用户名: 密码: 验证码:
纯电动汽车充电系统稳定性与谐波特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车充电系统的稳定性与谐波特性随使用环境的改变而发生变化,本文以三相PWM整流器模块与DC-DC变换器模块组成的充电系统为研究对象,分析电网分布参数、动力电池特性、充电模块数量的变化对系统的稳定性、瞬态响应、谐波特性的影响,以便为纯电动汽车充电系统的设计提供理论和实践的支持。
     首先,建立了理想工作环境中的三相PWM整流器在dq坐标系中的降阶线性小信号二端口模型与DC-DC变换器在恒压充电模式与恒流充电模式中的线性小信号二端口模型。理想工作环境中充电机数学模型的建立为充电机在非理想工作环境中的稳定性、瞬态响应与谐波特性分析奠定了数学基础。
     在考虑输入电源与输出负载特性的情况下,建立了三相PWM整流器与DC-DC变换器的数学模型,找出了影响数学模型稳定性的关键因子。针对关键因子分析在理想使用环境下设计的充电机在非理想输入电源与非理想输出负载的情况下的稳定性与瞬态响应如何改变。研究表明:电源的输出阻抗与负载的输入阻抗共同作用影响充电系统的稳定性与瞬态响应,不同的负载类型对系统稳定性的影响程度不同,针对理想使用环境设计的充电机要留有足够的稳定裕量才能够在使用环境变化时仍然稳定。
     在充电系统的两种基本结构,即共交流母线结构与共直流母线结构中,建立了三相PWM整流器与DC-DC变换器的数学模型,找出了影响系统稳定性的关键因子。针对关键因子分析充电机组成充电系统后的稳定性与瞬态响应如何改变。研究表明:在交流母线或直流母线容量足够大时,母线上可以同时稳定运行的充电模块数量仍然是有限的,该数量可以使用母线输出阻抗与充电模块输入阻抗比值的根轨迹在虚轴上分岔点处的增益来估计。
     建立三相PWM整流器在dq坐标系中的Norton模型,将电网谐波电压与基波电压一同转换到dq坐标系中,分析电网输出阻抗与PWM整流器输入阻抗相互作用对电网中谐波电压引起的谐波电流的放大作用。研究表明:电网输出阻抗与三相PWM整流器的输入阻抗相互作用会放大电网中某些频率的谐波电压成分所产生的谐波电流。
In the pure electric vehicle charging system which composed of three-phase PWM rectifier modules and DC-DC converter modules, studies have been made on the stability, the transient response and the harmonic changing with operating environment variation.
     Three-phase PWM rectifier reduction linear small signal model in the dq coordinates, the constant-voltage mode DC-DC converters linear small signal model and constant-current mode DC-DC converters linear small signal model are built.
     Considering the operating environment of the charging system, find the key factors which influence the charger mathematical model. Simulation and experimental results show that power output impedance and load input impedance together affect the charging system stability and transient response, the design of the charging system must allow sufficient stability margin to be able to remain stable when operating environment changed.
     Considering two basic architecture of the charging system, AC bus architecture and DC bus architecture, find the key factors that affect system stability and transient response. Simulation and experimental results show that the charging system's environment will affect the charging system stability, transient response. If the quantity of charging molues are not limited, the stability of the charging system can be changed. The maximum quantity of charging modules of the bus can be estimated by the root locus of the ratio of bus output impedance and charging module input impedance.
     Three-phase PWM rectifier Norton model is established in the dq coordinates, harmonic voltage together with the fundamental voltage were converted to the dq coordinates, then analyze harmonic currents changes which caused by grid output impedance interaction with PWM rectifier input impedance. Simulation and experimental results show that the charging system's environment will affect the charging system harmonic. Grid output impedance and the input impedance of the three-phase PWM rectifier interaction will enlarge the grid current harmonics component of certain frequency.
引文
[1]李相哲,苏芳,林道勇.电动汽车动力电源系统[M].北京:化学工业出版社,2011.
    [2]孔洪云,尹强,黎伟,尹莉君.电动汽车充电站运行与维护技术[M].北京:中国电力出版社,2012.
    [3]王震坡,孙逢香.电动车辆动力电池系统及应用技术[M].北京:机械工业出版社,2012.
