用户名: 密码: 验证码:
典型运动体入水过程多相流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
入水空泡流动是一个在极短时间内同时涉及到固体、气体和液体三相的复杂多相流动过程,主要包括载荷突变、空泡发展和水下姿态变化等复杂问题,相关问题广泛存在于水下武器、水上飞机、船舶、海洋平台和生物等工程等领域。随着工业技术的发展,入水问题逐渐成为制约各个领域发展的瓶颈之一。本文采用数值模拟和试验相结合的方法对圆柱体等典型运动体垂直和倾斜入水空泡的生成机理、发展规律及入水空泡对圆柱体入水过程运动特性和流体动力的影响规律进行了研究,主要研究内容如下:
     基于RANS方程建立了同时考虑自由液面和自然空化现象的入水空泡动力学模型。结合动网格技术对典型工况入水过程进行了初步数值模拟,并将数值模拟结果分别与经验公式和试验结果进行了对比,验证了本文所建立的数学模型和数值计算方法有效性。
     基于VOF多相流模型,对圆柱体匀速垂直入水过程进行了二维轴对称数值模拟。研究了匀速垂直入水空泡的生成和发展过程,以及匀速垂直入水空泡速度场和压力场的分布规律,分析了圆柱后体、入水速度、头部锥角及空气域压强对匀速垂直入水空泡形态和流场结构的影响;同时,研究了匀速垂直入水过程中运动体阻力系数的变化,分析了圆柱体头部锥角和入水速度对运动体阻力系数的影响。
     基于VOF多相流模型,对圆柱体自由垂直入水过程进行了三维数值模拟。研究了自由垂直入水空泡的生成和发展过程,给出了自由垂直入水空泡形态的变化规律,分析了圆柱体直径、入水速度、头部锥角及圆柱体密度对自由垂直入水空泡形态和空泡闭合时间的影响;研究了两圆柱体并联自由垂直入水过程,分析了两圆柱体轴线间距对入水空泡形态的影响;研究了自由垂直入水过程中圆柱体阻力系数的变化,分析了头部锥角、圆柱体密度和初始入水速度对圆柱体阻力系数的影响。
     建立了小型运动体入水试验系统,对单个球体和圆柱体以及多圆柱体关联入水过程进行了试验研究。通过球体垂直入水试验,研究了圆滑过渡表面运动体垂直入水空泡生成和发展过程,分析了表面沾湿状态和初始入水速度对入水空泡生成的影响;通过圆柱体垂直和倾斜入水试验,研究了具有锐缘肩部圆柱体入水空泡的生成和发展过程,分析了圆柱体头部形状和密度对入水空泡形态的影响,分析了圆柱体尾部与空泡壁面碰撞对空泡稳定性的影响,分析了空泡深闭合过程中闭合点的运动规律和深闭合对空泡稳定性的影响;通过两圆柱体关联入水试验,研究了两圆柱体串联和并联入水过程中空泡形态的变化过程及相互影响;同时,研究了球体以及圆柱体入水过程阻力系数的变化以及入水过程速度变化。
Water-entry cavity due to the free surface impact of solid objects related to thesolid, gas, and liquid at the same time is very complicated. This canonical problemcomprises a complicated series of events, which related to impact force, water-entrycavity, and hydroballistics, is applied on naval hydrodynamics, float-plane impact,ship slamming, oil platforms, and industrial, and biology. This thesis based onnumerical simulation and experimental study to discover underlying physics andfurther our understanding of water-entry phenomena through improvements toanalytical solutions.The main works are as follows:
     A comprehensive computational methodology is development for turbulentwater-entry cavity flows. The RANS(Reynolds-averaged Navier-Stocks) equations,along with volume of fluid model and a volume fraction transport model, areemployed for free surface and multiphase transportation. Dynamic mesh method isapplied for the numerical solving of the water-entry history. The validation ofnumerical model is examined through comparing with experimental andbibliography resealts.
     Numerical simulations based on VOF(Volume of fluid) model of axisymmetricvertical water-entry cavity for cylinder in constant speed are performed, to study theformation and development of the vertical water-entry cavity, study the velocity andpressure distribution in vertical water-entry cavity. Examines the effects of severalkey parameters on the vertical water entry physics of cylinder bodies at constantspeed including: with and without afterbody and the lengths of afterbody, entryspeed, cones of cylinder body nose and atmospheric pressure. The forces acting onthe cylinder bodies during the vertical water entry at constant speed are discussed,furthermore the effect of cones and entry speed on forces of vertical water entry arediscussed.
