用户名: 密码: 验证码:
双翼末敏弹稳态扫描技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对现有稳态扫描技术进行改进,提出了采用两片小展弦比尾翼作为末敏弹气动机构实现稳态扫描运动的技术方案。该方案利用尾翼产生非对称的气动力形成旋转运动实现稳态扫描。本文采用理论分析、数值计算和试验研究相结合的方法,对双翼末敏弹稳态扫描运动特性、气动特性以及扫描运动稳定性进行了系统的研究,为无伞末敏弹结构设计和气动外形改进提供了理论依据和技术支持。
     本文的主要研究内容包括以下几个方面:
     1)双翼末敏弹稳态扫描运动特性研究
     全面考虑了弹丸质量、空气动力等非对称因素,建立了大攻角状态下双翼末敏弹运动模型。进一步就双翼末敏弹弹体、两片尾翼分别进行受力分析,采用多刚体运动理论,建立了符合实际运动过程的双翼末敏弹大攻角非线性多刚体运动模型。针对双翼末敏弹运动姿态变化大的特点,采用不会出现退化的四元数法描述末敏弹的转动运动。编制了适合计算机求解的程序,获得了双翼末敏弹的运动参数,理论上分析了双翼末敏弹运动特性,为双翼末敏弹物理模型的设计和运动稳定性研究奠定了理论基础。结果表明,多刚体系统模型可以很好地描述双翼末敏弹的稳态扫描运动。
     2)尾翼结构参数对双翼末敏弹运动特性影响的试验研究
     依据无伞末敏弹气动外形设计原则,设计了平板尾翼末敏弹、S-C形尾翼末敏弹和S-S形尾翼末敏弹物理模型。进行了高塔投放的自由飞行试验,分析了三种不同尾翼形状末敏弹的运动特性。试验结果表明,无尾翼安装角的平板尾翼末敏弹不具有形成扫描运动的条件,S-C型尾翼末敏弹和S-S型尾翼末敏弹因尾翼弯折角存在能够形成扫描运动。试验得到了尾翼面积对S-C形尾翼和S-S形尾翼末敏弹运动特性影响规律:尾翼面积增加显著提高双翼末敏弹阻力系数,降低了落速,但对转动力矩系数的提升有限。试验研究了尾翼弯折角对S-S形尾翼末敏弹运动特性影响,增加尾翼弯折角在提高末敏弹转动速度的同时也增加了末敏弹运动的不稳定性。自由飞行试验为选择适合稳态扫描运动的末敏弹翼形提供依据。
     3)尾翼结构对双翼末敏弹气动特性的影响研究
     基于计算流体力学方法,对自由飞行试验的双翼末敏弹气动外形进行流场计算。获得了平板尾翼、S-C形尾翼和S-S形尾翼末敏弹三种模型的表面压力分布规律和阻力系数、升力系数和转动力矩系数随攻角变化的规律。进一步分析了不同翼展、弦长时S-C形尾翼和S-S形尾翼末敏弹的气动特性。结果表明,增加尾翼面积对增加阻力系数作用明显,对升力系数及转动力矩系数影响较小。通过尾翼弯折角组合对S-S形尾翼末敏弹气动特性影响的研究发现,尾翼弯折角是S-S形尾翼末敏弹转动力矩的主要影响因素。
     4)无伞末敏弹运动稳定性研究
     以带有安装角的平板尾翼末敏弹为模型,理论、系统地进行了双翼末敏弹运动稳定性的研究。考虑大攻角运动特征,对双翼末敏弹受力分析并推导了转动运动状态方程,根据奇点理论,分析了末敏弹运动稳定性判据。明确以参数化方式表示的运动稳定区间,阐明各结构参量对双翼末敏弹运动稳定性的影响规律。为末敏弹稳态扫描设计及参数提供了重要的理论支持。
This thesis presents a novel scheme of realizing stable scanning technology which uses two pieces of low aspect ratio wings on the basis of analysis of the advantages and disadvantages of the existing stable scanning technology of Parachute Terminal Sensitive Projectile. This method achieves stable scanning motion by using the spin resonance motion caused by asymmetry of the aerodynamic force. Combined with theoretical analysis, numerical and experimental study, the motion characteristics, aerodynamic characteristics and scanning movement stability of the Two-wings Terminal Sensitive Projectile have been studied systematically to supply a theoretical foundation and technical support for the design and improvement of Two-wings Terminal Sensitive Projectile.
