Demir A, White J. A Stochastic Integral Equation Method for Modeling theRoughness Effect On Interconnect Capacitance[C]. Proceedings of IEEE/ACMInternational Conference on Computer-aided Design, San Jose, California,2004,887-891.
    [A34] Gu X X, Braunisch H. Estimation of Roughness-Induced Power Absorption FromMeasures Surface Profile Data[J]. IEEE Microwave and Wireless ComponentsLetters,2007,16(4):486-488.
    [A35] Milan V L, Dejan S F. Modeling of3-D Surface Roughness Effects With Applicationto μ-Coaxial Lines[J]. IEEE Transactions on Microwave Therory and Techniques,2007,55(3):518-525.
    [A36] Wagner K W. The Progress of an Electromagnetic Wave in a Coil with Capacitybetween Turns[J]. Elektrotechnik und Maschinenbau,1915,33(1):89-92+105-108.
    [A37] Cohn S B, Direct Coupled Cavity Filters[J]. Proceedings of the Institute of RadioEngineers,1957,45(2):187-196.
    [A38] Matthaei G L. Microwave filters, impendence-matching networks, and couplingstructure[M]. Artech House,1972.
    [A39] Levy R, Snyder R V, Mattchaei G L. Design of Microwave filters[J]. IEEETransaction. Microwave. Theory. Technology,2002,50(3):783-793.
    [A40] Scanlan S O, Rhodes J D. Microwave Networks With Constant Delay[J]. IEEETransation. Circuit Systems,1967, CT-14(9):280-297.
    [A41] Choi Y W, luong H C. A high Q and wide dynamic range CMOS IF bandpass filterfor monolithic receivers[C]. ISCAS, Geneva, Switzerland.2000, May,28-31.
    [A42] Orchard H J. Filter Design by Iterrated Analysis[J]. IEEE Transaction. CircuitSystems,1985, CAS-32(11):1089-1096.
    [A43] Cameron RJ. General coupling matric synthesis methods for Chebyshev filteringfunction[J]. IEEE Transactions on MTT,1999, MTT-47(4):433-442.
    [A44] Ruze J. The effect of aperture errors on the antenna radiation pattern[J]. Suppl.alNuovo Cimento,1952,9(3):364-388.
    [A45] Vu T B. Influence of correlation interval and illumination taper in antenna tolerancetheory[J]. Proceedings of the Institution of Electrical Engineers,1969,116(2):195-202.
    [A46] Samii Y R. An efficient compitonal method for characterizing the effect of randomsurface errors on the average power pattern of reflectors[J]. IEEE TransactionAntenna Propagation,1983, AP-31(1):92-98.
    [A47] Bahadori K, Rahmat-samii Y. Characterization of effects of periodic and aperiodicsurface distortions on membrane reflector antennas[J]. IEEE Transaction AntennaPropagation,2005,53(9):2782–2791.
    [A48] Kim J W, Kim B Y, Nam S W, and et al. Computation of the average power pattern ofa reflector antenna with random surface errors and misalignment errors[J]. IEEETransaction Antenna Propagation.1996,44(7):996-999.
    [A48] Ruze J. Pattern degradion of space fed phased arrays[R]. Project report SBR-1, MIT.Lincoln Laboratory, Lexington, MA,1979.
    [A49] Wang H S C. A comparison of the performance of reflector and phased-arrayantennas under error conditions[C]. IEEE Aerospace Applications Conference,1991.
    [A50] Hsiao J K. Array sidelobes, error tolerance, gain and beamwidth[R]. NRL Report8841,1984.
    [B1]葛世荣,Tonder K.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,17(1):73-80.
    [B2]葛世荣,索双富.表面轮廓分形维数计算方法的研究[J].摩擦学学报,1997,17(4):354-362.
    [B3]陈国安,葛世荣,张晓云.磨合过程中表面形貌变化的分形表征[J].润滑与密封,1999,2(1):55-56.
    [B4]葛世荣,陈国安.磨合表面形貌变化的特征粗糙度参数表征[J].中国矿业大学学报,1999,28(3):204-207.
    [B5]李成贵.分形理论在表面粗糙度表征和评定中的应用研究[D].天津:天津大学博士学位论文,1997.
    [B6]李成贵,董申.三维表面微观形貌的表征参数和方法[J].宇航计测技术,1999,19(6):33-43.
    [B7]李成贵.表面微观形貌的MOTIF参数计算[J].航空精密制造技术,2001,37(1):42-46.
    [B8]储佳,马向阳,杨德仁,等.硅片表面微粗糙度的研究进展[J].半导体技术,2000,25(5):22-25.
    [B9]郝立波,邢庆昌,王继芳,等.人工关节假体不同材料及材料表面粗糙度对表皮葡萄球菌粘附能力的影响[J].中华关节外科杂志,2008,2(5):34-36.
