用户名: 密码: 验证码:
阵列自适应波束形成及空时自适应处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,伴随阵列天线在现代雷达、通信、声纳等应用领域的发展,阵列规模越来越大、信号维数也越来越高,然而受工作环境、硬件设备和制造工艺等诸多因素的限制,阵列信号处理中自适应算法的计算复杂度高、训练样本需求较多及性能受非理想因素的影响等问题表现地愈加凸显。本文主要从降维和稳健处理两方面,对多输入多输出(Multiple-Input Multiple-Output, MIMO)雷达、机载预警雷达及机载MIMO雷达信号处理中的自适应波束形成(Adaptive Beamforming)和空时自适应处理(Space-TimeAdaptive Processing, STAP)方法进行了研究,主要工作包括以下几个方面:
     1.针对相干MIMO雷达自适应波束形成问题,讨论并分析了相干MIMO雷达发射阵和接收阵的双边导向矢量失配模型,提出了一种双边稳健降维自适应波束形成算法。该方法结合双迭代算法(Bi-IterativeAlgorithm, BIA)和二阶凸优化(Second-Order Cone Programming, SOCP)算法,通过松弛和收发分离处理,将原本基于高维协方差矩阵的SOCP问题转化为两个基于低维协方差矩阵的SOCP问题,然后循环优化两个低维的发射权矢量和接收权矢量。与全维稳健算法相比,所提算法能有效克服收发误差耦合问题,具有较好的稳健性,并能大幅降低计算复杂度和对训练样本数的需求。
     2.建立了机载雷达杂波空时二维数据的矩阵模型,在充分利用载机速度和雷达工作参数等先验信息的基础上,提出了一种机载雷达杂波非自适应空时块对消器(Space-Time Block Canceller, STBC),并给出了关于STBC权系数的最小二乘代价函数,从而优化得到STBC的权系数。由于STBC权系数仅利用载机速度和雷达工作参数等先验信息计算得到,属于非自适应处理器,因而具有运算量小、无收敛过程等优点,并且可作为机载雷达的杂波预滤波器,从而进一步改善常规动目标显示(Moving Target Indication, MTI)处理和降维STAP算法的性能。此外,在杂波模型中考虑了偏航角的存在,因此,STBC既适用于正侧视雷达,也适用于非正侧视阵雷达。
     3.利用最优STAP权矩阵的低秩特性,提出了一种基于非正交基迭代(Non-Orthogonal Basis Iterative, NOBI)的空时降维自适应算法。该方法将空时联合滤波器分离为多对空域滤波器组和时域滤波器组,采用截断和堆栈处理,建立了关于空域滤波器权向量组和时域滤波权向量组的双二次代价函数,然后基于非正交基迭代求解滤波器权矢量组,实现了对杂波的空时可分离滤波。与最优STAP相比,NOBI算法避免了高维数据协方差矩阵的估计和求逆运算,有效降低了计算量和对训练样本的需求。
     4.将空时二维自适应处理(2D-STAP)扩展到空域俯仰、方位和时域三维空间,针对空时三维自适应处理(3D-STAP)提出了两种降维自适应杂波抑制算法。第一种方法是基于先时后空的处理结构,首先采用具有超低旁瓣的时域多普勒预滤波处理实现一级降维,然后将空域俯仰-方位二维波束形成转化为两个一维波束形成问题,从而进一步降低了处理器的维数,实现对杂波空时三维数据的两级降维处理;第二种算法是直接将3D-STAP转化为俯仰、方位和时域三维可分离处理,即将三维权向量近似表示为三个低维权向量的Kronecker积形式,然后基于三迭代算法,依次固定两个权矢量,并构造相应的降维矩阵在低维空间上循环优化另一个权矢量。由于上述两种算法所求权矢量的维数均大幅降低,在小样本情况下具有较好的性能,因而其随样本的收敛性能较好,并具有计算量低、样本需求小等优点。
     5.构建了机载MIMO雷达杂波模型,并从功率谱和自由度分布对杂波特性进行了分析。探讨了几种经典降维STAP算法在机载MIMO雷达中的应用问题,然后,针对机载MIMO雷达回波数据所具有的发射-接收-脉冲三维结构与3D-STAP中的俯仰、方位和时域三维结构类似,我们将3D-STAP中的降维自适应算法应用到机载MIMO雷达空时自适应处理(MIMO-STAP)中,并通过仿真实验验证了它们的性能。
In recent years, with the development of array antenna in the area of radar, communication,sonar and so on, the scale of the antenna arrays and the dimension of signals become larger andlarger. However, due to the limitations of work environment, hardware, manufacturing processesand other factors, the problems including computational complexity, samples demand andperformance under the influence of non-ideal factors of adaptive array signal processing algorithmsare particularly highlighted. In this thesis, on the basis of Multiple-Input Multiple-Output(MIMO)radar, airborne radar and airborne MIMO radar, adaptive beamforming and space-time adaptiveprocessing(STAP)methods are studied from two aspects of reducing dimension and robustness.The main contributions of this thesis are summarized as follows:
     1. Aiming at collocated MIMO radar, a robust adaptive beamforming method is developed forMIMO radar in the presence of unknown mismatches. Explicit models of uncertainties in bothtransmitted and received signal steering vectors are considered. Combined the bi-iterative algorithmand the second convex optimization algorithm, a robust adaptive beamforming method for MIMOradar is proposed. It is shown that the robust adaptive beamforming problem can be solved byminimizing a convex quadratic cost function based on the optimization of worst-case performancewhen full DOFs of MIMO radar are used. Whereas, we reformulate the quadratic cost function intoa bi-quadratic cost function by adopting a separable form for the weight vector and the minimumpoint of the new cost function can be efficiently found by combining bi-iterative algorithm (BIA)with second-order cone programming (SOCP). Compared with the robust adaptive beamformingalgorithms using full DoFs, the proposed beamformer has lower computational complexity andfaster convergence rate, while, at the same time, it provides better robustness in the non-ideal casesand reduces the training samples required.