     The main researchs of the thesis include:
     1) Research on the characteristic of Two-wings Terminal Sensitive Projectile stable scanning motion.
     Consider the Two-wings Terminal Sensitive Projectile is a system contained three rigid body wich are the projectile and two wings. Anylyzed the aerodynamic force and monent in the condition of high angle of attack and established the nonlinear motion model of the Two-wings Terminal Sensitive Projectile. Considering that the Two-wings Terminal Sensitive Projectile's attitude changes great during free flight, quaternion method is used to process the motion model of Two-wings Terminal Sensitive Projectile, and standardized equations which are suitable for machine programmingare established, and computer programs of model are developed which give procedures example. Results show that the designed Two-wings Terminal Sensitive Projectile system can achieve stable scanning motion.
     2) Experimental study on the wing's structure parameters effect on the stable scanning motion characteristic.
     Terminal Sensitive Projectile aerodynamic design principles are established on the basis of theoretical study, according to which the Two-wings Terminal Sensitive Projectile physical model is designed and the tower free flight tests are placed. Then the motion characteristics of flat-wing model, S-C wing model and S-S wing model are analyzed. Based on the experimental study, S-C wing and S-S wing Terminal Sensitive Projectile can achieve stable scanning motion while the flat-wing model can't. Furthermore, the rules of area of wings effect on the motion characteristics were gotten. The drag coefficient increase with the area of the wings increasing and the moment coefficient have a little change with the area of the wings increasing. The experiment alse shows that with the increasing of the area of wings the moment increasing while the stability greatly decreased. According to the free flight experiment, the wing shape selection criteria of Two-wings Terminal Sensitive Projectile which is appropriate for stable scanning is determined.
     3) The study on the wing's structure parameters effect on the aerodynamic characteristic Terminal Sensitive Projectile.
     Flow field and aerodynamic force of Two-wings Terminal Sensitive Projectile are numerically calculated by using Computational Fluid Dynamics method. We obtained the rules of surface pressure distribution and drag coefficient and lift coefficient and torque coefficient changes with angle of attack. Further anylized the aerodynamic characteristics of Two-wings Terminal Sensitive Projectile with different wingspan and chord. Results show that the increase of area of wings has significantly increase the drag coefficient, less about lift coefficient and torque coefficient. Through the study on the aerodynamic characteristics of S-S wing Terminal Sensitive Projectile with diffirent combination of wing angle found that wing angle is the main influencing factor on torque coefficient.
     4) Study on movement stability of non-parachute Terminal Sensitive Projectile.
     Base on plat wing Terminal Sensitive Projectile model, in theory systematic study on stability of the Two-wings Terminal Sensitive Projectile scanning motion. Considering the high angle of attack characteristics, anylize the forece and establish perturbation equations of motion. According to Singularity Theory, analysis of Two-wings Terminal Sensitive Projectile motion stability criteria. Clear a parametric representation of the movement stable range, clarifying the structure parameters on the Terminal Sensitive Projectile motion stability effects. The stability analysis of Two-wings Terminal Sensitive Projectile motion provide theoretical support for Two-wings Terminal Sensitive Projectile stable scanning platform design.
引文
[1]蒋志刚,曾首义,申志强等.轻型陶瓷复合装甲结构研究进展.兵工学报,2010,31(5):603-610.
    [2]刘向平.复合装甲的现状与趋势.国外坦克,2012(4):40-40.
    [3]宁俊生,高平,董立松等.国外电磁装甲研究进展.兵器材料科学与工程,2000,23(4):62-66.
    [4]武海军,陈利,王江波等.反应装甲对射流干扰的数值模拟研究.北京理工大学学报,2006,26(7):565-568,605.
    [5]毛明,庞宝文.坦克装甲车辆技术发展新动向和发展重点.车辆与动力技术,2012,(3):51-55.
    [6]王凤英.装甲防护技术发展.测试技术学报,2002,16(2):144-147.
    [7]方文.装甲车辆防护技术发展动向分析.国外坦克,2012(2):42-48.
    [8]王狂飙,张天桥.关于轻型反坦克导弹发展的几个问题.弹箭与制导学报,2000(2):29-34.