     Numerical simulations based on VOF model for three dimensional water entryfreely in vertical are performed for the formation and development of verticalwater-entry cavity. Numerical studies on the effect of diameter of cylinder bodies,initial water-entry speed, cones of cylinder body nose, and the density of entrybodies on the vertical water entry physics are also executed. The numericalsimulations of two cylinder bodies in parallel water entry are executed for thedevelopment of cavity, and for the effect of the distance between the two cylinderbodies on the cavity formation. Furthermore, the forces acting on the cylinderbodies during the vertical water entry freely are discussed, as well as the effect of cones, density of cylinder bodies, and entry speed on forces on freely vertical waterentry.
     Experimental facility for vertical and oblique water-entry has executed. Thespheres vertical water-entry experiment has performed. Investigated the effect ofthe surface wetting conditions and initial entry speed on the formation ofwater-entry cavity. The discussion continues with the experiment study of waterentry of cylinder bodies, for the formation and development of vertical and obliquewater-entry cavity. And the effect of nose shapes and density on the cavity shape areinvestigated through experimentation. The stability of cavity due to tail snap aftervertical and oblique entry, and the effect of deep seal of water-entry cavity on thestability of cavity are analyzed through experimentaion. Coefficient of drag for thevertical impact of sphere and cylinder are discussed.
引文
[1] J. M. Castano, Robert Kuklinski. United States Patent: High-SpeedSupercavitating Underwater Vehicle. Patent Number:6,739,266B1.25,2004
    [2]闫璞池,建文茹,呈瑶.从伊朗试射超空泡鱼雷看世界超空泡武器的发展.国防.2006,7:68~70
    [3]丛敏.超空泡—未来水下武器系统的挑战.飞航导弹.2007,12:11~14
    [4]路龙龙.空投鱼雷入水技术研究.西北工业大学硕士论文.2006:8~12
    [5] A May.水弹道学模拟.陈九锡,张开荣(译).国防工业出版社.1979:2~6
    [6] A. M. Worthington, R. S. Cole. A study of splashes. New York: LongmansGreen and Company,1908:6~18
    [7]王文华.物体入水问题的分析研究及其在船舶与海洋工程中的应用.大连理工大学博士论文.2010:11~27
    [8]戴仰山,贺五周.底部砰击预报.中国造船.1979,2:37~48
    [9]戴仰山,宋竞正.船体在海浪中的弯矩.中国造船.1980,3:71~84
    [10] Th. Von Karman. The Impact on seaplane floats during landing. NACA Transl.TN321,1929:1~8
    [11]纪东方,朱良生.大型桥梁结构入水砰击中兴波及压力特性研究.科学技术与工程.2009,9:6431~6435
    [12] Cyril Duez,Christophe Ybert,Christophe Clanet, Lyderic Bocquet.Making asplash with water repellency. Nature physics2007,3:180~183
    [13] J. G. Waugh. Hydrodynamics modeling. San Diego, California. AD-A007529,1975:36~42
    [14] F. S.Burt “New contributions to hydroballistics” in advances in hydrodynamice.Vol.1, Ven Te Chow, ed. New York, N.Y., Academic Press,1964:182~280
    [15] G. Birkhoff, E. H. Zarantonello. Jet, wakes, and cavities. Applied Mathematicsand Mechanics. Academic Press Inc.1957:10~16
    [16] A. May. Water entry and the cavity-running behavior of missiles. Washington:AD A020429,1975:16~23
    [17] A.E. Seloel. A study of the water-entry cavity. AD611406,1965:8~12
    [18] A.E. Seloel. The cavity after vertical water entry. AD6799051968:10~16
    [19] A.E. Seloel. Hydrodynamic pressure measurements of the vertical water entryof a sphere. AD658323:79~86
    [20]柯乃普.空化与空蚀.水利水电科学研究院(译).水利出版社.1981:370~378
    [21]傅金祝.超空泡水中射弹.水雷战与舰船防护.1998,6(4):2~4
    [22]傅金祝.超空泡—对未来水中兵器系统的挑战.水雷与舰船防护.2002,10(2):18~23
    [23]杨莉,张庆明.超空泡技术的应用现状和发展趋势.战术导弹技术.2006,5:6~10
    [24]柯贵喜,潘光,黄桥高.水下减阻技术研究综述.力学进展,2009,39(5):546~554