     2. A model with matrix form of ground clutter data is established. Then taking full advantage ofthe prior information, such as platform velocity, radar parameters and so on, we propose a space-timeblock cancelle(rSTBC)to suppress the ground clutter for airborne radar. A least-squares cost functionassociated with the filter coefficient matrix of the STBC is established. Since the coefficient matrix isonly determined by the prior information, the proposed STBC belongs to a non-adaptive processorand owns small computation load and non-convergence process. It is shown that the proposed STBCcan also be used as an efficient pre-filtering tool before the conventional moving target indication(MTI)processing and the classical reduced-dimension adaptive processing. Moreover, since theclutter model has taken into account of the drift angle, the STBC is applicable not only to the sidelooking airborne radar but also to the non-sidelooking airborne radar.
     3. By utilizing the low rank property of optimal STAP weight matrix, a reduced-dimensionSTAP algorithm is introduced. It is shown that the optimum weight matrix can be naturallyexpressed as the sum of several paired spatial and temporal weight vectors. After truncated andstack processing, the weight vectors can be obtained by optimizing a bi-quadratic cost functionbased on the non-orthogonal basis iterative(NOBI)algorithm. Compared with the optimal STAPmethod, high-dimensional covariance matrix inversion is avoided in our method, and therefore, thecomputational complexity and the demand of training samples is significantly reduced.
     4. Extending the spatial-temporal adaptive processing (2D-STAP) to the azimuthal, elevationaland temporal three-dimensional adaptive processing (3D-STAP), two kinds of reduced-dimensionadaptive algorithms are proposed for airborne radar to suppress ground clutter. The first methodbased on the frame of the mDT-SAP applies a Doppler pre-filter to realize the first step ofreduced-dimension. Then followed by azimuthal and elevational adaptive beamforming instead oftwo-dimensional spatial beamforming, the dimensions of the processor are further reduced. Insecond method, the optimal weight vector is approximatively denoted by the Kronecker product ofthree low-dimensional weight vectors. Then we cyclically optimize a low-dimensional weightvector by applying a reduced-dimension matrix constructed by the other two fixed weight vectors.It is shown that the proposed above two methods seek weight vectors in lower dimensional spaceand perform better in small samples, thus both of them convergence fast and own low computationload and small training data demand.
     5. An airborne MIMO radar clutter model is established, and its characteristics are analyzedfrom the distribution of space-time power spectrum and freedoms. The problems of several classicalreduced-dimension STAP algorithms used in airborne MIMO radar are explored. Due to the factthat the received clutter data of airborne MIMO radar own a three-dimensional (transmitting,receiving and temporal) structure, which is similar to3D-STAP, then the3D-STAP methods forairborne array radar are introduced into the airborne MIMO radar space-time adaptive processing(MIMO-STAP), and their performance are testified via simulations results.
引文
[1]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社.2006.
    [2]郭燕昌,钱继曾,黄富雄等.相控阵和频率扫描天线原理.北京:国防工业出版社,1978.
    [3]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006.
    [4]张贤达,保铮.通信信号处理.国防工业出版社,2002.
    [5]王永良,陈辉等.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [6] Monzingo R A, Miller T W. Introduction to adaptive arrays. Wiley, New York,1980.
    [7] Applebaum S P. Adaptive arrays. IEEE Transactions on Antennas Propagation,1976,24(5):585-598.
    [8] Widrow B, Mantey P E, Griffiths L J, et al. Adaptive antenna system.Proceedings of the IEEE1967, vol.55(12):2143-2158.
    [9] Widrow B. A review of adaptive antennas. Proceedings of the1979IEEEInternational Conference on Acoustics, and Signal Processing. Apr1979,4:273~278.
    [10] Capon J, Greenfield R J and Kolker R J. Multidimensional maximum likelihoodprocessing of a large aperture seismic array. Processings of IEEE, vol.55,1967:192-211.
    [11] Lee T S. Coherent interference suppression with complementally transformedadaptive beamformer. IEEE Transactions on Antennas Propagation,1998,46(5):609-617.
    [12] Viktor V Z, Teixeira M. SMI-MVDR beamformer implementations for largeantenna array and small sample size. IEEE Transactions on Circuits and Systems,2008,55(10):3317-3327.
    [13] Krim H, Viberg M. Two decades of array processing research. IEEE SignalProcessing Magazine,1996,13(4):67-94.
    [14] Chapman D J. Partial adaptivity for the large array. lEEE Transactions onAntennas and Propagation,1976,24(5):685-696.
    [15] Morgan D R. Partial adaptivity array techniques. IEEE Transactions onAntennas Propagation,1978,26(6):823-833.
    [16] Feldman D D, Griffiths L J. A projection approach for robust adaptivebeamforming. IEEE Transactions on Signal Processing,1994,42(4):867-876.
    [17] Carlson B D. Covariance matrix estimation errors and diagonal loading inadaptive arrays. IEEE Transactions on Aerospace Electronics Systems,1988,24(4):397-401.
    [18] Veen B D V, Roberts R A. Partially adaptive beamformer design via outputpower minimization. IEEE Transactions on Acoustic, Speech, and SignalProcessing,198735(11):1524-1532.
    [19] Klemm R. Space-time adaptive processing: principles and applications. IEERadar, Sonar, Navigation and Avionics9, IEE Press,1998.
    [20]王永良,彭应宁.空时自适应信号处理.清华大学出版社,北京,2000.
    [21] Brennan L E, Reed I S. Theory of adaptive radar. IEEE Transactions onAerospace and Electronic Systems,1973,9(2):237-252.
    [22]王万林,廖桂生.机载预警雷达三维空时自适应处理及其降维研究.系统工程与电子技术,2005,27(3):431-434.
    [23] Hale T B, Temple M A and Wicks M C. Target detection in heterogeneousairborne radar interference using3D STAP. IEEE Radar Conference,2003:252-256.
    [24] Hale T B, Temple M A. and Wicks M C. Clutter suppression using elevationinterferometry fused with space-time adaptive processing. Electronic Letter,2001,37(12):793-794.