    [9]杨绍卿.论武器装备的新领域——灵巧弹药.中国工程科学,2009,11(10):4-7,18.
    [10]王颂康.灵巧弹药:弹药家族的“新秀”.现代军事,2004(4):68-70.
    [11]何喜营.国外末敏弹的发展现状及前景分析.弹箭技术,1995(2):1-11.
    [12]郭锡福.关于灵巧弹药的探讨.弹箭技术,1996(2):57-65.
    [13]郭凯.新一代末敏弹战斗部设计.南京理工大学硕士论文,2005.
    [14]王儒策,刘荣忠,苏玳,王晓鸣.灵巧弹药构造及作用.北京:兵器工业出版社,2001.
    [15]王颂康,朱鹤松等.高新技术弹药.北京:兵器工业出版社,1997.
    [16]朱建峰.世界末敏弹大观.兵器知识,2011,7A:33-35.
    [17]R. W. Heinemann. Application of Target-Oriented Terminally Activated Munitions to Ordnance. AD-523 126/1,1972,9.
    [18]Stephen Wilkerson, David Hopkins, George Gazonas,and Morris Berman. Developing a Transient Finite Element Model to Simulate the Launch Environment of the 155-mm SAD ARM Projectile. AD A388168,2000,9.
    [19]Mark P. Nitzche. XM898 Projectile 155-mm SADARM Packaging Design and Engineering Test Report. ADA264522,1993,4.
    [20]Terry C. Jameson, Saba A. Luces, Dave Knapp. Comparisons of Ballistic Trajectory Simulations Using Artillery Meteorological Messages Derived form Local Ballon Data and Battlecale Forecast Model Data for the 1998 SAD ARM IOT&E Fireings. AD A440117,2001,11.
    [21]Borgstromd A N, Paulssonlars, Karlsenlasse. Aerodynamics of a rotating body descending from the separation position of an artillery munition shell. AIAA Aerodynamic Decelerator Systems Technology Conference,11th, San Diego, CA, UNITED STATES.1991.
    [22]周军.美国的灵巧子弹药研制现状.飞航导弹,2001,2:21-25.
    [23]舒敬荣,王宝贵,韩子鹏等.伞-弹系统三体运动分析.航空学报,2001,22(6):481-485.
    [24]郭锐,刘荣忠.末敏弹刚柔耦合系统动力学模型及仿真.兵工学报,2007,28(1):10-14.
    [25]徐刚,殷克功,岳彬等.末敏弹旋转伞系统运动建模与仿真研究.微计算机信息,2008,24(33):231,252-253.
    [26]徐刚,耿汝波,殷克功等.末敏弹减速伞充气运动建模与仿真.弹箭与制导学报,2009,29(2):177-179.
    [27]舒敬荣,韩子鹏,刘昌源等.用弹体强非对称实现末敏弹稳态扫描的研究.火力与指挥控制,2003,28(3):20-23,26.
    [28]舒敬荣,刘昌源,韩子鹏等.柔性单翼末敏弹扫描运动研究.弹道学报,2004,16(1):36-42,59.
    [29]舒敬荣,张邦楚,韩子鹏等.单翼末敏弹扫描运动研究.兵工学报,2004,25(4):415-420.
    [30]Peter Crimi, Dean S. Jorgensen. Tests of Samara-wing Decelerator Characteristics. 11th AIAA Aerodynamic Decelerator Systems Technology Conference, San Diego, UNITED STATES,1991:265-279.
    [31]周志超,赵润祥.不同尾翼灵巧子弹气动特性实验研究.实验流体力学,2010,24(4):52-55.
    [32]郭锐,刘荣忠,王本河,胡志鹏.一种非对称双翼结构弹丸减速导旋特性试验研究.弹箭与制导学报,2009,29(5):249-250.
    [33]Seter, D.,A. Rosen. Study of the Vertical Autorotation of a Single Winged Samara. Biological Reviews,1992,67(2):175-197.
    [34]NORBERG, R. Autorotation, Self-stability, and Structure of Single-winged Fruits and Seeds (samaras) with Comparative Remarks on Animal Flight. Biological Reviews,1973,48(4):561-596.
    [35]NORBERG, R. Autorotation, Self-stability, and Structure of Single-winged Fruits and Seeds (samaras) with Comparative Remarks on Animal Flight. Biological Reviews,1973,48(4):561-596.