    [25]石汉成,蒋培,程锦房.头部形状对水雷入水载荷及水下弹道影响的数值仿真分析.舰船科学技术.2010,32(10):104~107
    [26]张鹏.跨超音速射弹的超空泡数值模拟.上海交通大学硕士论文.2009:45~68
    [27]陈兢.新概念武器—超空泡水下高速武器.飞航导弹,2004,34(10):34~37
    [28] R. T. Knapp, Levy, J.,O’Neill, J.P., F. B. Brown. The hydrodynamics laboratoryof the California institute of technology, Trans. ASME,1948,70:437~457
    [29] J. G.Waugh. Ellis, A. T. The variable-angle variable-pressure launching tank.ASME Symp. On cavitation research facalities and techniques.1964:114~117
    [30] J. G. Waugh. The variable-angle variable-pressure launching tank. ASME Symp.On cavitation research facalities and techniques.1964:118~126
    [31] A. May, A. E. Seigel. The proposed large variable-pressure tank at the NavalOrdnance Laboratory. ASME Symp. On cavitation research facalities andtechniques.1964:132~135
    [32] Y.N. Savchenko. Experimental Investigation of Supercavitating Motion ofBodies. The RTO AVT Lecture Series on “Supercavitating Flows”, vonKármán Institute (VKI) in Brussels, Belgium,12-16February2001, andpublished in RTO EN-010. Ukrainian National Academy of Sciences-Instituteof Hydromechanics8/4Zhelyabov str.,03057Kiev Ukraine
    [33]张庆明,陈九锡.回转体垂直入水早期空泡的一个计算方法.水动力学与进展,1984,1:102~118
    [34] A. M. Worthington, R. S. Cole. Impact with a liquid surface. Trans. Roy.Soc.1900,194A:175~199
    [35] A. Mallock. Sounds produced by drops falling on water. Mathematical,physical&engineering sciences.1918,95:138~143
    [36] G. E. Bell. On the impact of a solid spheres with a fluid surface. Phil. Mag. J.Sci.1924,48:753~765
    [37] J. W. Maccoll. Aerodynamics of a spinning sphere. Royal Aeronautical SocietyJournal.1928,32:777~798
    [38] G. H. Bottomley. The impact of a model seaplane float on water. Reports andMemoranda, No.583,1919
    [39] V. H. Wagner. Phenomena associated with impacts and sliding on liquid surface.Z Angew Math Mech.1932,12(4):193~215
    [40] M. Shiffman, D. Sphencer. The force of impact on a cone striking a watersurface. Communications on Pure and Applied Mathematics.1951,4:379~417
    [41] O. Faltinsen, R. Zhao. Water entry of ship sections and axisymmetric bodies.Journal of Ship Research.1969,13:276~283
    [42] T. Miloh. Wave slam on sphere penetrating a free surface. Journal ofEngineering Mathematics.1981,15:21~40
    [43] R.Zhao, O. Faltinsen. Water entry of two-dimensional bodies. Journal of FluidMechanics.1993,246:593~612
    [44] R. Zhao, O. Faltinsen, J. Aasnes. Water entry of arbitrary two-dimensionalsections with and without flow separation. In:ONR, Norway.1996:408~423
    [45] X. Mei, Y. Liu, D. Yue. On the water impact of general two-dimensianalsections. Applied Ocean Research.1997,21(1):1~15
    [46] D. Glibarg, R. A. Anderson. Influence of atmospheric pressure on thephenomena accompanying the entry of spheres into water. J. Appl. Phys.1948,19(2):127~139
    [47] G. Birkhoff, Thomas E. Caywood. Fluid flow patterns. J. Appl. Phys.1949,20:646~659
    [48] A. May, J. C. Woodhull. Drag coefficients of steel spheres enter watervertically. J. Appl. Phys.1948,19:1109~1121
    [49] E. G. Richardson. The impact of a solid on a liquid surface. Proc. Phys. Soc.1948,61(4):352~366
    [50] A. May. Effect of surface condition of a sphere on its water-entry cavity. J.Appl. Phys.1951,22:1219~1222
    [51] A. May. Vertical entry of missiles into water. J. Appl. Phys.1952,23:1362~1372
    [52] G. Birkhoff, R. Isaacs. Transient cavities in air-water entry. Navord Rep.1490.1951:68~72.
