用户名: 密码: 验证码:
基于周期性结构的天线技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无源电磁周期性结构(Passive Electromagnetic Periodic Structures: PEPSs))作为人工电磁材料的一般实现方式,现已广泛应用于微波和天线领域。例如采用一维周期性结构实现的CRLH TL(Composite Right/Left-Handed Transmission Line: CRLH TL),可将其应用于小型化微波滤波器中;以及采用二维周期性结构实现的人工磁导体AMCs(ArtificialMagnetic Conductors: AMCs)和频率选择性表面FSSs(Frequency Selective Surfaces: FSSs),在低剖面、高增益天线应用中有着巨大的应用前景。因此,进一步深入研究周期性结构在天线中的应用具有重大的意义。本文通过理论分析与实践结合的方式,着重研究了几种周期性结构,探讨了周期性结构在天线小型化、陷波特性、低剖面和高增益等方面的应用。作者的主要研究工作和成果可以概括为:
     1.研究了一维有限周期性结构的色散特性提取技术。针对元胞间仅存在弱耦合的情形,提出了高效的单元胞法;而当元胞间存在强耦合效应时,根据具体元胞是否满足对称或互易特性分别提出了均匀等效法和宏元胞法。
     2.设计了基于零阶谐振的低剖面高效率天线。首先分析了CRLH TL的零阶谐振特性及其LC集总网络实现。然后分析了折叠偶极子的阻抗提升效应,并且设计了基于零阶谐振的低剖面折叠单极子天线,采用两元的MTM(Metamaterials: MTM)元胞加载,实现折叠单极子的同相馈电,并且使其阻抗提升为原来的4倍,简化了天线的匹配方式。最后设计了一种基于零阶谐振的缝隙加载的负天线,对两MTM元胞和四MTM元胞的天线结构,分别采用耦合馈电和阶梯阻抗馈电方式,不仅简化了天线的馈电结构,同时实现了低Q值高效率辐射。
     3.设计了多种具有陷波特性的超宽带印刷单极子天线。首先设计了分别在辐射贴片或地板上引入倒“L”和倒“C”缝隙以实现单陷波特性,或同时在这两者地方引入倒“L”或倒“C”缝隙实现双陷波特性,并且分析其工作原理以及给出相应的等效电路。最后设计了基于周期性结构的蘑菇EBG的单陷波超宽带天线,在f3.5GHz实现较好的陷波特性。
     4.设计了基于CRLH TL的串馈圆极化阵列天线。首先分析了CRLH TL的传输线理论及其LC集总网络实现,然后设计了基于CRLH TL零阶谐振特性的1分6路串馈功分器,实现了功分器的小型化,进而分析了矩形单臂螺旋天线的特性,设计了波束倾斜的矩形单臂螺旋天线,并结合串馈阵设计出串馈圆极化天线阵列。
     5.研究了基于Fabry-Perot谐振腔的PRS(Partially Reflective Surface: PRS)低剖面高增益天线。首先通过研究AMC在TE模式和TM模式情况下的表面阻抗来分析AMC结构的反射相位特性和表面波带隙特性,进而从结构上对AMC进行参数化分析,得到谐振频率随主要参数的增大而降低,同相反射带宽随主要参数的增大而变小的特性,同时研究AMC结构的小型化、宽带化和多频化。最后结合AMC结构设计基于Fabry-Perot谐振腔的低剖面高增益天线。
Passive electromagnetic periodic structures (PEPSs) has been applied in microwaveantennas, always behaving as a method of realizing artificial electromagnetic materials.Taking CRLH TLs for example, they always are realized by1D periodic structures, whichusually be used in miniaturized microwave filters. Also taking AMCs and FSSs for example,they are realized by2D periodic structures, which have great prospects in low profile and highgain antennas. Thus, further research on the applications of periodic structures in antennas hasgreat significance. By using the method of combining theoretical analysis and experiments,several periodic structures are designed for the miniaturization, notch bands, low profile, andhigh gain of antennas in this dissertation. The main works and contributions in thisdissertation are outlined as follows:
     1. The technique of extracting dispersion characteristics for1D periodic structure isstudied. A Unit-Cell-Method with high efficiency is advanced applicable to the periodicstructure with weak coupling among cells. When there are strong coupling among unit cells,the Macro-Cell-Method and Uniform-Equivalence-Method are separately put forward interms of the unit cell’s symmetrical properties.
     2. A low-profile and high gain antenna based on zero-order resonator is designed.Firstly, the characteristic of zeroth-order resonance and the realization of lumped LC networksfor CRLH TL are analyzed. Secondly, the impedance step-up of a single dipole is introduced,and a novel low-profile folded-monopole antenna based on zeroth-order resonance ispresented, which uses two-MTM-unit-cell loaded structure, realizing cophase feedsimultaneously stepping impedance up by ratio of four, resulting in a compact way of feed.Finally, a1D slot-loaded epsilon-negative (ENG) based zeroth-order resonant antenna withimproved radiation efficiency is proposed. Coupling feed and stepped impedance feed arerespectively used for two-MTM-unit–cell and four-MTM-unit–cell antennas, simplifyingmatching method of the antenna, meanwhile realizing a low quality factor with improvedradiation efficiency.
     3. Various band-notched wideband dipoles are proposed. A method of introducing aninverted L-type or C-type to achieve single band notch characteristic is put forward, orintroducing the two type slots in different place of the antenna as to realize dual band notches.Contemporarily, the working principle is analyzed and corresponding equivalent circuits arepresented. Finally, a novel band-notched monopole antenna based on the periodic structure ofmushroom EBG is designed, with good band-notched characteristic at3.5GHz.
     4. A series-fed circularly-polarized array antenna based on CRLH TL is designed.Firstly the theory of CRLH TL is analyzed, also for the realization of the lumped LC networks.
     Next a series six-way power divider based Zero-Order Resonant is designed, which achievesminiaturization. Then the characteristics of rectangular spiral are investigated, and arectangular spiral antenna with a titled beam is carried out. Finally, a series-fedcircularly-polarized antenna array is designed by combining the series-fed power divider.