    [25] Hale T B, Temple M A and Wicks M C. Localized three-dimensional adaptivespatial-temporal processing for airborne radar. Proceedings of the2002IEEInternational Radar Conference Institution of Electrical Engineers, London,2002:191-195.
    [26] Reed L S, Mallett J D. Rapid convergence rate in adaptive arrays. IEEETransactions on Aerospace Electronics Systems,1974,10(6):853-863.
    [27] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: Degrees of freedom and resolution. Proceedings of the37th AsilomarConference on Signals, Systems and Computers, Pacific Grove, CA,2003.54-59.
    [28] Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar.Proceedings of the37th Asilomar Conference on Signals, Systems andComputers, Pacific Grove, CA,2003.1057-1064.
    [29] Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimentalresults. Proceedings of the38th Asilomar Conference Signals, Systems andComputers, Pacific Grove, CA,2004.300-304.
    [30] Forsythe K W, Bliss D W. Fawcett G S. Multiple-input multiple-output (MIMO)radar: Performance issues. Proceedings of the38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, CA,2004.310-315.
    [31] Li J, Stoica P. MIMO radar with collocated antennas. IEEE Signal ProcessingMagazine,2007,24(5):106-114.
    [32] Fishler E, Haimovich A M, Blum R S, et al. MIMO radar: an idea whose timehas come. Proceedings of IEEE Radar Conference, Philadelphia, Pennsylvania,USA2004.71-78.
    [33] Fishler E, Haimovich A M, Blum R S, et al. Performance of MIMO radarsystems: Advantages of angular diversity. Proceedings of the38th AsilomarConference on Signals, Systems and Computers, Pacific Grove, CA,2004.305-309.
    [34] Fishler E, Haimovich A M, Blum R S, et al. Spatial diversity in radars-Modelsand detection performance. IEEE Trans. on Signal Processing,2006,54(3):823-838.
    [35] Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separatedantennas. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [36] Howells P W. Intermediate frequency sidelobe canceller. US Patent,3202990,Aug24,1965.
    [37] Applebaum S P, Chapman D J. Adaptive arrays with main beam constraints.IEEE Transactions on Antennas and Propagation,1976,24(5):650~662.
    [38] Capon J. High-resolution frequency-wave number spectrum analysis.Proceedings of the IEEE,1969,57(8):1408~1418.
    [39] Frost O L. An algorithm for linearly constrained adaptive array processing.Proceedings of the IEEE,1972,60(8):926~935.
    [40] Er M H, Cantoni A. Derivative constraints for broad-band element spaceantenna array processors. IEEE Transactions on Acoustics, Speech, and SignalProcessing,1983,31(12):1378~1393.
    [41] Buchley K M. Spatial/spectral filtering with linearly constrained minimumvariance beamformers. IEEE Transactions on Acoustics, Speech, and SignalProcessing,1987,35(3):249~266.
    [42] Veen B D Van, Bukley K M. Beamforming: A versatile approach to spatialfiltering. IEEE ASSP Magazine,1988,5(2):4~24
    [43] Griffths L J, Jim C W. An alternative approach to linearly constrained adaptivebeamforming. IEEE Transactions on Antennas and Propagation,1982,30(1):27~34
    [44] Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wienerfilter based on orthogonal projections. IEEE Transactions on Information Theory,1998,4(7):2943~2959
    [45] Rockah Y, Schultheiss P. Array shape calibration using in unknownlocations-part Ⅰ: far-field sources. IEEE Transactions on Acoustic, Speech, andSignal Processing,1987,35(3):286-299.
    [46] See C M S. Sensor array calibration in the presence of mutual coupling andunknown sensor gains and phases. Electronic letter,1994,5(30):208-210.
    [47] Chang L, Yeh C C. Performance of DMI and eigenspace-based beamformers.IEEE Transactions on Antennas Propagation,1992,40(11):1336-1347.
    [48] Stoica P, Wang Z and Li J. Robust Capon beamforming. IEEE Signal ProcessingLetters,2003,10(6):172-175.
    [49] Li J, Stoica P and Wang Z. On robust capon beamforming and diagonal loading.IEEE Trans on Signal Processing,2003,51(7):1702-1715.
    [50] Li J, Stoica P and Wang Z. Doubly constrained robust Capon beamformer. IEEESignal Processing,2004,52(9):2407-2423.
    [51] Vorobyov S A, Gershman A B and Luo Z. Robust adaptive beamforming usingworst-case performance optimization: a solution to the signal mismatch problem.IEEE Transactions on Signal Processing,2003,51(2):313-324.
    [52] Kim Y, Pillai S and Guerci J. Optimal loading factor for minimal sample supportspace-time adpative radar. Processings of IEEE International Conference onAcoustics, Speech and Signal processing,1998:2505-2508.
    [53] Gabriel W F. Using spectral estimation techniques in adaptive processingantenna systems. lEEE Transactions on Antennas and Propagation,1986,34(3):291-300.
    [54] Adams R N, Horowitz L L and Senne K D. Adaptive main-beam nulling fornarrow-beam antenna arrays. IEEE Transactions on Aerospace and ElectronicSystems,1980,16(4):509-516.
    [55] Haimovich A M, Bar-Ness Y. An eigenanalysis interference cancler. IEEETransactions on Signal Processing,1991,39(1):76-84.
    [56] Haimovich A M. The Eignecanceler: Adaptive Radar by Eigenanalysis Methods.IEEE Transactions on Aerospace and Electronics Systems, Apr.1996,32(2):532-542.
    [57] Kristeins I P, Tufts D W. Rapidly adaptive nulling of interference. Proceedingsof the International Conference on System Engineering. Dayton OH, USA, Aug1989:269-272.
    [58] Tufts D W, Shah A A. Estimation of a signal waveform from noisy data usinglow-rank approximation to a data matrix. IEEE Transactions on SignalProcessing,1993,41(4):1716-1721.
    [59] Kristeins I P, Tufts D W. Adaptive detection using low-rank approximation to adata matrix. IEEE Transactions on Aerospace and Electronics Systems,1994,30(1):55-67.