    [36]Green, Douglas S. The Terminal Velocity and Dispersal of Spinning Samaras. American Journal of Botany,1980,67(8):1218-1224.
    [37]Seter, D., A. Rosen. Stability of the Vertical Autorotation of a Single-winged Samara. Journal of Applied Mechanics,1992,59(4):1000-1008.
    [38]Dashcund, D. IRAAM Wind Tunnel Test Task Ⅲ. ADA135256,1983.
    [39]ROY Kline, Walter Koenig. A Samara-Type Decelerator. ADA167784,1986.
    [40]Crimi, P. Analysis of Samara Wing Decelerator Steady State Characteristics. Journal of Aircraft,1988,25(1):41-47.
    [41]Crimi, P. Analytic Modelling of a Samara-wing Decelerator.9th Aerodynamic Decelerator and Balloon Technology Conference, Albuquerque, UNITED STATES, 1986:66-71.
    [42]Peter Crimi, Dean S. Jorgensen. Tests of Samara-wing Decelerator Characteristics. 11th AIAA Aerodynamic Decelerator Systems Technology Conference, San Diego, UNITED STATES,1991:265-279.
    [43]舒敬荣.非对称末敏子弹大攻角扫描特性研究及应用.南京理工大学博士学位论文,2004.
    [44]Persson Per-Oiof, Albrektsson Kjell, Axinger Jan. EP0252036A2,1987.
    [45]Dan Borgstrom, Lasse Karlsen, Lars Paulsson. US Patent 5280752,1994.
    [46]Reijo Vesa. US Patent 5155294,1992.
    [47]BorgstromDan, KarlsenLasse, PaulssonLars. US Patent 5282422,1994.
    [48]Vicente Nadal-Mora, Angel Sanz-Andres, Alvaro Cuerva. Experimental Investigation of an Autorotating-wing Aerodynamic Decelerator System.18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany,2005:1-15.
    [49]Joaquin Piechocki. Estudio de la dinamica del vuelo de un decelerador aerodinamico basado en el concepto de pararrotor. Facultad de Ingenieria,2012.
    [50]Vicente Nadal-Mora, Angel Sanz-Andres, Alvaro Cuerva. Model of the Aerodynamic Behavior of a Pararotor. Journal of Aircraft,2006,43(6):1893-1903.
    [51]Vicente Nadal Mora, Joaquin Piechocki. Experimental Research on a Vertically Falling Rotating Wing Decelerator Model.2007, AIAA 2007-2538.
    [52]Vicente Nadal-Mora, Angel Sanz-Andres. Stability Analysis of a Free-Falling Pararotor. Journal of Aircraft,2006,43(4):980-986.
    [53]王爱中.无伞末敏弹稳态扫描特性研究.南京理工大学硕士学位论文,2008.
    [54]周志超,赵润祥,韩子鹏,陶钢.无伞末敏弹气动特性风洞实验研究.实验力学,2012,27(2):183-188.
    [55]周志超,赵润祥.不同尾翼灵巧子弹气动特性实验研究.实验流体力学,2010,24(4):52-55.
    [56]Zhou Zhi-Chao,Chen Xin-Hong,Zhao Run-Xiang, Tao Gang. Numerical simulation of Aerodynamic Characteristic of the Flat-Nosed-Cylinder Projectile with Wrap Around Fins. The Proceedings of the China Association for Science and Technology, Vol.5,2008:86-90.
    [57]金华,戴金海,吴蓓蓓等.一种异形卷弧翼弹气动特性的数值模拟.弹箭与制导学报,2006,26(3):168-171.
    [58]金华,戴金海,陈琪锋等.基于回归正交试验设计的弹翼结构优化设计.计算机仿真,2007,24(10):42-44,130.
    [59]高伟涛,崔占忠,李永远等.降落伞和尾翼相结合的末敏弹布局形式.探测与控制学报,2010,32(2):92-96.
    [60]李向荣,王海福,朵英贤.增阻尾翼对子弹弹道及速度的影响.北京理工大学学报,2006,26(1)1:1-4.
    [61]何远航,王海福.尾翼子弹气动特性及飞行弹道.弹箭与制导学报,2005,25(2):554-556.
    [62]纪楚群主编.导弹空气动力学.北京:宇航出版社,1996.