     5. A low-profile and high-gain antenna based on the Fabry-Perot theory is investigated.At first, the properties of reflection and surface band-gap of AMC are studied through doingthe research about its surface impedance in TE and TM mode separately. Secondly, theparametric analysis about the structure of AMC is carried out, obtaining the results that theresonant frequency increases with the main parameters becoming smaller, and meanwhile, thein-phase bandwidth becomes wider with the decrease of these main parameters generally. Theminiaturization, wider bandwidth and multi-frequency of AMC are also under researches.Finally, a low-profile and high-gain antenna based on the Fabry-Perot theory is designed withthe combination of AMCs.
引文
[1]陈金鹰,朱军,陈斌,波束可控天线阵讨论,通信与信息技术,总第154期,pp.44-48, Feb.2005.
    [2]梁广,龚文斌,刘会杰,余金培,可重构星载多波束相控阵天线设计与实现,电波科学学报,vol.25, no.1, pp.184-189,2010.
    [3]魏文元,宫德明,陈必森,天线原理,北京:国防工业出版社,1985.
    [4]林昌禄,聂在平,天线工程手册,北京:电子工业出版社,2002.
    [5] W. S. Chen, and K. Y. Ku, Bandwidth enhacement of open slot antenna for UWBapplication, Microwave and Optical Technology Letters, vol.50, no.2, pp.438-439, Feb.2008.
    [6] G. Zheng, A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, A broadband printedbow-tie antenna with a simplified balanced feed, Microwave and OpticalTechnology Letters, vol.47, no.6, pp.534-536, Dec.2005.
    [7] S. H. Lee, J. K. Park, and J. N. Lee, A novel CPW-fed ultra-wideband antennadesign, Microwave and Optical Technology Letters, vol.44, no.5, pp.393-396,Mar.2005.
    [8] D. C. Chang, J. C. Liu, and M. Y. Liu, A novel tulip-shaped monopole antenna forUWB applications, Microwave and Optical Technology Letters, vol.48, no.2, pp.307-312, Feb.2006.
    [9] H. J. Zhou, B. H. Sun, and Q. Z. Liu, Implementation and investigation ofU-shaped aperture UWB antenna with dual band-notched characteristics,Electronics Letters, vol.44, no.24, pp.1387-1388, Nov.2008.
    [10] K. L. Wong, S. W. Su, and Y. L. Kuo, A printed ultra-wideband diversity monopoleantenna, Microwave and Optical Technology Letters, vol.38, no.4, pp.257-259,Aug.2003.
    [11] C. Ying, G. Y. Li, and Y. P. Zhang, An LTCC planar ultra-wideband antenna,Microwave and Optical Technology Letters, vol.42, no.3, pp.220-222, Aug.2004.
    [12] A. Alipour, and H. R. Hassani, A novel omni-directional UWB monopole antenna,IEEE Transactions on Antennas and Propagation, vol.56, no.12, pp.3854-3857,Dec.2008.
    [13] L. N. Zhang, S. S. Zhong, X. L. Liang and C. Z. Du, Compact omnidirectionalband-notch ultra-wideband antenna, Electronics Letters, vol.45, no.13, pp.659-660, June2009.
    [14] L. Peng, C. L. Ruan, and Y. L. Chen, A novel band-notched elliptical ringmonopole antenna with a coplanar parasitic elliptical patch for UWB applications,Journal of Electromagnetic Waves and Applications, vol.22, no.4, pp.517-528,Dec.2008.
    [15] A. A. L. Neyestanak, and A. A. Kalteh, Band-notched elliptical slot UWBMicrostrip antenna with elliptical stub filled by the H-shaped slot, Journal ofElectromagnetic Waves and Applications, vol.22, no.14-15, pp.1993-2002, Oct.2008.
    [16] S. Y. Liu, and K. C. Huang, Printed pentagon monopole antenna with aband-notched function, Microwave and Optical Technology Letters, vol.48, no.10,pp.2016-2018, Oct.2006.
    [17] K. H. Kim, Y. J. Cho, and S. H. Hwang, Band-notched UWB planar monopoleantenna with two parasitic patches, Electronics Letters, vol.41, no.14, pp.783-785,July2005.
    [18] J. M. Qiu, Z. W. Du, and J. H. Lu, A planar monopole antenna design withband-notched characteristic, IEEE Transactions on Antennas and Propagation, vol.54, no.1, pp.288-292, Jan.2006.
    [19] J. Y. Sze, C. I. G. Hsu, and J. Y. Shiu, Small CPW-fed band-notched ultrawidebandrectangular aperture antenna, IEEE Antennas and Wireless Propagation Letters, vol.7, pp.512-515,2008.
    [20] Y. Ding, G. M. Wang, and J. G. Liang, Compact band-notched ultra-widebandPrinted antenna, Microwave and Optical Technology Letters, vol.49, no.11, pp.2686-2689, Nov.2007.
    [21] L. H. Ye, and Q. X. Chu, Improved band-notched UWB slot antenna, ElectronicsLetters, vol.45, no.25, pp.1283-1284, Dec.2009.
    [22] J. R. Kelly, P. S. Hall, and P. Gardner, Integrated narrow/band-notched UWBantenna, Electronics Letters, vol.46, no.12, pp.814-815, June2010.
    [23] H. H. Xie, Y. C. Jiao, and Z. Zhang, Band-notched ultra-wideband monopoleantenna using coupled resonator, Electronics Letters, vol.46, no.16, pp.1099-U14,Aug.2010.
    [24] D. Z. Kim, W. I. Son, and W. G. Lim, Integrated planar monopole antenna withmicrostrip resonators having band-notched characteristics, IEEE Transactions onAntennas and Propagation, vol.58, no.9, pp.2837-2842, Sep.2010.