    [60] Subbaram H, Abend K. Intereference suppression via orthogonal projections: Aperformance analysis. IEEE Transactions on Antennas and Propagation,1993,41(9):1187-1194.
    [61] Goldstein J S, Reed I S. Reduced-rank adaptive filtering. IEEE Transactions onSignal Processing,1997,45(2):492-496.
    [62] Goldstein J S, Reed I S. Subspace selection for partially adaptive sensor arrayprocessing. IEEE Transactions on Aerospace Electronics Systems,1997,33(2):539-554.
    [63] Weippert M E, Hiemstra J D, Goldstein J S, et al. Insights from the relationshipbetween the multistage Wiener filter and the method of conjugate gradients.2ndIEEE Sensor Array and Multichannel Signal Processing Workshop (SAM2002).Rosslyn VA, USA, Aug2002:388-392.
    [64] Klemm R. Adaptive airborne MTI: an auxiliary channel approach. IEEProceedings F,1987,134(3):269-276.
    [65] Klemm R. Adaptive airborne MTI: comparison of sideways and forward lookingradar. Proceedings of1995IEEE Int. Radar Conf, Alexandria, VA, USA,1995:614-618.
    [66] Klemm R. Forward looking radar/SAR: clutter and jammer rejection with STAP.Proceedings of EUSAR’96, Konigswinter, Germany,1996:485-488.
    [67] Klemm R. Real-time adaptive airborne MTI, Part I: space-time processing.Proceedings of1996CIE International Conference, Beijing, China,1996:755-760.
    [68] Klemm R. Real-time adaptive airborne MTI, Part II: space-frequency processing.Proceedings of1996CIE International Conference, Beijing, China,1996:430-433.
    [69] Klemm R. Prospectives in STAP research. Proceedings of IEEE Sensor Arrayand Multichannel Signal Processing Workshop,2000:7-11.
    [70] Bao Z, Liao G and Wu R. Adaptive spatioal-temporal processing for airborneradars. Chinese Journal of Electronics,1993,2(1):1-7.
    [71]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空维自适应滤波.电子学报,1993,21(9):1-7.
    [72]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理.现代雷达,1994,16(1):38-48,16(2):17-27.
    [73] Dipietro R. Extended factored space-time processing for airborne radar systems.Proceedings of the26th Asilomar Conference On Signals, Systems, andComputing, Pacific Grove, CA, October,1992:425-430.
    [74] Wang H, Cai L. On adaptive spatial-temporal processing for airbornesurveillance radar systems. IEEE Transactions on Aerospace Electronics Systems,1994,30(3):660-669.
    [75] Brown R D, Schneible R A, Wicks M C, et al. STAP for clutter suppression withsum and difference beams. IEEE Transactions on Aerospace Electronics Systems,2000,36(2):634-646.
    [76] Maher J, Zhang Y and Wang H. A performance evaluation of Σ△-STAPapproach to airborne surveillance radars in the presence of both clutter andjammers. Radar97,1997:305-309.
    [77] Zhang Y, Wang H. Further results of Σ△-STAP approach to airbornesurveillance radars. IEEE National Radar Conference,1997:337-342.
    [78] Wang Y, Chen J, Bao Z, et al. Robust space-time adaptive processing forairborne radar in nonhomogeneous clutter environments. IEEE Transactions onAerospace and Electronic Systems,2003,39(1):70-81.
    [79]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):63-66.
    [80] Peckham C D, Haimovich A M, Ayoub T F, et al. Reduced-rank STAPperformance analysis. IEEE Transactions on Aerospace Electronics Systems,2000,36(2):664-676.
    [81] Haimovich A M. Eigenanalysis-based space-time adaptive radar: performanceanalysis. IEEE Transactions on Aerospace Electronics Systems,1997,33(4):1170-1179.
    [82] Wang H, Zhang Y and Zhang Q. Lessons learned from recent STAPexperiments. CIE International Conference of Radar,1996:761-765.
    [83] Wang H, Zhang Y, Zhang Q, et al. An improved and affordable space-timeadaptive processing approach. Proceedings of CIE International Conference ofRadar,1996:72-77.
    [84] Titi G W, Marshall D. The ARPA/NAVY mountaintop program-Adaptive signalprocessin for airborne early warning radar. Proceedings of IEEE InternationalConference on Acoustics, Speech, and Signal Processing Atlanta, GA,1996:1165-1168.
    [85] Little M O, Berry W P. Real-time multichannel airborne radar measurements.IEEE Proceedings of International Conference Radar Syracuse, New York,1997.
    [86] Sloper D, Fenner D, Arntz J, et al. Multi-Channel airborne radar measurement(MCARM), MCARM flight test. Contract F30602-92-C-0161. WestinghouseElectronic Systems, April,1996.
    [87] Dorey J, Garnier G, Auvray G. RIAS, radar a impulsion et antenna synthetique.Colloque International sur le Radar, Paris, April1989:556-562.
    [88] Aluce, et al. Experimental results on RIAS digital beamforming radar, IEEEInternational Radar Conference, London,1992:505-510.
    [89] T. Derham, K. Woodbridge, H. Griffiths and C. J. Baker. The design anddevelopment of an experimental netted radar system. In Proc. of the InternationalRadar Conference, Sept.2003:293–298.
    [90] C. J. Baker, A. L. Hume. Netted Radar Sensing. IEEE AESS Systems Magazine,February2003.
    [91] P. F. Sammartino, C. J. Baker, and M. Rangaswamy. MIMO Radar, Theory andExperiments.2nd IEEE International Workshop on Computational Advances inMulti-Sensor Adaptive Processing,2007:101-104.
    [92] Hai Deng. Discrete Frequency-Coding Waveform Design for Netted RadarSystems. IEEE Transactions on Signal Processing Letters,2004,11(2).
    [93] Y. Yang and R. S. Blum. Minimax Robust MIMO Radar Waveform Design.IEEE Journal of Selected Topics in Signal Processing,2007,1(1):147-155.