    [4]滕乐天,姜久春,何维国.电动汽车充电机(站)设计[M].北京:中国电力出版社,2009.
    [5]David Linden, Thomas B. Reddy. Handbook of Batteries[M]. New York:McGraw Hill Book Company,2007.
    [6]姜久春,文锋,温家鹏,郭宏榆,时玮.纯电动汽车用锂离子电池的建模和模型参数识别[J].电力科学与技术学报,2010,25(1):67-74.
    [7]Erickson RW, Maksimovic D. Fundamentals of power electronics[M]. Springer,2001.
    [8]Hengchun M, Boroyevich D, Lee FCY. Novel reduced-order small-signal model of a three-phase PWM rectifier and its application in control design and system analysis[J]. Power Electronics, IEEE Transactions on 1998,13(3):511-21.
    [9]Sun J. Small-Signal Methods for AC Distributed Power Systems-A Review[J]. Ieee Transactions on Power Electronics 2009,24(11):2545-54.
    [10]Yin B, Oruganti R, Panda SK, Bhat AKS. A Simple Single-Input-Single-Output (SISO) Model for a Three-Phase PWM Rectifier[J]. Ieee Transactions on Power Electronics 2009,24(3-4): 620-31.
    [11]Puukko J, Nousiainen L, Suntio T. Three-phase photovoltaic inverter small-signal modelling and model verification[C]. Power Electronics, Machines and Drives (PEMD 2012),6th IET International Conference on; 201227-29 March 2012; 2012. p.1-6.
    [12]张纯江,顾和荣,王宝诚,朱艳萍,刘彦民.基于新型相位幅值控制的三相PWM整流器数学模型[J].中国电机工程学报2003,(07):28-31.
    [13]张卫平,吴兆麟,李洁.开关变换器建模方法综述[J].浙江大学学报(自然科学版),1999,33(2):61-67.
    [14]周嘉农,曾小平DC-DC开关变换器的建模与分析的动态评述[J].华南理工大学学报(自然科学版),2000,28(8):111-116.
    [15]欧阳长莲DC-DC开关变换器的建模分析与研究[博士学位论文].南京:南京航空航天大学,2005.
    [16]Li YS, Vannorsdel KR, Zirger AJ, Norris M, Maksimovic D. Current Mode Control for Boost Converters With Constant Power Loads[J]. IEEE Trans Circuits Syst I-Regul Pap 2012; 59(1): 198-206.
    [17]Trujillo CL, Velasco D, Figueres E, Garcera G, Ortega R. Modeling and control of a push-pull converter for photovoltaic microinverters operating in island mode[J]. Appl Energy 2011,88(8): 2824-34.
    [18]Sahid MR, Yatim AHM. Modeling and simulation of a new Bridgeless SEPIC power factor correction circuit[J]. Simulation Modelling Practice and Theory 2011,19(2):599-611.
    [19]Rathore AK, Bhat AKS, Nandi S, Oruganti R. Small signal analysis and closed loop control design of active-clamped zero-voltage switched two inductor current-fed isolated DC-DC converter[J]. let Power Electronics 2011,4(1):51-62.
    [20]Mayo-Maldonado JC, Salas-Cabrera R, Rosas-Caro JC, De Leon-Morales J, Salas-Cabrera EN. Modelling and control of a DC-DC multilevel boost converter[J]. let Power Electronics 2011, 4(6):693-700.
    [21]Chung IY, Liu WX, Schoder K, Cartes DA. Integration of a bi-directional DC-DC converter model into a real-time system simulation of a shipboard medium voltage DC system [J]. Electr Power Syst Res 2011,81(4):1051-9.
    [22]Wong LK, Man TK. Small signal modelling of open-loop SEPIC converters[J]. let Power Electronics 2010,3(6):858-68.
    [23]解光军,徐慧芳.峰值电流模式控制非理想Buck变换器系统建模[J].中国电机工程学报2012,(24):52-8+10.
    [24]吴涛,阮新波.分布式供电系统中负载变换器的输入阻抗分析[J].中国电机工程学报2008,(12):20-5.
    [25]吴涛,阮新波.分布式供电系统中源变换器输出阻抗的研究[J].中国电机工程学报2008,(03):66-72.
    [26]王凤岩,许建平.V-2C控制Buck变换器分析[J].中国电机工程学报2006,(02):121-6.