    [B10]冯一雷.航空发动机轴间密封用C/C复合材料的滑动摩擦磨损特性研究[D].长沙:中南大学硕士学位论文,2003.
    [B11]肖艺.腔体微波器件的结构-电磁耦合分析[D].西安:西安电子科技大学硕士学位论文,2010.
    [B12]宛刚.机械结构因素对微波滤波器电性能的影响[D].西安:西安电子科技大学硕士学位论文,2010.
    [C1] Li N, Zheng F. Effect of Micro/nano-scale Rough Surface on Power Dissipation of theWaveguide:Model and Simulate[J], Journal of Nanoscience and Nanotechnology.2011,11(12):11222-11226.
    [C2]宋立伟,段宝岩,郑飞,马洪波.表面误差对反射面天线电性能的影响[J].电子学报.2009,37:552-556.
    [C3]李鹏,郑飞,李娜.表面纹理对反射面天线电性能的影响.电子与信息学报[J].31,2278-2282,2009.
    [C4]周金柱,张福顺,黄进等.基于核机器学习的腔体滤波器辅助调试[J].电子学报.2010,38(6):1274-1279.
    [C5] Zhou J Z, Baoyan Duan, Jin Huang. Influence and Tuning of Tunable Screws forMicrowave Filters Using Least Squares Support Vector Regression[J]. InternationalJournal of RF and Microwave Computer Aided Engineering.2010,20(4):422-429.
    [C6] Wang W, Duan B Y, Li P, and et al. Optimal Surface Adjustment by theError-Transformation Matrix for a Segmented-Reflector Antenna. IEEE AntennPropga.M.2010,52():80-87.
    [C7]宋立伟,段宝岩,郑飞.反射面表面与馈源误差对天线方向图的影响[J].系统工程与电子技术,2009,31(6):1269-1274.
    [C8]宋立伟,段宝岩,郑飞.变形反射面天线馈源最佳相位中心的研究[J].北京理工大学学报,2009,29(10):894-897.
    [C9] Song L W, Duan BY, Zheng F, and et al. Performance of Planar Slotted Waveguide ArraysWith Surface Distortion[J]. IEEE Transactions on Antennas and Propagation,2001,59(9):3218-3223.
    [C10] Wang C. S., Bao H., Zhang F. S., and et al. Analysis of electrical performances of planar activephased array antennas with distorted array plane[J]. J. Syst. Eng. Electron.,2009,20(4):726–731.
    [C11] Wang C S, Duan B Y, Zhang F S, and et al. Coupled structural-electromagnetic-thermalmodelling and analysis of active phased array antennas[J]. IET Microw. Antennas Propag.,2010,4(2):247–257.
    [A1] Morgan S P. Jr. Effect of surface roughness on eddy current losses at microwavefrequencies[J]. Journal of Applied Physics,1949,20(3):352-362.
    [A2] Hammerstad E.O, Bekkadal F. A microstrip handbook. ELAB Report, STF44A74169.Norway: University of Trondheim[M],1975.98-110.
    [A3] Chen C D, Tzuang C K C. Peng, S.T.. Full-Wave Anslysis of a Lossy RectangularWaveguide Containing Rough Inner Surfaces[J]. IEEE Microwave and Guided WaveLetters,1992,2(5):180-181.
    [A4] Holloway C L, Kuester E F. Power Loss Associated with Conducting andSuperconducting Rough Interfaces[J]. IEEE Trans. Microwave Theory and Techniques,2000,48(10):1601-1610.
    [A5] Bendat, J S. Principles and Applications of Random Noise Theory[M]. John Wiley andSons, Inc.,1958.
    [A6] Bakolas V. Numerical generation of arbitrarily oriented nonGaussian threedimensional rough surfaces[J]. Wear,2003,254(5-6):546-554.
    [A7] Sayles R, Thomas T R. Surface topography as a non-stationary random process[J].Nature,1978,271(2):431-434.
    [A8] Wagner R L, Song J M, Chew W C. Monte Carlo simulation of electromagneticscattering from two-dimensional random rough surfaces[J]. IEEE Transactions onAntennas and Propagation,1997,45(2):235-245.
    [A9] Patir N. A numerical procedure for random generation of rough surfaces[J]. Wear,1978,47(2):263-277.
    [A10] Thomas A P, Thomas T R. Engineering surface as fractals, fractal aspects ofmaterials[M]. Pittsburgh: Materials Research Society,1986,75-77.
    [A11] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization andcontactmechanics of surfaces[J]. Journal of Tribology,1990,112(2):205-216.
    [A12] Janeczko D J. Power spectrum standard for surface roughness:part Ⅰ[J].SPIE,1989,1165(1):175-183.