    [53] G. Birkhoff, E. H. Zarantonello. Jet, wakes, and cavities. Applied Mathematicsand Mechanics.1957:10~15
    [54] A. May. Review of water-entry theory and data. Journal of hydrodynamics.1970,4(4):140~142
    [55] H. I. Abelson. Behavior of the cavity formed by a projectile entrying the watervertically. University of Maryland Ph.D. Thises.1969:135~150
    [56] H. I. Abelson. Pressure measurements in the water-entry cavity. J.Fluid Mech.1970,44(1):129~144
    [57] J. W. Glasheen, T. A. Macmahon. A hydrodynamic model of locomotion inBasilisk Lizard. Nature.1996,380(28):340~342
    [58] J. W. Glasheen, T. A. Macmahon. Vertical water entry of disks at low Froudenumbers. Phys. Fluids.1996,8(8):2078~2083
    [59] G. De Backer, M. Vantorre, C. Beels, J. De Pre, Si. Victor, JDe Rouck, C.Blommaert. Experimental investigation of water impact on axisymmetricbodies. Applied Ocean Research.2009,31:143~156
    [60] S. Gekle, Ivo R. Peters, Jose Manuel Gordillo, Devaraj van der Meer, DetlefLohse. Supersonic air flow due to solid-liquid impact. Phys. Fluids.2010,2:1~5
    [61] J. M. Aristoff, T. T. Truscott, Alexandra H. Thchet, John W.M.Bush. Thewater-entry cavity formed by low Bond number impact. Physics of fluids.2008,20:091111-1~3
    [62] J. M. Aristoff, J. W. M. Bush. Water entry of small hydrophobic sphere. J.Fluid Mech.2009,619:45~68
    [63] T. T. Truscott. Cvaity dynamics of water entry for spheres and ballisticprojectiles. Massachusetts Institute of Technology Ph. D. Thesis.2009:10~18
    [64] J. M. Aristoff, T T. Truscott, A. H. Techet, J. W. M. Bush. The water entry ofdecelerating spheres. Physics of fluids.2010,22:032102-1~8
    [65] T. T. Truscott, A. H. Techet. A spin on cavity formation during water entry ofhydrophobic and hydrophilic spheres. Physics of fluids.2009,21:121703-1~4
    [66] T. T. Truscott, A. H. Techet. Water-entry of spinning spheres. J.Fluid Mech.2009,000:1~31
    [67] T. T. Truscott, David N. Beal, Alexandra H. Techet. Shallow angle water entryof ballistic projectiles. Proceedings of CAV2009-Paper No.100.2009:1~14
    [68] T. Grumstrup, B. Joseph Keller, Andrew Belmonte. Cavity ripples observedduring the impact of solid objects into liquid. Physical review letters.2007,114502:1~4
    [69]张庆明,陈九锡.回转体垂直入水早期空泡的一个计算方法.水动力学研究与进展.1984,1:102~118
    [70]陈先富.弹丸入水空穴的试验研究.爆炸与冲击1985,4:70~73
    [71] Shi Hong-hui, Takami Takuya, Itho Motoyuki. Measurement of the underwateracoustic field in water entry of blunt body. Experiments and measurements influid mechanics.2001,15(2):78~84
    [72] Shi,Hong-hui Motoyuki Iton. High-speed photography of supercavitation andmultiphase flow in water entry. Proceedings of CAV2009-Paper No.142.2009:1~14
    [73] Wei zhuo-hui, Wang shu-shan, Ma feng, Lu quan-zhou, Zhong xiao.Experimental investigation of water-entry phenomenon. Journal of Beijinginstitute of technology.2010,19(2):127~131
    [74] G. V. Logvinovich. Hydrodynamics of free-boundary flows. Jerusalem, IsraelProgram for scientific translation.1972:103~113
    [75] M. Lee, R. G. Longoria, D. E. Wilson. Cavity dynamics in high-speed waterentry. Phys. Fluids.1997,8(3):540~550
    [76] J.M.Gordillo, A. Sevilla, J.Rodriguez-Rodriguze, C. Martinez-Bazab.Axisymmetric bubble pinch-off at high Reynolds numbers. Physical reviewletters.2005,95:194501-1~4
    [77] Changhong Hu, Odd faltinsen, Masashi Kashiwagi.3-D numerical simulationof water-entry problem by CIP based Cartesian grid method. http://www.iwwwfb.org/Abstracts/iwwwfb20/iwwwfb20_22.pdf