    [25] W. S. Lee, K. J. Kim, D. Z. Kim, and J. W. Yu, Compact frequency-notchedwideband planar monopole antenna with an L-shape ground plane, Microwave andOptical Technology Letters, vol.46, no.4, pp.340-343, Aug.2005.
    [26] I. T. Tang, D. B. Lin, G. H. Liou, and J. H. Horng, Miniaturized5.2GHz notchedUWB CPW-fed antenna using dual reverse split trapezoid slots, Microwave andOptical Technology Letters, vol.50, no.3, pp.652-655, Mar.2008.
    [27] X. M. Qing, and Z. N. Chen, Compact monopole-like slot antenna andband-notched design for ultrawideband applications, Radio Science, vol.44, Apr.2009.
    [28] S. W. Su, and K. L. Wong, Printed band-notched ultra-wideband quasi-dipoleantenna, Microwave and Optical Technology Letters, vol.48, no.3, pp.418-420,Mar.2006.
    [29] A. M. Abbosh, and M. E. Bialkowski, Design of UWB planar band-notchedantenna using parasitic elements, IEEE Transactions on Antennas and Propagation,vol.57, no.3, pp.796-799, Mar.2009.
    [30] C. Chen, Y. C. Jiao, and L. Zhang, An ultra-wideband monopole antenna with dualband-notched characteristics, Journal of Electromagnetic Waves and Applications,vol.23, no.11-12, pp.1595-1601, July2009.
    [31] Y. S. Li, X. D. Yang, and C. Y. Liu, Compact CPW-fed ultra-wideband antennawith band-notched characteristic, Electronics Letters, vol.46, no.23, pp.1533-1534, Nov.2010.
    [32] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics, Physical Review Letters, vol.58, no.20, pp.2059-2062, May1987.
    [33] S. John, Strong localization of photons in certain disordered dielectricsuper-lattices, Physical Review Letters, vol.58, no.23, pp.2486-2489, June1987.
    [34] F. Kung, Modeling of high speed printed circuit board, Master thesis, Faculty ofEngineering, University of Malaya.1997.
    [35] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,High-impedance electromagnetic surfaces with a forbidden frequency band, IEEETransactions on Microwave Theory and Techniques, vol.47, no.11, pp.2059–2074, Nov.1999.
    [36] K. Naishadham, J.B. Berry, Hejase, Full-wave analysis of radiated emission fromarbitrary shaped printed circuit traces, IEEE Transactions on EMC, vol.35, no.3,pp.366-377,1993.
    [37] N. B. Jin, A. Yu, and X. X. Zhang, An enhanced2x2antenna array based on adumbbell EBG structure, Microwave and Optical Technology Letters, vol.39, no.5, pp.395-399, Dec.2003.
    [38] S. K. Padhi, and M. E. Bialkowski, A microstrip Yagi antenna using EBG structure,Radio Science, vol.38, no.3, May2003.
    [39] F. Yang, and Y. Rahmat-Sami, A low-profile circularly polarized curl antenna overan electromagnetic bandgap (EBG) surface, Microwave and Optical TechnologyLetters, vol.31, no.4, pp.264-267, Nov.2001.
    [40] J. C. I. Galarregui, I. Ederra, and R. G. Garcia, High-K EBG substrates forphase-array patch-antenna configurations, Microwave and Optical TechnologyLetters, vol.43, no.6, pp.527-532, Dec.2004.
    [41] Y. J. Lee, J. Yeo, and R. Mittra, Design of a high-directivity Electromagnetic BandGap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate,Microwave and Optical Technology Letters, vol.43, no.6, pp.462-467, Dec.2004.
    [42] Y. Hao, A. H. Alomainy, and C. G. Parini, Antenna-beam shaping from offsetdefects in UC-EBG cavities, Microwave and Optical Technology Letters, vol.43,no.2, pp.108-112, Oct.2004.
    [43] L. Leger, R. Granger, and M. Thevenot, Multifrequency dielectric EBGantenna,Microwave and Optical Technology Letters, vol.40, no.5, pp.420-423,Mar.2004.
    [44] K. Matsugatani, M. Tanaka, and S. Fukui, Surface wave distribution overelectromagnetic bandgap (EBG) and EBG reflective shield for patch antenna,IEICE Transactions on Electronics, vol. E88c, no.12, pp.2341-2349, Dec.2005.
    [45] A. R. Weily, K. P. Esselle, and B. C. Sanders, High-gain1D EBG resonatorantenna, Microwave and Optical Technology Letters, vol.47, no.2, pp.107-114,Oct.2005.
    [46] M. Diblanc, E. Rodes, and E. Arnaud, Circularly polarized metallic EBG antenna,IEEE Microwave and Wireless Components Letters, vol.15, no.10, pp.638-640,Oct.2005.
    [47] L. Leger, T. Monediere, and B. Jecko, Enhancement of gain and radiationbandwidth for a planar1-D EBG antenna, IEEE Microwave and WirelessComponents Letters, vol.15, no.9, pp.573-575, Sep.2005.
    [48] S. Pioch, and J. M. Laheurte, Low profile dual-band antenna based on a stackedconfiguration of EBG and plain patches, Microwave and Optical TechnologyLetters, vol.44, no.3, pp.207-209, Feb.2005.
    [49] B. Li, L. Li, and C. H. Liang, The rectangular waveguide board wall slot arrayantenna with EBG structure, Journal of Electromagnetic Waves and Applications,vol.19, no.13, pp.1807-1815, Sep.2005.
    [50] A. R. Weily, L. Horvath, K. P. Esselle et al., A planar resonator antenna based on awoodpile EBG material, IEEE Transactions on Antennas and Propagation, vol.53,no.1, pp.216-223, Jan.2005.
    [51] K. M. K. H. Leong, A. Lai, and T. Itoh, Demonstration of reverse Doppler effectusing a left-handed transmission line, Microwave and Optical Technology Letters,vol.48, no.3, pp.545-547, Mar.2006.
    [52] J. L. He, and S. L. He, Slow propagation of electromagnetic waves in a dielectricslab waveguide with a left-handed material substrate, IEEE Microwave andWireless Components Letters, vol.16, no.2, pp.96-98, Feb.2006.