    [A13] Merle E J, Bennett J M. Calculation of the power spectral density from surfaceprofile data[J]. Journal of Optics A: Pure and Applied Optics,1995,34(1):201-208.
    [A14] Mandelbrot B. The Fractal Geometry of Nature[M]. W. H. Freeman. San Francisco,1982.
    [A15] Falconer K, Fractal Geometry:Mathematical Foundations and Application[J]. Wiley,New York,1990.
    [A16] Weeks W T, Wu L L, McAllister M F, and et al. Resistive and inductive skin effect inrectangular conductors[J]. IBM J. Res. Develop,1979,23(11):652–660.
    [A17] Hammerstad E, Jensen O. Accurate models of computer aided microstrip design[C].IEEE MTT-S Symposium Digest, May,1980.
    [A18] Krystek M. A fast Gauss filtering algorithm for roughness measurements[J].Precision Engineering,1996,19(2):198-200.
    [A19] Chen X, Raja J. Multi-scale of Engineering Surface[J]. Int. J. Mach. ToolsManufacture,1994,35(2):2133-2148.
    [A20] Bruno J, David R.Burton,Michael J.Labor.Frequency Normalized WaveletTransform for Surface Roughness Analysis and Characterization[J]. Wear,2002,252:491-500.
    [A21] Jiang X Q, Biunt L, Stout K J. Application of the lifting wavelet to rough surfaces[J].Precision Engineering,2001,25(2):83-89.
    [B1]张起生,王晓春,谢鸣.符合Gauss分布规律的随机粗糙表面数值模拟[J].燕山大学学报,2008,32(6):503-506.
    [B2]陈辉,胡元中,王慧,王文中.粗糙表面计算机模拟[J].润滑与密封,2006,10(1182):52-59.
    [B3]沈正祥,王占山,马彬,等.利用功率谱密度函数表征光学薄膜基底表面粗糙度[J].光学仪器,2006,28(4):141-145.
    [B4]蒋庄德,王海容,陈伟.分数布朗运动应用于机械加工表面形貌的评定[J].现代计量测试,1997,6:15-20.
    [B5]黄志洵,截止波导导论[M].北京:北京计量出版社,1991.
    [B6]曾文涵,高咏生,谢铁邦,等.三维表面粗糙度高斯滤波快速算法[J].计量学报,2003,24(1):10-13.
    [B7]杨叔子.机械加工工艺师手册[M].北京:机械工业出版社,2002.
    [B8]艾勇军.机械加工表面质量及影响因素探析[J].机电信息.2011,21(1):195-196.
    [B9]文成林,周东华.多尺度估计理论及其应用[M].北京:清华大学出版社,2002.
    [B10]李惠芬,蒋向前,李柱.小波理论的发展及其在表面功能评定中的应用[J].现代计量测试,2001,10(5):6-8.
    [B11]曾文涵.双树复小波表面分析模型及加工过程形貌辨识方法研究[D].武汉:华中科技大学,2005.
    [C1] Li N, Zheng F. Effect of Micro/nano-scale Rough Surface on Power Dissipation of theWaveguide:Model and Simulate[J]. Journal of Nanoscience and Nanotechnology,2011,11(12):11222-11226.
    [C2] Li N, Zheng F, Xiong C W. Model Surface Effects on Power Dissipation[J].Microwaves&RF.2010,49(11):64-73.
    [C3] Li N, Zheng F, Xiong C W. Electromechanical CoupLing ModeLing of the RoughnessSurface on the Micro/nano-scale with the Conductors[J]. Advanced science letters.2011,4(6):1971-1975.
    [A1] Miller S E, Beck A C. Low-Loss Waveguide Transmission[J]. Proceedings of theI.R.E.,1952,41(3):348-358.
    [A2] Van Heuven J H C. Conduction and Radiation Losses in Microstrip[J]. IEEETransactions on Microwave Therory and Techniques,1974,22(9):841-844.
    [A3] Edwards T C. Foundations for Microstrip Circuit Design[M]. John Wiley&Sons, N. Y.,1987.
    [A4] Hollmann D, Haffa S, Rostan F, el al. The Introduction of Surface Resistance in theThree-Dimensional Finite-Difference Method in Frequency Domain[J]. IEEETransactions on Microwave Therory and Techniques,1993,4(5):893-895.
    [A5] Christopher L H, Edward F K. Power Loss Associated with Conducting andSuperconducting Rough Interfaces[J]. IEEE Transactions on Microwave Therory andTechniques,2000,48(10):1601-1610.
    [A6] Zhu Z H, Demir A, White J. A Stochastic Integral Equation Method for Modeling theRoughness Effect On Interconnect Capacitance[C]. IEEE/ACM InternationalConference on Computer Aided Design,2004,887-891.