    [94] P. Stoica, et al. On probing signal design for MIMO radar. IEEE Transactions onSignal Processing,2007,55(8):4151-4161.
    [95] P. Stoica, et al. Waveform Synthesis for Diversity-Based Transmit BeampatternDesign. IEEE Transactions on Signal Processing,2008,56(6):2593-2598.
    [96] J. Li, et al. Range compression and waveform optimization for MIMO radar: ACramer-Rao bound based study. IEEE Transactions on Signal Processing,2007.
    [97] Amir Leshem, et al. Information Theoretic Adaptive Radar Waveform Designfor Multiple Extended Targets. IEEE Journal of selected topics in signalprocessing,2007,1(1).
    [98] Vito F, Dinesh R, Jefferrey L. MIMO Radar Space-Time Adaptive Processingfor Multipath Clutter Mitigation. Fourth IEEE Workshop on Sensor Array andMultichannel Processing,2006:249-253.
    [99] Frank C, Scott C, Dennis W, Jeffery C. Mcharg, Kevin C. MIMO Radar Theoryand Experimental Results. Record of the Thirty-Eighth Asilomar Conference onSignals, Systems and Computers,2004,11(1):300–304.
    [100] J Li, P Stoica, L Z Xu, and W Roberts. On Parameter Identifiability of MIMORadar. IEEE Signal Processing Letters,2007,14(12):968-971.
    [101] L Z Xu, J Li, P Stoica. Adaptive Techniques for MIMO Radar. Fourth IEEEWorkshop on Sensor Array and Multichannel Processing,2006.
    [102] D Z Feng, X M Li, H Lv, H W Liu, Z Bao. Two-sided minimum-variancedistortionless response beamformer for MIMO radar. Signal Processing89(2009):328-332.
    [103] Langford B, Pinaki S. Signal Design for MIMO Diversity Systems.Thirty-Eighth Asilomar Conference on Signals, Systems and Computers,2004,11(1):973-977.
    [104] Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processingusing prolate spheroidal wave functions. IEEE Transaction on Signal Processing,2008,56(2):623-635.
    [105] Chen C Y, Vaidyanathan P P. A Subspace Method for MIMO RadarSpace-Time Adaptive Processing. IEEE International Conference on Acoustics,Speech and Signal Processing, Honolulu, HI,2007:925-928.
    [106] Sheiki A, Zamani A, Norouzi Y. Model-based adaptive target detection inclutter using MIMO radar. Proceedings of CIE International Conference of Radar,Shanghai, China,2006, l:57-60.
    [107] Sheiki A, Zamani A. Adaptive target detection in clutter using MIMO radar.Proceedings of the2nd Microwave and Radar Week in Poland-InternationalRadar Symposium, Krakow, Poland,2006.
    [108] Sheiki A, Zamani A. Coherent detection for MIMO radars. Proceedings of IEEE2007Radar Conference, Waltham, MA, USA,2007:302-307.
    [109] Sheiki A, Zamani A. Temporal coherent adaptive target detection formultiple-input multiple-output radars in clutter. IET Radar, Sonar and Navigation,2008,2:86-96.
    [110] Yan H D, Li J, Liao G S. Multitarget identification and localization usingbistatic MIMO radar systems. EURASIP Journal on Advances in SignalProcessing,2008, Article ID283483,8pages.
    [111] Li J, Conan J, Pierre S. Joint estimation of channel parameters for MIMOcommunication systems. Second International Symposium on WirelessCommunication Systems,2005.22-26.
    [112] Chen D F, Chen B X, Qi G D. Angle estimation using ESPRIT in MIMO radar.Electronics Letters,2008,44(12):770-771.
    [113] Chen J L, Gu H, Su W M. Angle estimation using ESPRIT without pairing inMIMO radar. Electronics Letters,2008,44(24):1422-1423.
    [114]陈金立,顾红,苏卫民.一种双基地MIMO雷达快速多目标定位方法.电子与信息学报,2009,31(7):1664-1668.
    [115] Jin M, Liao G S, Li J. Joint DOD and DOA estimation for bistatic MIMO radar.Signal Processing,2009,89(2):244-251.
    [116] Bruyere D, Goodman N A. SINR improvements in multi-sensor space-timeadaptive processing. Proceedings of the2nd IASTED International Conferenceon Antennas, Radar, and Wave Propagation,2005.167-172.
    [117] Bruyere D, Goodman N A. Performance of multistatic space-time adaptiveprocessing. Proceedings of IEEE Radar Conference, New York, USA,2006.533-538.
    [118] Goodman N A, Bruyere D. Optimum and decentralized detection for multistaticairborne radar. IEEE Trans. on Aerospace and Electronic Systems,2007(2):806-813.
    [119] Bekkerman I, Tabrikian J. Target detection and localization using MIMO radarsand sonars. IEEE Trans. on Signal Processing,2006,54(10):3873-3883.
    [120] Bekkerman I, Tabrikian J. Spatially coded transmission for active arrays.Proceedings of IEEE International Conference on Acoustics, Speech, and SignalProcessing Montreal, Quebec, Canada,2004.209-212.
    [121] Nehorai A, Starer D, Stoica P. Direction-of-arrival estimation in applicationswith multipath and few snapshots. Circuits, Systems, and Signal Processing,1991,10:327-342.
    [122] Xu L Z, Li J, Stoica P. Adaptive Techniques for MIMO Radar. Proceedings ofthe4th IEEE Workshop on Sensor Array and Multichannel Signal Processing,Waltham, MA, USA,2006.258-262.
    [123]夏威,何子述. APES算法在MIMO雷达参数估计中的稳健性研究.电子学报,2008,36(9):1804-1809.
    [124] Xu L Z, Li J. Iterative generalized-likelihood ratio test for MIMO radar. IEEETrans. on Signal Processing,2007,55(6):2375-2385.
    [1] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: Degrees of freedom and resolution. Proceedings of the37th AsilomarConference on Signals, Systems and Computers, Pacific Grove, CA,2003.54-59.