    [53] C. A. Allen, K. M. K. H. Leong, and T. Itoh, Dual-modecomposite-right/left-handed transmission line ring resonator, Electronics Letters,vol.42, no.2, pp.96-97, Jan.2006.
    [54] Y. Guo, and R. Xu, Planar metamaterials supporting multiple left-handed modes,Progress in Electromagnetics Research-Pier, vol.66, pp.239-251,2006.
    [55] S. G. Mao, and Y. Z. Chueh, Broadband composite right/left-handed coplanarwaveguide power splitters with arbitrary phase responses and balun and antennaapplications, IEEE Transactions on Antennas and Propagation, vol.54, no.1, pp.243-250, Jan.2006.
    [56] Y. Shi, Y. Li, and C. H. Liang, Perfectly matched layer absorbing boundarycondition for truncating the boundary of the left-handed medium, Microwave andOptical Technology Letters, vol.48, no.1, pp.57-63, Jan.2006.
    [57] C. Monzon, P. Loschialpo, and D. W. Forester, Zero-permeability materials: anartifact of losses in left-handed media, IEE Proceedings-Microwaves Antennas andPropagation, vol.152, no.6, pp.465-470, Dec.2005.
    [58] H. Salehi, and R. Mansour, Analysis, modeling, and applications of coaxialwaveguide-based left-handed transmission lines, IEEE Transactions on MicrowaveTheory and Techniques, vol.53, no.11, pp.3489-3497, Nov.2005.
    [59] S. S. Xiao, and M. Qiu, Doppler effects in a left-handed material: A first-principlestheoretical study, Microwave and Optical Technology Letters, vol.47, no.1, pp.76-79, Oct.2005.
    [60] J. Shaker, R. Chaharmir, and H. Legay, Investigation of FSS-backed reflectarrayusing different classes of cell elements, IEEE Transactions on Antennas andPropagation, vol.56, no.12, pp.3700-3706, Dec.2008.
    [61] H. Oraizi, and M. Afsahi, Analysis of planar dielectric multilayers as FSS bytransmission line transfer matrix method (TLTMM), Progress in ElectromagneticsResearch-Pier, vol.74, pp.217-240,2007.
    [62] S. Barbagallo, A. Monorchio, and G. Manara, Small periodicity FSS screens withenhanced bandwidth performance, Electronics Letters, vol.42, no.7, pp.382-384,Mar.2006.
    [63] B. A. Munk, and J. Pryor, Comments on Design of a frequency selective surface(FSS) with very low cross-polarization discrimination via the parallelmicro-genetic algorithm (PMGA), IEEE Transactions on Antennas andPropagation, vol.52, no.4, pp.1135-1136, Apr.2004.
    [64] J. Shaker, and M. Cuhaci, A double-layer FSS structure to suppress far side-lobesof an antenna, Microwave and Optical Technology Letters, vol.39, no.5, pp.428-432, Dec.2003.
    [65] A. L. P. S. Campos, A. G. d'Assuncao, and A. G. Neto, Scattering characteristics ofFSS on two anisotropic layers for incident CO-POLARIZED plane waves,Microwave and Optical Technology Letters, vol.33, no.1, pp.57-61, Apr.2002.
    [66] A. D. Chuprin, E. A. Parker, and J. C. Batchelor, Convoluted double square: singlelayer FSS with close band spacings, Electronics Letters, vol.36, no.22, pp.1830-1831, Oct.2000.
    [67] M. K. T. Al-Nuaimi, and W. G. Whittow, Low Profile dipole antenna backed byisotropic artificial magnetic conductor reflector, Proceedings of the FourthEuropean Conference on Antennas and Propagation,2010.
    [68] F. L. Zhang, D. Lippens, and A. L. Borja, Low profile small antenna usingferroelectrics cube based artificial magnetic conductor, Proceedings of the FourthEuropean Conference on Antennas and Propagation,2010.
    [69] A. M. Mehrabani, and L. Shafai, A dual-arm archimedean spiral antenna over alow-profile artificial magnetic conductor ground plane,200913th InternationalSymposium on Antenna Technology and Applied Electromagnetics and theCanadian Radio Sciences Meeting (Antem/Ursi2009), pp.205-208,2009.
    [70] D. Kim, J. Yeo, and J. I. Choi, Low-profile platform-tolerant RFID tag withartificial magnetic conductor (AMC), Microwave and Optical Technology Letters,vol.50, no.9, pp.2292-2294, Sep.2008.
    [71] S. S. Oh, and L. Shafai, Artificial magnetic conductor using split ring resonatorsand its applications to antennas, Microwave and Optical Technology Letters, vol.48, no.2, pp.329-334, Feb.2006.
    [72] A. P. Feresidis, G. Goussetis, S. and H. Wang, Artificial magnetic conductorsurfaces and their application to low-profile high-gain planar antennas, IEEETransactions on Antennas and Propagation, vol.53, no.1, pp.209-215, Jan.2005.
    [73] S. Wang, A. P. Feresidis, and G. Goussetis, Low-profile resonant cavity antennawith artificial magnetic conductor ground plane, Electronics Letters, vol.40, no.7,pp.405-406, Apr.2004.
    [74] G. V. Trentini, Partially reflecting sheet arrays, IRE Transactions on Antennas andPropagation, vol.4, no.4, pp.666-671, Oct.1956.
    [75] D. Vrba, and M. Polivka, Improvement of the radiation efficiency of themetamaterial zero-order resonator antenna, Proceedings of the14th Conference onMicrowave Techniques: Comite2008, pp.1-3, Apr.2008.
    [76] D. Vrba, and M. Polivka, Radiation efficiency of the metamaterial zero-orderresonator antenna, Piers2008Cambridge, Proceedings, pp.482-485,2008.
    [77] J. H. Park, Y. H. Ryu, J. G. Lee, and J. H. Lee, Epsilon negative zeroth-orderresonator antenna, IEEE Transactions on Antenna and Propagation, vol.55, no.12,Dec.2007.