    [A7] Alberto M S, Ulises R C, Rafael E L. Effect of wall random roughness on TE and TMmodes in a hollow conducting waveguide[J]. Optics Communications,2004,238(4):291-299.
    [A8] Brist G, Clouser S, Hall S, et al. Non-Classical Conductor Losses due to Copper FoilRoughness and Treatment[C]. ECWC10Conference,1-11,2005.
    [A9] Tsang L, Gu X X, and Braunisch H. Effect of Random Rough Surface on Absorptionby Conductors at Microwave Frequencies [J]. IEEE Microwave and WirelessComponents Letters,2006,16(4):221-223.
    [A10] Liang T, Hall S, Heck H, et al. A Practical Method for Modeling PCB TransmissionLines with Conductor Surface Roughness and Wideband Dielectric Properties[C].IEEE MTT-S International Symposium June11,1780-1783,2006.
    [A11] Gu X X, Braunisch H. Estimation of Roughness-Induced Power Absorption FromMeasures Surface Profile Data[J]. IEEE Microwave and Wireless ComponentsLetters,2007,16(4):486-488.
    [A12] Milan V L, Dejan S F. Modeling of3-D Surface Roughness Effects With Applicationto μ-Coaxial Lines[J]. IEEE Transactions on Microwave Therory and Techniques,2007,55(3):518-525.
    [A13] Brown S R, Scholz C H. Broad Bandwidth Study of the Topography of Natural RockSurfaces[J]. Journal of Geophysical Research,1985,90(B14):12575-12582.
    [A14] Lin N, Lee H P, Lim S P, et al. Wave scattering from fractal surface[J]. Journal ofModern Optics,1995,42(1),225-241.
    [A15] Falconer K, Fractal Geometry:Mathematical Foundations and Application[J]. Wiley,New York,1990.
    [A16] Morgan S P. Jr. Effect of surface roughness on eddy current losses at microwavefrequencies[J]. Journal of Applied Physics,1949,20(3):352-362.
    [A17] Hammerstad, E. O., and Bekkadal, F. A microstrip handbook[M]. ELAB Report, STF44A74169, University of Trondheim, Norway,1975:98-110.
    [A18] Thomoson J J. Notes on Recent Researches in Electricity and Magnetism[M].Dawsons of Pall Mall, London,344-347,1968.
    [A19] Carson J R, Mead S P, Schelkunoff S A. Hyper Hyper-frequency Wave GuidesMathematical Theory[J]. Bell System Technical Journal,1936,15(1):310-333.
    [A20] Chen C D, Tzuang C K C, Peng S T. Full-Wave Anslysis of a Lossy RectangularWaveguide Containing Rough Inner Surfaces[J]. IEEE Microwave and Guided WaveLetters,1992,2(5):180-181.
    [A21] Marcuvitz N. Waveguide Handbook[M]. Rad.Lab.Series, McGraw-Hill Book Co.,New York,1951.
    [A22] Richard L.Burden J, Faires D. Numerical analysis[M].2001.
    [B1]黄志洵,截止波导理论[M].北京:中国计量出版社,1989.
    [B2]吕善伟,微波工程基础[M].北京:航空航天大学出版社,1995.
    [B3]钱晓亮,郭雷,余博.基于目标尺度的自适应高斯滤波[J].计算机工程与应用,2010,46(12):14-20.
    [B4]许景波.高斯滤波器逼近理论与应用研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [B5]吴松.三维表面形貌的评价技术及其应用基础研究[D].南京:南京航空航天大学硕士学位论文,2007.
    [B6]徐东,给定幅值及相位误差的复系数FIR滤波器设计[D].杭州:杭州电子科技大学硕士学位论文,2011.
    [B7]吴晓苏,周智敏.薄壁矩形深腔体零件的数控加工工艺[J].机械工程师,2007,1:123-125.
    [B8]艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    [B9]王能超编著.数值分析简明教程[M].北京:高等教育出版社,2003
    [B10]沈剑华编.数值计算基础[M].上海:同济大学出版社,1999
    [C1]庞和喜,波导内壁表面粗糙度对电磁波传输性能的影响研究[D].西安:西安电子科技大学,2008.
    [C2] Na.LI, Fei.ZHENG. Effect of Micro/nano-scale Rough Surface on Power Dissipationof the Waveguide:Model and Simulate, Journal of Nanoscience and Nanotechnology.Vol.11,11222-11226,2011.
    [A1] Cohn S B, Direct Coupled Cavity Filters[J]. Proceedings of the Institute of RadioEngineers,1957,45(2):187-196.
    [A2] Orchard H J. Filter Design by Intergrated Analysis[J]. IEEE Transaction. CircuitSystems,1985, CAS-32(11):1089-1096.