    [2] Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar.Proceedings of the37th Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA,2003.1057-1064.
    [3] Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimentalresults. Proceedings of the38th Asilomar Conference Signals, Systems andComputers, Pacific Grove, CA,2004.300-304.
    [4] Forsythe K W, Bliss D W. Fawcett G S. Multiple-input multiple-output (MIMO)radar: Performance issues. Proceedings of the38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, CA,2004.310-315.
    [5] Li J, Stoica P. MIMO radar with collocated antennas. IEEE Signal ProcessingMagazine,2007,24(5):106-114.
    [6] Fishler E, Haimovich A M, Blum R S, et al. MIMO radar: an idea whose time hascome. Proceedings of IEEE Radar Conference, Philadelphia, Pennsylvania,USA2004.71-78.
    [7] Fishler E, Haimovich A M, Blum R S, et al. Performance of MIMO radar systems:Advantages of angular diversity. Proceedings of the38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, CA,2004.305-309.
    [8] Fishler E, Haimovich A M, Blum R S, et al. Spatial diversity in radars-Modelsand detection performance. IEEE Trans. on Signal Processing,2006,54(3):823-838.
    [9] Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separatedantennas. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [10] D. Z. Feng, X. M. Li, H. Lv, et al. Two-Sided Minimum-Variance DistortionlessResponse Beamformer for MIMO Radar. Signal Processing, no.3,2009.
    [11] Cox H,Zeskind R M,Owen M. Robust adaptive beamforming. IEEE Trans.ASSP,1987;35(10);1365-1376.
    [12] Carlson B D. Covariance matrix estimation errors and diagonal loading inadaptive arrays. IEEE Transactions on Aerospace Electronics Systems,1988,24(4):397-401.
    [13] Tseng C Y,Criffiths L J. An unified approach to the design of linear constraintsin minimum variance adaptive beamformer. IEEE Trans. Antennas Propagation,1992;40(12);1533-1542..
    [14] Frost O L. An algorithm for linearly constrained adaptive array processing.Proceedings of the IEEE,1972,60(8):926~935.
    [15] Vorobyov S, Gershman A B, and Luo Z Q. Robust adaptive beamforming usingworst-case performance optimization: A solution to the signal mismatch problem.IEEE Trans. Signal Processing, vol.51, pp.313–324, Feb.2003.
    [16] Guerci J R. Theory and application of covariance matrix tapers for robustadaptive beamforming. IEEE Trans. Signal Processing, vol.47, pp.997–985, Apr.1999.
    [17] J. F. Sturm, Using SeDuMi1.02, a MATLAB toolbox for optimization oversymmetric cones, Optim. Meth. Softw., vol.11–12, pp.625–653, Aug.1999.
    [18] L.Z. Xu, J. Li, and P. Stoica, Adaptive techniques for MIMO radar, IEEEWorkshop on Sensor Array and Multichannel Signal Processing, Waltham, MA,Jul.2006.
    [19] J. Li, P. Stoica, L. Xu, and W. Roberts, On parameter identifiability of MIMOradar, IEEE Signal Processing Lett., vol.14, no.12, pp.968-971, Dec.2007.
    [20] I. S. Reed, J. D. Mallett, and L. E. Brennan, Rapid convergence rate in adaptivearrays, IEEE Trans. Aerosp. Electron. Syst., vol. AES–10, pp.853–863, Nov.1974.
    [1]王永良,彭应宁.空时自适应信号处理.清华大学出版社,北京,2000.
    [2] Skolnik M I. Radar handbook. McGraw-Hill, New York,1990.
    [3] Brennan L E, Reed I S. Theory of adaptive radar. IEEE Transactions onAerospace and Electronic Systems,1973,9(2):237-252.
    [4] Klemm R. Space-time adaptive processing: principles and applications. IEERadar, Sonar, Navigation and Avionics9, IEE Press,1998.
    [5] Klemm R. Adaptive airborne MTI: an auxiliary channel approach. IEEProceedings F,1987,134(3):269-276.
    [6] Klemm R. Prospective in STAP research. Proceedings of IEEE Sensor Array andMultichannel Signal Processing Workshop,2000:7-11.
    [7] Bao Z, Liao G and Wu R. Adaptive spatial-temporal processing for airborneradars. Chinese Journal of Electronics,1993,2(1):1-7.
    [8]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波.电子学报,1993,21(9):1-7.
    [9] Dipietro R. Extended factored space-time processing for airborne radar systems.Proceedings of the26th Asilomar Conference On Signals, Systems, andComputing, Pacific Grove, CA, October,1992:425-430.
    [10] Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillanceradar systems. IEEE Transactions on Aerospace Electronics Systems,1994,30(3):660-669.
    [11]李晓明.机载相控阵雷达降维STAP方法及其应用.西安电子科技大学博士学位论文,2008.9.
    [12] R. S. Blum, W. L. Melvin and M. C. Wicks. An analysis of adaptive DPCA.Proceedings of the1996IEEE National Radar Conference:303-308.
    [13] L Lightstone, D Faubert, G RemPel. Multiple Phase Center DPCA for AirborneRadar, IEEE National Radar Conference,1991.36-40.
    [14] Chen Jianwen, Wang Yongliang, Huang Fukan, Zhou Liangzhu. Research onMultiple Phase Center-Multiple Delay Taps DPCA for Airborne Radar. Int. Conf.On Computational Eleetromagnetics and Its Applications, Nov.,1999, Beijing,China.
    [1]王永良,彭应宁.空时自适应信号处理.清华大学出版社,北京,2000.
    [2] Skolnik M I. Radar handbook. McGraw-Hill, New York,1990.
    [3] Brennan L E, Reed I S. Theory of adaptive radar. IEEE Transactions onAerospace and Electronic Systems,1973,9(2):237-252.
    [4] Klemm R. Space-time adaptive processing: principles and applications. IEERadar, Sonar, Navigation and Avionics9, IEE Press,1998.
    [5] Klemm R. Adaptive airborne MTI: an auxiliary channel approach. IEEProceedings F,1987,134(3):269-276.