    [63]沈仲书,刘亚飞.弹丸空气动力学.北京:国防工业出版社,1984.
    [64]任玉新,陈海昕.计算流体力学基础.北京:清华大学出版社,2006.
    [65]傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002.
    [66]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006.
    [67]杨启仁.子母弹飞行动力学.北京:国防工业出版社,1999.
    [68]肖业伦.航空航天器运动的建模-飞行动力学的理论基础.北京:北京航空航天大学出版社,2003.
    [69]浦发,丙筱亭.外弹道学(修订本).北京:国防工业出版社,1989.
    [70]R. M. Gorecki. A Baseline 6 Degree of Freedom Mathematical Model of a Generic Missile[R].2003,DSTO-TR-0931.
    [71]徐明友.火箭外弹道学.北京:兵器工业出版社,1989.
    [72]舒敬荣;蒋胜平;李明军;马鹏飞.无伞双翼末敏弹稳态扫描段受力分析.弹道学报,2010,(02).
    [73]贾书惠.高等动力学.北京:高等教育出版社,1987.
    [74]史金光,韩子鹏,舒敬荣,常思江.双翼无伞末敏弹稳态扫描运动数学模型.弹道学报,2010,22(2):24-27.
    [75]顾建平,韩子鹏.四元数在单翼末敏弹扫描仿真中的应用.弹道学报,2010(04).
    [76]李臣明,韩子鹏,刘怡昕等.基于四元数法变换的末敏弹扫描运动研究.兵工学报,2009,30(4):389-393.
    [77]Sheppard S W. Quaternion from rotation matrix. Journal of Guidance and Control, 1978,1 (3):223-224.
    [78]周江华,苗育红,李宏等.四元数在刚体姿态仿真中的应用研究.飞行力学,2000,18(4):28-32.
    [79]吴俊伟.惯性技术基础.哈尔滨:哈尔滨工程大学出版社,2002.
    [80]秦丽,张文栋,潘峰.大攻角飞行载体运动学建模的四元数方法研究.中北大学学报(自然科学版),2006,27(3):276-279.
    [81]黄昊,邓正隆.角速率输入下的航姿算法研究.中国惯性技术学报,2000,6(2)21-26.
    [82]袁子怀,钱杏芳.有控飞行力学与计算机仿真.北京:国防工业出版社,2001:38-83.
    [83]黄圳圭.航天器姿态动力学.北京:国防科技大学出版社,1997.
    [84]程国采.四元数法及其应用.长沙:国防科技大学出版社,1991.
    [85]Michael J. Amoruso. Euler Angles and Quaternions in Six Degree of Freedom Simulations of Projectiles.
    [86]J.B. Kuipers. Quaternions and Rotation Sequences. NJ:Princeton University Press, Princeton,1999.
    [87]W.J. Harlin, D.A. Cicci. Ballistic missile trajectory prediction using a state transition matrix. Applied Mathematics and Computation,2007,188:1832-1847.
    [88]吴小平,冯正平,朱继懋等.四元数法在AUV六自由度仿真中的应用.船舶工程,2007,29(1):9-12.
    [89]赵新生,邢立新,孙超等.末敏弹稳态扫描段扫描间隔分析.弹箭与制导学报,2005,25(4):900-902.
    [90]张志涌.MATLAB教程:基于6.X版本.北京:北京航空航天大学出版社,2001.
    [91]胡剑良,孙晓君等.MATLAB数学实验.北京:高等教育出版社,2006.
    [92]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解.北京:清华大学出版社,2004.
    [93]Mostafa Khalil, H. Abdalla, Osama kamal. Dispersion Analysis for Spinning Artillery Projectile.13th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY.2009.
    [94]黄正祥.弹药靶场试验技术.南京:南京理工大学出版社,2000.
    [95]周志超.无伞末敏弹气动外形设计与气动特性分析.南京理工大学博士论文,2011.
    [96]戴樟和.不同头部圆柱体气动特性实验研究.中国兵工学会火箭导弹分会第七次学术年会论文集(下册).1998:813-816.
    [97]刘世平,韩子鹏,余劲天等.末敏弹伞系统弹道模拟试验数据的处理.弹道学报,1997,9(3):70-74.
    [98]张延教.高等动力学.南京:南京理工大学出版社,2003:116-120.