    [A3] Wagner K W. The Progress of an Electromagnetic Wave in a Coil with Capacitybetween Turns[J]. Elektrotechnik und Maschinenbau,1915,33(1):89-92+105-108.
    [A4] Matthaei G L. Microwave filters, impendence-matching networks, and couplingstructure[M]. Artech House,1972.
    [A5] Atia A E, Williams A E, Newcomb R W. Narrow-Band Multiple-Coupled CavitySynthesis[J]. IEEE Trans. Circuits and. Systems,1974,21(5):649-655.
    [A6] Scanlan S O, Rhodes J D. Microwave Networks With Constant Delay[J]. IEEETransation. Circuit Systems,1967, CT-14(9):280-297.
    [A7] Cameron R J. General coupling matric synthesis methods for Chebyshev filteringfunction[J]. IEEE Trans.on MTT,1999, MTT-47(4):433-442.
    [A8] Levy R, Snyder R V, Mattchaei G. Design of Microwave filters[J]. IEEE Transaction.Microwave. Theory. Technology,2002,50(3):783-793.
    [A9] Choi Y W, Luong H C. A high Q and wide dynamic range CMOS IF bandpass filterfor monolithic receivers[C]. ISCAS, Geneva, Switzerland.2000, May,28-31.
    [A10] Gunston M A R. Microwave transmission line impedance data[M]. Van NostrandReinhold,1972.
    [A11] George L R. Microwave transmission circuits[M]. McGraw-Hill,1948.
    [A12] Hong J G, Lancaster M J. Microstrip Filters for RF/Microwave Applications[M].New York: Wiley-Interscience,2001.
    [A13] Bell H C. The coupling matrix in low-pass prototype filters[J]. IEEE MicrowaveMagazine.2007,8(2):70-76.
    [A14] Miraftab V, Ming Y. Generalized lossy microwave filter coupling matrix synthesisand design using mixed technologies[J]. IEEE Transactions on Microwave Theoryand Techniques.2008,56(12):3016-3027.
    [A15] Oldoni M, Macchiarella G, Gentili G G, and et al. A new approach to the synthesis ofmicrowave lossy filters[J]. IEEE Transactions on Microwave Theory and Techniques.2010,58(5):1222-1229.
    [B1]甘本祓,吴万春.现代微波滤波器的结构与设计[M].北京:科学出版社,1973.
    [B2]高峻,唐晋生.微波滤波器的回顾与展望[J].电子元器件应用,2005,11(2):70-72.
    [B3]张胜.微型平面微波滤波器的结构与性能研究[D].上海:上海大学博士学位论文,2007.
    [B4]姜华.带通滤波器结构参数与电性能机理研究[D].西安:西安电子科技大学硕士论文,2008.
    [B5]吴边.无线通信中微波滤波器的比较设计法与应用研究[D].西安:西安电子科技大学博士学位论文,2008.
    [B6]宛刚.机械结构因素对微波滤波器电性能的影响[D].西安:西安电子科技大学硕士学位论文,2010.
    [B7]肖艺.腔体微波器件的结构-电磁耦合分析[D].西安:西安电子科技大学硕士学位论文,2010.
    [B8]杨叔子.机械加工工艺师手册[M].北京:机械工业出版社,2002.
    [B9]柳光福,刘启明,葛光楣.介质谐振腔滤波器的设计[J].航空电子技术,2004,35(1):32-36+41.
    [B10]林为干.微波理论与技术[M].北京:科学出版社,1979.
    [B11]黄志洵.截止波导理论[M].北京:中国计量出版社,1989.
    [C1]周金柱,电子装备结构因素对电性能影响的支持向量建模与补偿[D].西安:西安电子科技大学博士学位论文,2011.
    [C2]周金柱,张福顺,黄进,等.基于核机器学习的腔体滤波器辅助调试[J].电子学报,2010,38(6):1274-1279.
    [C3] Jinzhu Zhou, Baoyan Duan, Jin Huang. Influence and Tuning of Tunable Screws forMicrowave Filters Using Least Squares Support Vector Regression[J]. InternationalJournal of RF and Microwave Computer Aided Engineering,2010,20(4):422-429.
    [C4]周金柱,黄进.集成先验知识的多核线性规划支持向量回归[J].自动化学报.2011,37(3):360-370.
    [C5] LI Na., Fei.ZHENG and Changwu.XIONG. Model Surface Effects on PowerDissipation[J], Microwaves&RF. Vol.49,64-73,2010.
    [C6]熊长武.机械结构因素对谐振腔无载Q值的影响分析[J].电讯技术,2011,06():
    [A1] Love, A W, Some Highlights in Reflector Antenna Development[J]. Radio Science,1976,11(8):671-684.