    [6] Klemm R. Adaptive airborne MTI: comparison of sideways and forward lookingradar. Proceedings of1995IEEE Int. Radar Conf, Alexandria, VA, USA,1995:614-618.
    [7] Klemm R. Forward looking radar/SAR: clutter and jammer rejection with STAP.Proceedings of EUSAR’96, Konigswinter, Germany,1996:485-488.
    [8] Klemm R. Real-time adaptive airborne MTI, Part I: space-time processing.Proceedings of1996CIE International Conference, Beijing, China,1996:755-760.
    [9] Klemm R. Real-time adaptive airborne MTI, Part II: space-frequency processing.Proceedings of1996CIE International Conference, Beijing, China,1996:430-433.
    [10] Klemm R. Prospectives in STAP research. Proceedings of IEEE Sensor Arrayand Multichannel Signal Processing Workshop,2000:7-11.
    [11] Bao Z, Liao G and Wu R. Adaptive spatial-temporal processing for airborneradars. Chinese Journal of Electronics,1993,2(1):1-7.
    [12]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波.电子学报,1993,21(9):1-7.
    [13] Dipietro R. Extended factored space-time processing for airborne radar systems.Proceedings of the26th Asilomar Conference On Signals, Systems, andComputing, Pacific Grove, CA, October,1992:425-430.
    [14] Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillanceradar systems. IEEE Transactions on Aerospace Electronics Systems,1994,30(3):660-669.
    [15] Brown R D, Schneible R A, Wicks M C, et al. STAP for clutter suppression withsum and difference beams. IEEE Transactions on Aerospace Electronics Systems,2000,36(2):634-646.
    [16] Maher J, Zhang Y and Wang H. A performance evaluation of Σ△-STAPapproach to airborne surveillance radars in the presence of both clutter andjammers. Radar97,1997:305-309.
    [17] Zhang Y, Wang H. Further results of Σ△-STAP approach to airbornesurveillance radars. IEEE National Radar Conference,1997:337-342.
    [18] Wang Y, Chen J, Bao Z, et al. Robust space-time adaptive processing forairborne radar in nonhomogeneous clutter environments. IEEE Transactions onAerospace and Electronic Systems,2003,39(1):70-81.
    [19]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):63-66.
    [20] Peckham C D, Haimovich A M, Ayoub T F, et al. Reduced-rank STAPperformance analysis. IEEE Transactions on Aerospace Electronics Systems,2000,36(2):664-676.
    [21] Haimovich A M. Eigen analysis-based space-time adaptive radar: performanceanalysis. IEEE Transactions on Aerospace Electronics Systems,1997,33(4):1170-1179.
    [22] Goldstein J S, Reed I S. Subspace selection for partially adaptive sensor arrayprocessing. IEEE Transactions on Aerospace Electronics Systems,1997,33(2):539-554.
    [23] Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wienerfilter based on orthogonal projections. IEEE Transactions on Information Theory,1998,4(7):2943~2959
    [24] Reed L S, Mallett J D. Rapid convergence rate in adaptive arrays. IEEETransactions on Aerospace Electronics Systems,1974,10(6):853-863.
    [25]张贤达,保铮.通信信号处理.国防工业出版社,2002.
    [26] X.-M. Li, D.-Z. Feng, H.-W. Liu and Z. Bao.:‘Spatial-temporal separable filterfor adaptive clutter suppression in airborne radar’, Electron. Lett.,2008,44,(5),pp.380–381.
    [27]李晓明.机载相控阵雷达降维STAP方法及其应用.西安电子科技大学博士学位论文,2008.9.
    [28] Feng D, Zheng W and Cichocki A. Matrix-group algorithm via improvedwhitening process for extracting statistically independent sources from arraysignals. IEEE Transactions on Signal Processing,2007,55(3):962-977.
    [29] Sloper D, Fenner D, Arntz J, et al. Multi-Channel airborne radar measurement(MCARM), MCARM flight test. Contract F30602-92-C-0161. WestinghouseElectronic Systems, April,1996.
    [1]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000:58-103.
    [2] W.L. Melvin. A STAP overview. IEEE Aerospace and Electronic SystemsMagazine, vol.19, no.1, pp19-35,2004.
    [3] S. D. Grieve, P. Ries. Framework and taxonomy for radar space-time adaptiveprocessing (STAP) method. IEEE Trans. Aerospace and Electronic Systems,vol.43, no.3, pp.1084-1099,2007.
    [4] R. Klemm. Optimum clutter suppression in airborne phased array radar. Proc. OfIEEE ICASSP. Paris, France.1982:1509-1512.
    [5] R. Klemm. Adaptive clutter suppression for airborne phased array radars. IEE Pt.F,1983,130(1):125-132.
    [6] Dipietro R. Extended factored space-time processing for airborne radar systems.In Proceedings of the26th Asilomar Conf,Pacific Grove,CA,October,1992:425-430.
    [7] H. Wang and L. Cai. On the implementation of the optimum spatial-temporalprocessor for airborne surveillance system. Proc. Int. Conf. Radar’91,1991,Beijing:365-368.
    [8]王万林,廖桂生.机载预警雷达三维空时自适应处理及其降维研究,系统工程与电子技术,2005,431-434.
    [9] T.B. Hale,M.A. Temple,M.C. Wicks. Target detection in heterogeneousairborne radar interference using3D STAP. Proc.of the2003IEEE Radar Conf,the Huntsville Marriott,Huntsville,Alabama,May,2003:252—257.
    [10] T.B. Hale,M.A. Temple,J.F. Raquet, et al.Localized three-dimensional adaptivespatial-temporal processing for airborne radar. IEE Proc. Radar SonarNavigation,2003,150(1):18-22.
    [11] I. S. Reed, J. D. mallet, and L. E. Brennan. Rapid convergence rate in adaptivearrays. IEEE Trans. AES.1974,10(6):853-863.
    [12] Bao Z, Liao G and Wu R. Adaptive spatioal-temporal processing for airborneradars. Chinese Journal of Electronics,1993,2(1):1-7.