    [78] J. G. Lee, and J. H. Lee, Zeroth order resonance loop antenna, IEEE Transactionson Antenna and Propagation, vol.55, no.3, Mar.2007.
    [79] J. H. Park, Y. H. Ryu, and J. H. Lee, Mu-zero resonance antenna, IEEETransactions on Antenna and Propagation, vol.58, no.6, June2010.
    [80] A. Lai, K. M. K. H. Leong, and T. Itoh, Infinite wavelength resonant antennas withmonopollar radiation pattern based on periodic structures, IEEE Transactions onAntenna and Propagation, vol.55, no.3, Mar.2007.
    [81]张金平,超宽带天线及其阵列研究,合肥:中国科技大学,2007.
    [82] H. G. Schantz, A brief history of UWB antennas, IEEE Aerospace and ElectronicSystems Magazine, vol.19, no.4, pp.22-26, Apr.2004.
    [83] H. G. Schantz, The art and science of UWB antenna design, Boston: Artech House,2005.
    [84] Y. Zhang, W. Hong, and C. Yu, Design and implementation of planarultra-wideband antennas with multiple notched bands based on stepped impedanceresonators, IET Microwaves Antennas&Propagation, vol.3, no.7, pp.1051-1059,Oct.2009.
    [85] L. N. Zhang, S. S. Zhong, and X. L. Liang, Compact omnidirectional band-notchultra-wideband antenna, Electronics Letters, vol.45, no.13, pp.659-660, June2009.
    [86] D. B. Lin, I. T. Tang, and M. Y. Tsou, A compact UWB antenna with CPW-fed,Microwave and Optical Technology Letters, vol.49, no.3, pp.564-567, Mar.2007.
    [87] J. X. Xiao, M. F. Wang, and G. J. Li, A Printed circular-ring monopole antenna withband-notched feature for UWB application, Microwave and Optical TechnologyLetters, vol.52, no.4, pp.827-830, Apr.2010.
    [88] K. H. Kim, Y. J. Cho, and S. H. Hwang, Band-notched UWB planar monopoleantenna with two parasitic patches, Electronics Letters, vol.41, no.14, pp.783-785,July2005.
    [89] N. Farrokh-Heshmat, J. Nourinia, and C. Ghobadi, Band-notched ultra-widebandprinted open-slot antenna using variable on-ground slits, Electronics Letters, vol.45, no.21, pp.1060-U12, Oct.2009.
    [90] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, A uniplanar compact photonic band-gap(UC-PBG) structure and its applications for microwave circuit, IEEE Transactionson Microwave Theory and Techniques, vol.47, no.8. pp.1509-1514, Aug.1999.
    [91] F. Yang, and Y. Rahmat-Samii, Microstrip antennas integrated with electromagneticband-gap (EBG) structures: A low mutual coupling design for array applications,IEEE Transactions on Antennas and Propagation, vol.51, no.10, pp.2936-2946,Oct.2003.
    [92] J. M. Bell, and M. F. Iskander, A low-profile Archimedean spiral antenna using anEBG ground plane, IEEE Antenna and Wireless Propagation Letters, vol.3, no.1pp.223-226, July2004.
    [93] F. Yang, and Y. Rahmat-Samii, Reflection phase characterizations of the EBGground plane for low profile wire antenna applications, IEEE Transactions onAntennas and Propagation, vol.51, no.10, pp.2691-2703, Oct.2003.
    [94] G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, Tailoring the AMC and EBGcharacteristics of periodic metallic arrays printed on grounded dielectric substrate,IEEE Transactions on Antennas and Propagation, vol.54, no.1, pp.82-89, Jan.2006.
    [95] S. Tse, B. S. Izquierdo, and J. C. Batchelor, Reduced sized cells forelectromagnetic bandgap structures, Electronics Letters, vol.39, no.24, pp.1699-1701, Nov.2003.
    [96] D. J. Kern, D. H. Werner, and A. Monorchio, The design synthesis of multibandartificial magnetic conductors using high impedance frequency selective surfaces,IEEE Transactions on Antennas and Propagation, vol.53, no.1, pp.8-17, Jan.2005.
    [97] D. J. Kern, Advancements in artificial magnetic conductor design for improvedperformance and antenna applications, Dissertation, The Pennsylvania StateUniversity,2009.
    [98] V. C. Sanchez, Broadband antennas over electronically reconfigurable artificialmagnetic conductor surfaces,2001Antenna applicatios symposium, Monticello,Illinois, Sep.2001.
    [99] N. G. Alexopoulos, and D. R. Jackson, Fundamental superstrate(cover) effects onprinted circuit antennas, IEEE Transactions on Antennas and Propagation, vol.32,no.8, pp.807-816, Aug.1984.
    [100] Y. Hao, and N. G. Alexopoulos, Gain enhancement methods for printed circuitantennas through multiple superstrates, IEEE Transactions on Antennas andPropagation, vol.35, no.7, pp.860-863, July1987.
    [101] A. P. Feresidis, and J. C. Vardaxoglou, High gain planar antenna using optimisedpartially ref lective surfaces, IEE Proceedings-Microwaves Antennas andPropagation, vol.148, no.6, pp.345-350, Dec.2001.
    [102] M. Qiu, and S. L. He, High-directivity patch antenna with both photonic bandgapsubstrate and photonic bandgap cover, Microwave and Optical Technology Letters,vol.30, no.1, pp.41-44, July2001.
    [103] F. M. Zhu, Q. C. Lin, and S. L. He, A high directivity patch antenna using a PBGcover together with a PBG substrate,20036th International Symposium onAntennas, Propagation and EM Theory, Proceedings, pp.92-95,2003.
    [104] C. Cheype, C. Serier, and M. Thevenot, An electromagnetic bandgap resonatorantenna, IEEE Transactions on Antennas and Propagation, vol.50, no.9, pp.1285-1290, Sep.2002.