    [78] Takashi Yabe, Feng Xiao, Takayuki Utsumi. The Constrained InterpolationProfile Method for Multiphase Analysis. Journal of Computational Physics.2001,169:556~593
    [79] Raymond Bergmann, Devaraj van der Meer, Mark Stijnman, Marijn Sandtkl,Andrea Prosperetti, Detlef Lohse. Giant bubble pinch-off. Physical reviewletters.2006,96:154505-1~4
    [80] R. Bergmann, A. Andersen,et al. Bubble pinch-off in a rotating flow. Physicalreview letters.2009,102:204501-1~4
    [81] Xinying Zhu, Odd M. Faltinsen, Changhong Hu. Water entry and exit of ahorizontal circular cylinder[C]24th International Conference on OffshoreMechanics and Arctic Engineering(OMAE2005), Halkidiki,Greece,2005.OMAE,2005-67311:1~12
    [82] J. Eggers, M. A. Fontelos, D. Leppinen, J. H. Snoeijer. Theory of the collapsingaxisymmetric cavity. Physical review letters.2007,98:094502-1~4
    [83] R. Bola os-Jiménez, A. Sevilla, C. Martínez-Bazán, D. van der Meer, J. M.Gordillo. The effect of liquid viscosity on bubble pinch-off. Physics offluids.2009,21:072103-1~4
    [84] J. C. Burton, R. Waldrep, P. Taborek. Scaling and instabilities in bubblepinch-off. Physical review letters.2009,94:184502-1~4
    [85] J. C. Burton, P. Taborek. Bifurcation from bubble to droplet behavior ininviscid pinch-off. Physical review letters.2008,101:214502-1~4
    [86] J.M.Gordillo. Axisymmetric bubble collapse in a quiescent liquid pool. I.theory and numerical simulation. Physics of fluids.2008,20:112103-1~16
    [87] S. Gekle, Arjan van der Bos, et al. Noncontinuous froude number scaling forthe closure depth of a cylindrical cavity. Physical review letters.2008,100:084502-1~4
    [88] G. Colicchio, M. Greco, M. Miozzi1, C. Lugni. Experimental and numericalinvestigation of the water-entry and water-exit of a circular cylinder.http://www.iwwwfb.org/Abstracts/iwwwfb24/iwwwfb24_14.pdf
    [89] S. Gekle, Jose Manuel Gordillo, Devaraj van der Meer, Detlef Lohse.High-speed jet formation after solid object impact. Physical review letters.2009,034502-1~4
    [90] G. Oger M. Doring, B. Alessandrini, P. Ferrant. Two-dimensional SPHsimulations of wedge water entries. Journal of computational physics.2006,213:803~822
    [91] R. Marcer, C. Berhault, C. de Jou tte, N. Moirod, L. Shen. Validation of CFDcodes for slamming. V European Conference on Computational FluidDynamics. ECCOMAS CFD2010Lisbon, Portugal,2010
    [92] Shaoping Quan, Jinsong Hua. Numerical studies of bubble necking in viscousliquids. Physical review letters.2008,77,066303-1~11
    [93] Michael Dean Neaves, Jack R. Edwards. All-speed time-accurate underwaterprojectile calculations using a preconditioning algorithm. Transaction of theASME.2006,128:284~296
    [94] Michael Dean Neaves, Jack R. Edwards. Time-accuratecalculationsaxisymmetric water entry for supercavitating projectile.34thAIAA FluidDynamics Conference and Exhibit.2004
    [95] S.Gaudet. Numerical simulation of circular disks entering the free surface of afluid Physics of fluids.1998,10(10):2489~2499
    [96] V. Duclaux, F. Caille, C. Duez, C. Ybert,L. Bocquet, C. Clanet. Dynamics oftransient cavities J. Fluid Mech.2007,591:1~19
    [97] J. M. Aristoff. The influence of aerodynamic pressure on the water-entrycavities formed by high-speed projectiles. Proceedings of CAV2009-PaperNo.125.2009:1~5
    [98] B. P. Epps. An impulse framework for hydrodynamic force analysis fishpropulsion, water entry of spheres, and marine propellers. MassachusettsInstitute of Technology Ph. D. Thesis.2009:133~145