    [13]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空维自适应滤波.电子学报,1993,21(9):1-7.
    [14] Dipietro R. Extended factored space-time processing for airborne radar systems.In Proceedings of the26th Asilomar Conf,Pacific Grove,CA,October,1992:425-430.
    [15] Wenchong Xie, Jianwen Chen, and Yongliang Wang.Study on STAP inNon-homogeneous Clutter Environment.IEEE Aerospace Conference, March2008:1-6.
    [16] L. Savy, P. G. Richardsont, J.C. Medleyt, et al. The relative merits ofpre/post-Doppler STAP. IET Waveform Diversity&Digital Radar Conference,Dec.2008:1-5.
    [17] D. Z. Feng, X. M. Li, H. Lv, et al. Two-Sided Minimum-Variance DistortionlessResponse Beamformer for MIMO Radar. Signal Processing, no.3,2009.
    [18] D. Z. Feng, W.–X. Zheng, and Cichocki. A. Matrix-group algorithm viaimproved whitening process for extracting statistically independent sources fromarray signals. IEEE trans. Signal processing, vol.55, no.3, pp.962-977, March2007.
    [19] Sloper D, Fenner D, Arntz J, et al. Multi-Channel airborne radar measurement(MCARM), MCARM flight test. Contract F30602-92-C-0161. WestinghouseElectronic Systems, April,1996.
    [20] X.-M. Li, D.-Z. Feng, H.-W. Liu and Z. Bao.:‘Spatial-temporal separable filterfor adaptive clutter suppression in airborne radar’, Electron. Lett.,2008,44,(5),pp.380–381.
    [1] Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing usingprolate spheroidal wave functions. IEEE Transaction on Signal Processing,2008,56(2):623-635.
    [2] Chen C Y, Vaidyanathan P P. A Subspace Method for MIMO Radar Space-TimeAdaptive Processing. IEEE International Conference on Acoustics, Speech andSignal Processing, Honolulu, HI,2007:925-928.
    [3] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: Degrees of freedom and resolution. Proceedings of the37th AsilomarConference on Signals, Systems and Computers, Pacific Grove, CA,2003.54-59.
    [4] Forsythe K W, Bliss D W. Fawcett G S. Multiple-input multiple-output (MIMO)radar: Performance issues. Proceedings of the38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, CA,2004.310-315.
    [5] Mecca V F, Ramakrishna D, Krolik J L. MIMO Radar Space-Time AdaptiveProcessing for Multipath Clutter Mitigation. Proceedings of the4th IEEEWorkshop on Sensor Array and Multichannel Signal Processing, Waltham, USA,2006.249-253.
    [6] Guohua Wang and Yilong Lu. Clutter Rank Of MIMO Radar With A SpecialClass of Waveforms.2009International WD&D Conference, pp.108-112.
    [7] Mecca V F, Ramakrishna D, Krolik J L. MIMO radar space-time AdaptiveProcessing for multipath clutter mitigation. Proceedings of the4th IEEEWorkshop on Sensor Array and Multichannel Signal Professing, Waltham, USA,2006.249-253.
    [8] Mecca V F, Krolik J L. Slow-time MIMO STAP with improved power efficiency.Proceedings of the41st Asilomar Conference on Signals, Systems and Computers,2007.202-206.
    [9] Marcos S. Range recursive space time adaptive processing (STAP) for MIMOairborne radar. Proceedings of the17th European Signal Processing Conference,Glasgow, Scotland,2009.592-596.
    [10]王永良,彭应宁.空时自适应信号处理.清华大学出版社,北京,2000.
    [11] Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillanceradar systems. IEEE Transactions on Aerospace Electronics Systems,1994,30(3):660-669.
    [12] Bao Z, Liao G and Wu R. Adaptive spatioal-temporal processing for airborneradars. Chinese Journal of Electronics,1993,2(1):1-7.
    [13]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空维自适应滤波.电子学报,1993,21(9):1-7.
    [14] Dipietro R. Extended factored space-time processing for airborne radar systems.Proceedings of the26th Asilomar Conference On Signals, Systems, andComputing, Pacific Grove, CA, October,1992:425-430.
    [15] Bekkerman and J. Tabrikian,“Target detection and localization using MIMOradars and sonars,” IEEE Trans. Signal Processing, vol.54, no.10, pp.3873-3883,Oct.2006.
    [16] Reed I.S., Mallett J.D., and Brennan L.E., Rapid convergence rate in adaptivearrays. IEEE Trans. Aerosp. Electron. Syst., vol. AES–10, pp.853–863, Nov.1974.
    [17] J. R. Guerci. Space–Time Adaptive Processing. Norwood, MA: Artech House,2003.
    [18] S. D. Grieve, P. Ries, Framework and taxonomy for radar space-time adaptiveprocessing (STAP) method. IEEE Trans. Aerospace and Electronic Systems, vol.43, no.3, pp.1084-1099,2007.
    [19] W.L. Melvin, A STAP overview. IEEE Trans. Aerospace and Electronic SystemsMagazine, vol.19, no.1, pp.19-35,2004.
    [20] Gabriel, W. F. Adaptive digital processing investigation of the DFT subbandingvs transversal filter canceller. Naval Research Laboratory, Report8981,1986.
    [21] Wang Y, Chen J, Bao Z, et al. Robust space-time adaptive processing forairborne radar in nonhomogeneous clutter environments. IEEE Transactions onAerospace and Electronic Systems,2003,39(1):70-81.
    [22]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):63-66.
    [23] X.-M. Li, D.-Z. Feng, H.-W. Liu and Z. Bao.:‘Spatial-temporal separable filterfor adaptive clutter suppression in airborne radar’, Electron. Lett.,2008,44,(5),pp.380–381.
    [24] X.-M. Li, D.-Z. Feng, H.-W. Liu and Z. Bao.:‘Spatial-temporal separable filterfor adaptive clutter suppression in airborne radar’, Electron. Lett.,2008,44,(5),pp.380–381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700