    [105] A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou,Closelycoupled metallodielectric electromagnetic band gap(CCMEBG) structures formedby double layer dipole and tripolearrays, IEEE Transactions on AntennasPropagation, vol.52, no.5, pp.1149–1158, May2004.
    [106] A. P. Feresidis, G. Goussetis, and S. H. Wang, Artificial magnetic conductorsurfaces and their application to low-profile high-gain planar antennas, IEEETransactions on Antennas and Propagation, vol.53, no.1, pp.209-215, Jan.2005.
    [107] L. Zhou, H. Q. Li, and Y. Q. Qin, Directive emissions from subwavelengthmetamaterial-based cavities, Applied Physics Letters, vol.86, no.10, Mar.2005.
    [108] Y. J. Lee, J. Yeo, and K. D. Ko, A novel design technique for control of defectfrequencies of an electromagnetic bandgap (EBG) superstrate for dual-banddirectivity enhancement, Microwave and Optical Technology Letters, vol.42, no.1,pp.25-31, July2004.
    [109] D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, Design of novel thinfrequency selective surface superstrates for dual-band directivity enhancement,IET Microwave Antennas Propagation, vol.1, no.1, pp.248-254, Feb.2007.
    [110] R. Gardelli, M. Albani, and F. Capolino, Array thinning by using antennas in aFabry-Perot cavity for gain enhancement, IEEE Transactions on Antennas andPropagation, vol.54, no.7, pp.1979-1990, July2006.
    [111]吴爱婷,官伯然,添加覆盖层的宽带微带贴片天线,杭州电子工业学院学报,vol.24, no.6, pp.4-7,2004.
    [112] Z. C. Ge, W. X. Zhang, and Z. G. Liu, Broadband and high-gain printed antennasconstructed from Fabry-Perot resonator structure using EBG or FSS cover,Microwave and Optical Technology Letters, vol.48, no.7, pp.1272-1274, July2006.
    [113] Z. G. Liu, W. X. Zhang, and D. L. Fu, Broadband Fabry-Perot resonator printedantennas using FSS superstrate with dissimilar size, Microwave and OpticalTechnology Letters, vol.50, no.6, pp.1623-1627, June2008.
    [114] Y. H. Ge, K. P. Esselle, and T. S. Bird, The use of simple thin partially reflectivesurfaces with positive reflection phase gradients to design wideband low-profileEBG resonator antenna, IEEE Transactions on Antennas and Propagation, vol.60,no.2, pp.743-750, Feb.2012.
    [115] Y. Hao, A. H. Alomainy, and C. G. Parini, Antenna-beam shaping from offsetdefects in UC-EBG cavities, Microwave and Optical Technology Letters, vol.43,no.2, pp.108-112, Oct.2004.
    [116] A. Ourir, S. N. Burokur, and A. de Lustrac, Phase-varying metamaterial forcompact steerable directive antennas, Electronics Letters, vol.43, no.16, pp.901-901, Aug.2007.
    [117] T. Debogovic, J. Perruisseau-Carrier, and J. Bartolic, Partially reflective surfaceantenna with dynamic beamwidth control, IEEE Antennas and WirelessPropagation Letters, vol.9, pp.1157-1160, Dec.2010.
    [118] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and EngineergingExplorations. IEEE Press,2006.
    [119] A. Oliner, Leaky-wave antennas, Antenna Engineering Handbook,R. C. Johnson,Ed.,3rd ed. New York: McGraw-Hill,1993.
    [120] D. M. Pozar, Microwave Engineering,3rd ed. Publishing House of ElectronicsIndustry, Beijing,2006.
    [121] J. Q. Gong and Q. X. Chu, Miniaturized microstrip bandpass filter using coupledSCRLH zeroth-order resonator, Microwave and Optical Technology Letters, vol.51, no.12, pp.2985-2989, Sep.2009.
    [122] J. Q. Gong, C. H. Liang and B. Wu, Novel dual-band hybrid coupler usingimproved simplified CRLH transmission line stubs, Microwave and OpticalTechnology Letters, vol.52, no.11, pp.2473-2476, Aug.2010.
    [123] J. Q. Gong and Q. X. Chu, SCRLH TL based UWB bandpass filter with widenedupper stopband, Journal of Electromagnetic Waves and Applications, vol.22, no.14-15, pp.1985-1992, Aug.2008.
    [124] T. Kokkinos, C. D. Sarris and G. V. Eleftheriades, Periodic FDTD analysis ofleaky-wave structures and applications to the analysis of NRI leaky-wave antennas,IEEE Transactions on Microwave Theory and Techniques, vol.54, no.4. pp.1619-1630, June2006.
    [125] P. Baccarelli, C. Di Nallo, S. Paulotto, and D. R. Jackson, A full-wave numericalapproach for modal analysis of1D periodic microstrip structures, IEEETransactions on Microwave Theory and Techniques, vol.50, no.11. pp.2624-2628,2002.
    [126] C. Rockstuhl, T. Paul and F. Lederer, Transition from thin-film to bulk propertiesof metamaterials, Physical Review B, vol.77, no.3, pp.035126:1-9, Jan.2008.
    [127] K. E. Peiponen, V. Lucarini, E. M. Vartiainen and J. J. Saarinen, Kramers-Kronigrelations and sum rules of negative refractive index media, The European PhysicalJournal B, vol.41, no.1, pp.61-65, Sep.2004.
    [128] S. Paulotto, P. Baccarelli, F. Frezza and D. R. Jackson, A novel technique foropen stopband suppression in1-D periodic printed leaky-wave antenna, IEEETransactions on Antennas and Propagation, vol.57, no.7, pp.1894-1906, July2009.
    [129] R. Marques, J. Martel, F. Mesa and F. Medina, Left-handed-media simulation andtransmission of EM waves in subwavelength split-ring-resonator-loaded metallicwaveguides, Physical Review Letters, vol.89, no.18, pp.183901:1-4, Oct.2002.