    [A2] Davis J H. The Evaluation of Reflector Antenna[D]. Ph.D. Dissertation, Univ. ofTexas at Austin,1970.
    [A3] Zarghamee M. S. On Antenna Tolerance Theory[J]. IEEE Transactions on antenna andpropagation,1967, AP-15(6):777-781.
    [A5] Hao L. Tolerance study of reflector antenna systems[D]. University of Illinois atUrbana-Champaign,1986.
    [A6] Ruze J. The effect of aperture errors on the antenna radiation pattern[J]. Suppl.alNuovo Cimento.,1952,9(3):364-388.
    [A7] Kim J W, Kim B Y, Nam S W, and et al. Computation of the average power pattern ofa reflector antenna with random surface errors and misalignment errors[J]. IEEETransaction Antenna Propagation,1996,44(7):996-999.
    [A7] Ruze J. Antenna tolerance theory–A review[J]. Proceeding of IEEE,1966,54(4):633-640.
    [A8] Vu T B. The effect of aperture errors on the antenna radiation pattern. Proceeding ofIEEE,116,195-202,1969.
    [A9] Samii R Y. An Efficient Computational Method for Characterizing the Effects ofRandom Surface Errors on the Average Power Pattern of Reflectors[J]. IEEETransactions on Antenna and Propagation,1983,31(1):92-98.
    [A10] Samii Y R. Effects of deterministic surface distortions on reflector antennaperformance[J]. Annals of Telecommunications,1985,40(7-8):350-360.
    [A11] Bahadori K, Samii Y R. Characterization of effects of periodic and aperiodic surfacedistortions on membrane reflector antennas[J]. IEEE Transaction AntennaPropagation,2005,53(9):2782–2791.
    [A12] Olver A D. Tolerance on milimeter wave reflector antenna[C]. IEE Colloquium onReflector Antenna for the90's, London:IEE,1-4,1992.
    [A13] Lindley A. Analysis of distorted reflector antennas[C].6th IEE Internationalconference on Antenna and Propagation(ICAP),32-34,1989.
    [A14] Phntoppidan K. Reflector surface tolerance effects[C]. IEEE Antenna andpropagation society International Symposium, Phiadelphia,413-416,1986.
    [A15] Rysch W. Surface tolerance loss for dual-reflector antenna[J]. IEEE Transaction onAntennas and Propagation,1982,32(4):784-785.
    [A16] Chen X, Raja J. Multi-scale of engineering surface[J]. International Journal ofMachine Tools and Manufacture.1994,35(2):231-238.
    [A17] Chen X. Space-frequency analysis of engineering surfaces[D]. M.Sc.Thesis,University of North Carolina at Charlotte,1994.
    [A18] Jasper W J, Garnier S J, Potlapalli H. Texture characterization and defect detectionusing adaptive wavelets[J]. Optical. Engineering,1996,35(11):3140-3149.
    [A19] Chen Q H, Yang S N, Li Z. Surface roughness evaluation by using waveletanalysis[J]. Precision. Engineering,1999,23(3):209-212.
    [A20] Josso B, Burton D R, Lalor M J. Frequency normalized wavelet transform for surfaceroughness analysis and characterization[J]. Wear,2002,252(5-6):491-500.
    [A21] Craig S. Modern methods of reflector antenna analysis and design[M],Boston:House.1990.
    [B1]刘京生,曾余庚.天线副面(馈源)支撑结构的机电综合优化设计[J].通信学报,1988,6(1):60-63.
    [B2]梁健康,门俊环,鞠志涛,等.旋转抛物面天线反射面微机检测和调整系统[J].电子机械工程,1990,1:54-60
    [B3]周生怀.大型天线结构的预调及实践[J].通信与测控,1998,(2):47-59.
    [B5]郑元鹏.50m口径射电望远镜反射面精度分析[J].无线电通信技术,2002,5:17-18.
    [B6]魏文元,宫德明,陈必森.天线原理[M].北京:国防工业出版社,1985.
    [B7]林世明,胡锦林,杨健.表面电流物理光学近似一阶修正项新的计算公式[J].微波学报,1997,13(3):269-273.
    [B8]肖疆,赋形反射面天线在穿孔毁伤条件下辐射特性的研究[D].北京:北京理工大学硕士学位论文,2003.
    [C1]叶尚辉,李在贵.天线结构设计[M].西安:西北电讯工程学院出版社,1983.
    [C2]段宝岩.天线结构分析,优化与测量[M].西安:西安电子科技大学出版社,1998.
    [C3]叶尚辉,修正曲面天线的保型设计[J].西北电讯工程学院学报,1981,1(4):1-9.
    [C4]徐国华,施浒立.双反射面天线表面形状预优设计[J].西北电讯工程学院学报.1984,4:13-19.