    [99]李迎九,曾仕伦,易文俊.一种从自由飞行实验中提取空气动力系数的新方法.南京理工大学学报,1997,21(4):321-324.
    [100]王正勤,刘富强.自适应背景提取算法的比较.计算机工程,2008,34(23):220-223.
    [101]范莹,郭成安.一种运动图像的检测与识别技术.大连理工大学学报,2004,44(1):122-126.
    [102]刘贵喜,邵明礼,刘先红等.真实场景下视频运动目标自动提取方法.光学学报,2006,26(8):1150-1155.
    [103]万建伟,熊栋梁,皇甫堪.弹丸阻力系数CD的Robust估计.兵工学报,1991,(1):21-28.
    [104]B.M.扬诺夫斯基.地磁学(上册).北京:地质出版社,1959.
    [105]凌好.无伞末敏弹稳态扫描参数测量处理系统的研究及实现.南京理工大学硕士学位论文,2011.
    [106]钟英杰,都晋燕,张雪梅.CFD技术及在现代工业中的应用.浙江工业大学学报,2003,31(3):284-289.
    [107]Walter B. Sturek, Charle J. Nietubicz, Jubaraj Sahu, Paul Weinacht. Recent Applications of CFD to the Aerodynamics of Army Projectiles. ARL-TR-22.1992.
    [108]James DeSpirito,Karen R. Heavey. CFD Computation of Magnus Moment and Roll Damping Moment of a Spinning Projectile.2006,Atmospheric Flight Mechanics Conference and Exhibit.
    [109]Walter B. Sturek,Charle· J. Nietubicz,Jubaraj Sahu,Paul Weinacht. Recent Applications of CFD to the Aerodynamics of Army Projectiles.1992.
    [110]Mark Costello,Stephen Gatto,Jubaraj Sahu. Using Computational Fluid Dynamics-Rigid Body Dynamic (CFD-RBD) Results to Generate Aerodynamic Models for Projectile Flight Simulation.2007.
    [111]袁先旭,张涵信,谢昱飞.基于CFD方法的俯仰静、动导数数值计算空气动力学学报.2005,23(4):158-463.
    [112]赵润祥,陈少松,崔龙波等.迫击炮弹气动力三维数值模拟.弹道学报,1999,11(2):58-61.
    [113]Paul Weinacht. Prediction of Projectile Performance, Stability and Free-flight Motion Using CFD. AIAA-97-0421.
    [114]Pieter G. Buning, Reynaldo J. Gomez, William I. Scallion. CFD Approaches for Simulation ofWing-Body Stage Separation. AIAA-2004-4838
    [115]崔凯,杨国伟.基于CFD分析的弧形翼导弹气动外形优化.中国科学G辑.2009,39(6):865-873.
    [116]张艳军.高速飞行器空气动力学分析.中北大学硕士论文,2007.
    [117]American Institute of Aeronautics and Astronautics. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. AIAA G-077-1998.
    [118]邓小刚,宗文刚,张来平等.计算流体力学中的验证与确认.力学进展,2007,37(2):279-288.
    [119]张涵信.关于CFD计算结果的不确定度问题.空气动力学学报,2008,26(1):47-49.
    [120]张涵信,查俊.关于CFD验证确认中的不确定度和真值估算.空气动力学学报,2010,28(1):39-45.
    [121]William L. Oberkampf, Timothy G. Trucano. Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences,2008,38:209-272.
    [122]S. H. Peng, P. Eliasson. Some Remarks on CFD Drag Prediction of an Aircraft Model. Proceedings of the Fifth International Conference on Fluid Mechanics, Aug. 15-19,2007, Shanghai, China
    [123]李凤蔚,鄂秦等.复杂外形网格生成技术.空气动力学学报,1998(3):89-96.
    [124]成娟.非结构网格粘性流动计算研究.南京航空航天大学博士论文,2001.
    [125]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004.09.
    [126]FLUENT Inc,FLUENT Users Guide.2003.
    [127]张宏飞,曹红松,赵捍东,朱基智.数值仿真中湍流模型的选择.弹箭与制导学报.2006,26(4):242-244.
    [128]李奉昌.弹丸角运动稳定性的线性及非线性理论的“振幅平面”分析法.南京理工大学学报.1981,1:95-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700