    [130] S. Hrabar, J. Bartolic and Z. Sipus, Waveguide miniaturization using uniaxialnegative permeability metamaterial, vol.53, no.1, pp.110-119, Jan.2005.
    [131] Y. X. He, P. He, V. G. Harris and C. Vittoria, Role of ferrites in negative indexmetamaterials, IEEE Transactions on Magnetics, vol.42, no.10, Oct.2006.
    [132]龚建强,梁昌洪,基于TE10矩形波导的异向介质有效本构参数提取算法,物理学报,vol.60, no.5, pp.059204:1-8, May2011.
    [133] W. Sui, D. A. Christensen, C. H. Durney, Extending the two-dimensional FDTDmethod to hybrid electromagnetic systems with active and passive lumpedelements, IEEE Transactions on Microwave Theory and Technology, vol.40, no.4,pp.724-730, Apr.1992.
    [134] I. Arnedo, J. Illescas, M. Flores, etc., Forward and backward leaky wave radiationin split-ring-resonator-based metamaterials, IET Microwaves Antennas&Propagation, vol.1, no.1, pp.65-68, Feb.2007.
    [135] S. G. Mao, and M. S. Wu, A novel3-dB directional coupler with broad bandwidthand compact size using composite right/left-handed coplanar waveguides, IEEEMicrowave and Wireless Components Letters, vol.17, no.5, pp.331-333, May2007.
    [136] S. G. Mao, M. S. Wu, and Y. Z. Chueh, Design of composite right/left-handedcoplanar-waveguide bandpass and dual-passband filters. IEEE Transactions onMicrowave Theory and Techniques, vol.54, no.9, pp.3543-3549, Sep.2006.
    [137] S. G. Mao, and Y. Z. Chueh, Broadband composite right/left-handed coplanarwaveguide power splitters with arbitrary phase responses and balun and antennaapplications, IEEE Transactions on Antennas and Propagation, vol.54, no.1, pp.243-250, Jan.2006.
    [138] Q. Wu, P. Pan, F. Y. Meng, et al., A novel flat lens horn antenna designed basedon zero refraction principle of metamaterials, Applied Physics a-Materials Science&Processing, vol.87, no.2, pp.151-156,2007.
    [139] M. Gil, J. Bonache, J. Garcia-Garcia, et al., Composite right/left-handedmetamaterial transmission lines based on complementary split-rings resonators andtheir applications to Very Wideband and Compact Filter Design, IEEE Transactionson Microwave Theory and Techniques, vol.55, no.6, pp.1296-1304, June2007.
    [140] J. Garcia-Garcia, J. Bonache, I. Gil, et al., Miniaturized microstrip and CPWfilters using coupled metamaterial resonators, IEEE Transactions on MicrowaveTheory and Techniques, vol.54, no.6, pp.2628-2635, June2006.
    [141] J. Bonache, F. Martin, J. Garcia-Garcia, et al., Ultra wide band pass filters(UWBPF) based on complementary split rings resonators, Microwave and OpticalTechnology Letters, vol.46, no.3, pp.283-286, Aug.2005.
    [142] C. Caloz and T. Itoh, Electromagnetic metamaterial: Transmission line theory andmicrowave applications. New York: Wiley,2006.
    [143] C. A. Balanis, Antenna theory analysis and design,3rd ed. New York: Wiley,2005.
    [144] S. R. Best, The performance properties of electrically small resonantmultiple-arm folded wire antenna, IEEE Antennas and Propagation Magazine, vol.47, no.4, pp.13-27, Aug.2005.
    [145] F. Qureshi, M. A. Antoniades, and G. V. Eleftheriades, A compact and low-profilemetamaterial ring antenna with vertical polarization, IEEE Antennas and WirelessPropagation Letters, vol.4, no.1, pp.333-336,2005.
    [146] M. A. Antoniades and G. V. Eleftheriades, A folded-monopole model forelectrically small NRI-TL metamaterial antennas, IEEE Antennas and WirelessPropagation Letters, vol.7, no.11, pp.425-428,2008.
    [147] T. Kokkinos and A. P. Feresidis, Low-profile folded monopoles with embeddedplanar metamaterial phase-shifting lines, IEEE Transactions on Antennas andPropagation, vol.57, no.10, pp.2997-3008, Oct.2009.
    [148] Y. J. Hsu, Y. C. Huang, J. S. Lih, et al., Electromagnetic resonance in deformedsplit ring resonator of left-handed meta-materials, Journal of Applied Physics, vol.96, no.4, pp.1979-1982, Aug.2004.
    [149] G. A. Thiele, E. P. Ekelman, Jr., and L. W. Henderson, On the accuracy of thetransmission line model for folded dipole, IEEE Transactions on Antennas andPropagation, vol.28, no.5, pp.700-703, Sep.1980.
    [150] H. A. Wheeler, Fundamental limitations of small antennas, Proceedings of theIRE, vol.35, pp.1479-1484, Dec.1947.
    [151] N. A. McDonald, Approximate relationship between directivity and beamwidthfor broadside collinear arrays, IEEE Transactions on Antennas and Propagation,vol.26, no.2, pp.340-341, Mar.1978.
    [152] E. H. Newman, P. Bohley, and C. H. Walter, Two methods for measurement ofantenna efficiency, IEEE Transactions on Antennas and Propagation, vol.23, pp.457-461, July1975.
    [153] Q. X. Chu, and Y. Y. Yang, A Compact CPW-fed Planar Ultra-wideband Antennawith a Frequency Notch Characteristic,2007Asia-Pacific Microwave Conference,pp.1-4, Oct.2007.
    [154] Q. X. Chu, and Y. Y. Yang,3.5/5.5GHz dual band-notch ultra-wideband antenna,Electronics Letters, vol.44, no.3, pp.172-174, Jan.2008.
    [155] F. F. Fan, Z. H. Yan, T. L. Zhang, and Y. Song, Novel dual band-notchedultra-wideband antenna, Microwave and Optical Technology Letters, vol.51, no.12, pp.2973-2976, Dec.2009.