    [C5]徐国华,王五兔.反射面变形对天线辐射方向图的影响[J].电子学报.1994,22(12):46-49.
    [C6]徐国华,漆一宏,段宝岩,等.变形反射面天线效率与馈源相位中心的研究[J].西安电子科技大学学报,1990,17(4):63-70.
    [C7]漆一宏.变形反射面天线的效率[J].中国空间科学技术,1992,4(2):1-4.
    [C8]王伟,李鹏,宋立伟.面板位置误差对反射面天线功率方向图的影响机理研究.西安电子科技大学学报,2009,36(4):708-713.
    [C9] W.Wang, B.Y.Duan, P.Li, et al. Optimal Surface Adjustment by theError-Transformation Matrix for a Segmented-Reflector Antenna[J]. IEEEAntenn Propagation.Magzine,2012,52:80-87.
    [C10]宋立伟,段宝岩等.表面误差对反射面天线电性能的影响[J].电子学报,2009,37(3):552-556.
    [C11]王从思,等.天线表面误差的精确计算方法及其电性能分析[J].电波科学学报,2006,21(3):403-409.
    [C12]兰佩锋,仇原鹰,邵晓东.一种反射面天线机电耦合分析的新方法[J].系统工程与电子技术.2009,31(2):296-299.
    [C13]王从思,段宝岩,仇原鹰.Coons曲面结合B样条拟合大型面天线变形反射面[J].电子与信息学报.2008,30(1):233-237.
    [C14]王伟,李鹏,宋立伟.面板位置误差对反射面天线功率方向图的影响机理[J].西安电子科技大学学报.2009,36(4):708-713.
    [C15]王从思.博士学位论文,西安电子科技大学,2007.
    [C16]王伟.大型天线反射面精度调整关键技术研究,博士学位论文,西安电子科技大学,2011.
    [C17]宋立伟.天线结构位移场与电磁场耦合建模及分析研究[D].西安:西安电子科技大学博士学位论文,2011.
    [C18]李鹏.博士学位论文,西安:西安电子科技大学,2011.
    [A1] Ruze J. Pattern degradion of space fed phased arrays[R]. Project report SBR-1, MIT.Lincoln Laboratory, Lexington, MA,1979.
    [A2] Wang H S C. A comparison of the performance of reflector and phased-array antennasunder error conditions[C]. IEEE Aerospace Applications Conference,1991.
    [A3] Wang H S C. Performance of phased-array antennas with mechanical errors[J]. IEEETransactions on Aerospace and Electronic Systems,1992,28(2):535-545.
    [A4] Wang H S C. Performance of phased array antennas under error conditions[C]. IEEEAerospace Applications Conference,1989.
    [A5] Hsiao J K. Array sidelobes, error tolerance, gain and beamwidth[R]. NRL Report8841,1984.
    [A6] Samii R Y. Array feeds for reflector surface distortion compensation: concepts andimplementation[J]. IEEE Antennas and Propagation Magazine.1990,32(4):20-26.
    [A7] Bailey M C. Determination of array feed excitation to improve performance ofdistorted or scanned reflector antennas[C]. Antennas and Propagation SocietyInternational Symposium,1991.
    [A8] Samii R Y. Novel array-feed distortion compensation techniques for reflectorantennas[J]. IEEE Aerospace and Electronic Systems Magazine.1991,6(6):12-17.
    [A9] Shenheng X, Samii R Y, Imbriale W A. Subreflectarrays for Reflector SurfaceDistortion Compensation[J]. IEEE Transactions on Antennas and Propagation,2009,57(2):364-372.
    [A10] Jeongheum L, Yongbeum L, Hyeongdong K. Decision of error tolerance in arrayelement by the Monte Carlo method[J]. IEEE Transactions on Antennas andPropagation,2005,53(4):1325-1331.
    [A11] Stevenson A F. Theory of slots in rectangular waveguides[J]. Journal of AppliedPhysics,1948,19(1):24-38.
    [A12] Elliott R, O'loughlin W. The design of slot arrays including internal mutualcoupling[J]. IEEE Transactions on Antennas and Propagation,1986,34(9):1149-1154.
    [A13] Gulick J J, Elliott R S. The design of linear and planar arrays of waveguide-fedlongitudinal slots[J]. Electromagnetics,1990,10(4):327-347.
    [A14] Oliner A. The impedance properties of narrow radiating slots in the broad face ofrectangular waveguide: Part I--Theory[J]. IEEE Transactions on Antennas andPropagation,1957,5(1):4-11.
    [A15] Vu K T, Carson C. Impedance properties of a longitudinal slot antenna in the broadface of a rectangular waveguide[J]. IEEE Transactions on Antennas and Propagation,1973,21(5):708-710.