    [99] Jingbo Wang. Numerical Investigation for Air Cavity Formation During theHigh Speed Water Entry of Wedges.9th International Conference onhydrodynamics, Shanghai, China,2010. Science Direct,2010,22(5):829~833
    [100]Hajime Kihara. Numerical modeling of flow in water entry of a wedge.http://www.nda.ac.jp/cc/users/kqnaoe/paper/HKihara_19th.pdf
    [101]陈九锡,颜开.用MAC方法计算平头物体垂直等速入水空泡.水动力学研究与进展.1985,1:17~26
    [102]叶取源.锥头物体垂直入水空泡的发展和闭合.水动力学研究与进展.1989,4(2):33~41
    [103]叶取源.用E-L方法计算圆平头物体垂直入水空泡的表面闭合和深闭合.应用力学学报.1990,7(4):17~25
    [104]Ke Zhang, Kai Yan, Xun-sen Chu, Guan-yi Chen. Numerical simulation of thewater-entry of body based on the Lattice Boltzmann method.[C].29thInternational Conference on Ocean, Shanghai, China,2010. ASME Offshoreand Arctic Engineering,2010:135~145
    [105]张珂,颜开,褚学森,程贯一.基于LBM方法的圆盘等速入水空泡的数值模拟.船舶力学.2010,10:1129~1133
    [106]K.Gong, H.Lui. Numerical simulation of circular disk entering water by anaxisymmetrical SPH model in cylindrical coordinates[C]. Proceedings of thefifth international conference on fluid mechanics, Shanghai, China,2007.Tsinghua University Press&Springer,2007:372~375
    [107]Kai.Gong, Benlong Wang, Hua.Lui. Numerical simulation of wedge waterentry based on two-dimensional two phase SPH model.http://www.iwwwfb.org/Abstracts/iwwwfb25/iwwwfb25_12.pdf
    [108]Christopher Earls Bernnen. Fundamentals of multiphase flow. CaliforniaInstitute of Technology,2003:19~51
    [109]C.W.Hirt, B.D.Nichols. Volume of fluid method for the dynamics of freeboundaries. Journal of computational physics,1981,39:201~225
    [110]J.R. Edwards, R. K. Franklin, M.S. Liou. Low-diffusion flux splitting methodsfor real fluid flows with phase transitions. AIAA,2000,38(9):1624~1633
    [111]A.K.Singhal, M. M.Athavale, Huiying Li, Yu Jiang. Mathematical basis andvalidation of the full cavitation model. Journal of fluid engineering.2002,124:617~624
    [112]C.L. Merkle, J. Feng, P.O.Buelow. Computational modeling of the dynamics ofsheet cavitation. Proc.3rd International Symposium on Cavitation, Grenoble,France,1998
    [113]R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H.J. Gibeling. A Preconditationed Navier-Stokes method for two-phase flowswith application to canvtiation. Compute Fluid.2000,29:849~875
    [114]P.J.Zwart, A.G.Gerber, and T.Belamri. A two-phase flow model for predictingcavitation dynamics. In Fifth International Conference on Multiphase Flow,Yokohama, Japan,2004
    [115]G. H. Schnerr, J. Sauer. Physical and numerical modeling of unsteadycavitation dynamics. In Fourth International Conference on Multiphase Flow,New Orleans, USA,2001
    [116]P. Rollet-Miet, D. Laurence, J. Ferziger. LES and RANS of turbulent flow intube bundles. International Journal of Heat and Fluid Flow,1999,20(3):241~254
    [117]J. O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York,1975:25~36
    [118]Klaus A. Hoffmann, Steve T. Chiang. Computational fluid dynamics-VolumeⅡ.4thedition. Engineering Eduction System,2000:385~411
    [119]H K Versteeg, W Malalasekera. An introduction to computational fluiddynamics. second edition. Pearson Education Limited,2007:134~176
    [120]R. I. Issa. Solution of the implicitly discretised fluid flow equations byoperator-splitting. J. Compute Phys.,1986,62:40~65
    [121]J. M. Aristoff, J. W.M. Bush. Water entry of small hydrophobic spheres. J.Fluid Mech.,2009,619:45~78
    [122]黄继汤.应用高速摄影技术研究空化现象.清华大学学报(自然科学版).1989,29(5):1~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700