    [156] S. F. Niu, G. P. Gao, M. Li, Y. S. Hu, and B. N. Li, Design of a novel ellipticalmonopole UWB antenna with dual band-notched function, Microwave and OpticalTechnology Letters, vol.52, no.6, pp.1306-1310, June2010.
    [157] J. C. Ding, Z. L. Lin, Z. N. Ying, and S. L. He, A compact ultra-wideband slotantenna with multiple notch frequency bands, Microwave and Optical TechnologyLetters, vol.49, no.12, pp.3056-3060, Dec.2007.
    [158] F. F. Fan, Z. H. Yan, T. L. Zhang, and Y. Song, Ultra-wideband planar monopoleantenna with dual stopbands, Microwave and Optical Technology Letters, vol.52,no.1, pp.138-141, Jan.2010.
    [159] J. Yoon, D. kim, C. Park, Implementation of UWB antenna with bandpass filterusing microstrip-to-CPW transition matching,2009Asia Pacific MicrowaveConference, pp.2553-2556, Dec.2009.
    [160] W. S. Lee, D. Z. Kim, K. J. Kim, and J. W. Yu, Wideband planar monopoleantennas with dual band-notched characteristics, IEEE Transactions on MicrowaveTheory and Techniques, vol.54,no.6, pp.2800-2806, June2006.
    [161] Y. J. Cho, K. H. Kim, D. H. Chio, S. S. Lee, and S. O. Park, A miniature UWBplanar monopole antenna with5-GHz band-rejection filter and the time-domaincharacteristics, IEEE Transaction on Antennas and Propagation, vol.54, no.5, pp.1453-1460, May2006.
    [162] L. Peng, C. L. Ruan, and X. C. Yin, Analysis of the small slot-loaded ellipticalpatch antenna with a band-notched for UWB applications, Microwave and OpticalTechnology Letters, vol.51, no.4, pp.973-976, Apr.2009.
    [163] K.H. Kim, and S. O. Park, Analysis of the small band-rejected antenna with theparasitic strip for UWB, IEEE Transaction on Antennas and Propagation, vol.54,no.6, pp.1688-1692, June2006.
    [164] J. W. Jang and H. Y. Huang, An improved band-rejection UWB antenna withresonant patches and a slot, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.299-302,2009.
    [165] V. G. Veselago, The electrodynamics of substances with simultaneously negativevalues of Ε and Μ, Soviet Physics Uspekh1, vol.10, no.4, pp.509-511, Jan.-Feb.1968.
    [166] C. Caloz, t. Itoh, Transmission ling approach of left-handed (LH) materials andmicrostrip implementation of artificial LH transmission line, IEEE Transactions onAntennas and Propagation, vol.52, no.5, pp.1159-1166, June2004.
    [167]李强,杨臻,张雨.液压节制杆式模拟汽车碰撞吸能装置研究,力学与实践,vol.25, pp.22-24,2003.
    [168]邢丽,董石麟,曹喜,面向对象的索穹顶结构优化设计程序结构,工程设计学报,vol.11, no.6, pp.351-356,2004.
    [169] M. A. Anotoniades, and G. V. Eleftheriades, A broadband series power dividerusing zero-degree metamaterial phase-shifting lines, IEEE Microwave andWireless Components Letters, vol.15, no.11, pp.808-810, Nov.2005.
    [170]范如东,刘长军,基于CRLH-TL零阶谐振特性的新型串联功分器,vol.15,no.3, pp.213-228, June2008.
    [171] M. A. Anotoniades, and G. V. Eleftheriades, Compact linear lead/lag metamaterialphase shifter for broadband applications, IEEE Antennas and Wireless PropagationLetters, vol.2, no.1, pp.103-106,2003.
    [172] H. Nakano, J. Eto, Y. Okabe, and J. Yamauchi, Titled-and axial-beam formationby a single-arm rectangular spiral antenna with compact dielectric substrate andconducting plane, IEEE Transactions on Antennas and Propagation, vol.50, no.1,pp.17-23, Jan.2002.
    [173]闫敦豹,人工磁导体结构及其应用研究,国防科学技术大学博士学位论文,2006.
    [174]高强,无源电磁周期结构及其应用研究,国防科学技术大学博士学位论文,2006.
    [175] S. A. Tretyakov, Analytical modeling in applied electromagnetics, Norwood, MA:Artech House,2003.
    [176] O. Luukonen, C. Simovski, G. Granet, etc., Simple and accurate analytical modelof planar grids and high-impedance surfaces comprising metal strips or patches,IEEE Transactions on Antennas and Propagation, vol.56, no.6, pp.1624-1632,June2008.
    [177] M. Grelier, F. Linot, A. C. Lepage, et al., Analytical metnods for AMC and EBGcharacterizations, Applied Phsics A, vol.103, no.3, pp.805-808, Jan.2011
    [178] M. N. M. Kehn, A. Foroozesh, L. Shafai, etc., Parametric studies of highimpedance AMC surfaces realized by periodic array of arbitrarily shapedmetallizations printed over grounded dielectric substrates,2008Antennas andPropagation Society International Symposium, pp.1-4, July2008.
    [179] A. Foroozesh, and L. Shafai, Investigation into the application of artificialmagnetic conductors to bandwidth broadening, gain enhancement and beamshaping of low profile and conventional monopole antennas, IEEE Transactions onAntennas and Propagation, vol.59, no.1, pp.4-20, Jan.2011.
    [180] L. Yousefi, B. M. Iravani, and O. M. Ramahi, Enhanced bandwidth artificialmagnetic ground plane for low-profile antennas, IEEE Antennas and WirelessPropagation Letters, vol.6, pp.289-292,2007.
    [181]龚建强,褚庆昕,Ansoft HFSS在周期性异向介质研究中的仿真方法,Ansoft2008优秀论文,pp.1-10,2008.
    [182]李斌,微波复合介质材料特性及其应用研究,西安电子科技大学博士学位论文,2006。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700