    [A16] Ogilvy J A. Theory of Wave Scat tering f rom Random Rough Surface[M]. Bristol:Institute of Physics Publishing,1991.
    [A17] Ishimaru A. Wave Propagation and Scatteringin Random Media[M]. New York: Academic Press,1978.
    [A18] Fung A K. Microwave Scattering and Emission Models and Their Applications[M].London: Artech House,1994.
    [A19] Jacob C C, Johan J, Derek A M. Off-center-frequency analysis of a complete planarslotted-waveguide array consisting of subarrays[J]. IEEE Transaction on Antennasand Propagation.2000,48(11):1746-1755.
    [A20] Elliott R. An improved design procedure for small arrays of shunt slots[J]. IEEETransactions on Antennas and Propagation,1983,31(1):48-53
    [A21] Hung Y. Impedance of a narrow longitudinal shunt slot in a slotted waveguide array[J].IEEE Transactions on Antennas and Propagation,1974,22(4):589-592.
    [A22] V.Jamnejad-Dailami, Samii Y R. Some important geometrical features ofconic-section-generated offset reflector antenna[J]. IEEE Transactions Antennas andPropagation,1980, AP-28(6):952-957.
    [B1]王伟,吕善伟.单脉冲平面缝隙阵列天线设计和误差分析[J].无线电工程,1996,26(2):58-64.
    [B2]王伟,吕善伟.单脉冲平面阵列天线误差分析[J].宇航学报,1996,19(4):91-96.
    [B3]周小林.毫米波引信天线的仿真设计与误差分析[J].制导与引信,2006,27(4):28-31.
    [B4]宋微微.具有局部凸起形变反射面天线的方向图仿真与分析[D].西安电子科技大学硕士学位论文,2008.
    [B5]余伟,顾卫军,郭先松.平板裂缝天线子阵形变后的方向图分析[J].现代雷达,2008,30(12):70-73.
    [C1] Wang C, Duan B, Zhang F, et al. Analysis of performance of active phased arrayantennas with distorted plane error[J]. International Journal of Electronics.2009,96:549-559.
    [C2] Wang C S, Bao H, Zhang F S, and et al. Analysis of electrical performances of planaractive phased array antennas with distorted array plane[J]. Journal of SystemsEngineering and Electronics,2009,20(4):726-731.
    [C3] Wang C S, Duan B Y, Zhang F S, et al. Coupled structural-electromagnetic-thermalmodelling and analysis of active phased array antennas[J]. IET Microwaves, Antennas&Propagation.2010,4(2):247-257.
    [C4]宋立伟.天线结构位移场与电磁场耦合建模及分析研究[D].西安:西安电子科技大学博士学位论文,2011.
    [C5] Song L W, Duan BY, Zheng F, and et al. Performance of Planar Slotted Waveguide ArraysWith Surface Distortion[J]. IEEE Transactions on Antennas and Propagation,2001,59(9):3218-3223.
    [A1] Maystre R D. Inverse scattering method in electromagnetic optics: Application todiffraction gratings[J]. Journal of the Optical Society of American A,1980,70(12):1483-1495.
    [A2] Husier A M, Quatropani A, Baltes H D. Construction of grating profiles yieldingprescribed diffraction efficiency[J]. Optical Communication,1982,41:149-153.
    [A3] Wombel R J, DeSanto J A. Reconstruction of shallow rough surface profile fromscattering field data[J]. Inverse Problem,1991,7(1)L7~L12
    [A4] Richard J, John A W, De SantoJ A. Reconstruction of rough-surface profiles with theKirchhoff approximation[J]. Journal of the Optical Society America A,1991,8(12):1892-1897.
    [A5] Spivack M. Direct solution of the inverse problem for rough surface scattering atgrazing incidence[J]. Journal of Physics A: Mathematics Gen,1992,25(11):3295-3302.
    [A6] Spivack M. A numerical approach to rough surface scattering by parabolic equationmethod[J]. Journal of the Acoustic Society of America,1990,87(5):1999-2004.
    [A7] Spivack M. Solution of the inverse scattering problem for grazing incidence upon arough surface[J]. Journal of the Optical Society America A,1992,9(8):1352-1355.
    [B1]李伯奎.传统机械加工表面形貌评定的缺陷及发展方向[J].淮阴工学院学报,2002,11(3):63-65.
    [B2]蒋庄德.分数布朗运动应用于机械加工表面形貌的评定[J].现代计量测试,1997,6.
    [B3]费斌.机械加工表面分形特性的研究[J].西安交通大学学报,1998,5.
    [B4]任晓.三维粗糙表面的表征及其气体密封性能研究[D].大连:大连理工大学硕士学位论文,2009.
    [B5]吴松.三维表面形貌的评价技术及其应用基础研究[D].南京:南京航空航天大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700