    [27]李晶,姜久春.纯电动汽车充电机模型.电机与控制学报.2013,17(04):64-71.
    [28]李晶,姜久春,牛利勇.电动汽车输入阻抗特性分析[J].北京交通大学学报.2013,37(2):79-84
    [29]朱成花,严仰光.输入滤波器与开关变换器相互作用的分析[J].电力电子技术,2004,38(4):23-25.
    [30]朱成花,严仰光.一种改进的阻抗比判据[J].南京航空航天大学学报,2006,38(3):315-320.
    [31]吴涛.直流分布式供电系统中子模块输入输出阻抗的分析[硕士学位论文].南京:南京航空航天大学,2007.
    [32]Wildrick C M and Lee F C. A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics,1995,10(5):280-285.
    [33]Feng X, Liu J, Lee F C. Impedance specifications for stable dc distributed power systems [J]. IEEE Transations on Power Electronics,2002,17(2):157-162.
    [34]佟强.数字DC-DC变换器动态性能和系统稳定性提高方法研究[博士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [35]王建华.分布式电源系统中非线性子系统相互作用研究[博士学位论文].南京:南京航空航天大学,2010.
    [36]姚雨迎.航天器多路精确稳压DC-DC变换器数字控制研究[博士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [37]杨晓平,张浩,马西奎.基于ESAC标准的分布式电源系统稳定裕度监控[J].电工技术学报,2009,(08):14-21.
    [38]马瑜,邱苍宇,张军明,钱照明.全桥DC/DC变流器模块阻抗特性研究[J].电工技术学报,2007,(07):42-6.
    [39]Knuppel T, Nielsen JN, Jensen KH, Dixon A, Ostergaard J. Small-signal stability of wind power system with full-load converter interfaced wind turbines[J]. IET Renew Power Gener 2012, 6(2):79-91.
    [40]Griffo A, Wang JB. Modeling and stability analysis of hybrid power systems for the more electric aircraft[J]. Electr Power Syst Res 2012,82(1):59-67.
    [41]Skogestad S, Postlethwaite I. Multivariable feedback control:analysis and design[M]. New York:Wiley,1996.
    [42]Astrom KJ, Murray RM. Feedback systems:an introduction for scientists and engineers[M]. Princeton:Princeton university press,2010.
    [43]姚雨迎,张东来,徐殿国.级联式DC/DC变换器输出阻抗的优化设计与稳定性[J].电工技术学报,2009,(03):147-52.
    [44]王建华,张方华,龚春英,陈小平.电压控制型Buck DC/DC变换器输出阻抗优化设计[J].电工技术学报,2007,(08):18-23.
    [45]佟强,张东来,徐殿国.分布式电源系统中变换器的输出阻抗与稳定性分析[J].中国电机工程学报2011,(12):57-64.
    [46]周宇飞,姜丹丹,黄家成,陈军宁DC-DC变换器中负载阻抗特性及其对稳定性的影响[J].中国电机工程学报2010,(06):15-21.
    [47]王建华,钱祝旭,张方华,龚春英.带磁放大器调整多路输出直-直变换器环路互扰[J].中国电机工程学报2010,(09):33-9.
    [48]Areerak KN, Bozhko SV, Asher GM, De Lillo L, Thomas DWP. Stability Study for a Hybrid AC-DC More-Electric Aircraft Power System[J]. IEEE Trans Aerosp Electron Syst 2012,48(1): 329-47.
    [49]Al-Mothafar MRD. Small-signal modelling of current-programmed N-connected parallel-input/series-output bridge-based buck dc-dc converters[J]. J Frankl Inst-Eng Appl Math 2012,349(1):260-83.
    [50]Ahmadi R, Ferdowsi M. Double-Input Converters Based on H-Bridge Cells:Derivation, Small-Signal Modeling, and Power Sharing Analysis[J]. IEEE Trans Circuits Syst I-Regul Pap 2012,59(4):875-88.
    [51]李晶,姜久春.纯电动汽车充电机系统稳定性研究[J].电力自动化设备2012,(09):13-7.
    [52]Zhang LD, Harnefors L, Nee HP. Modeling and Control of VSC-HVDC Links Connected to Island Systems[J]. IEEE Trans Power Syst 2011,26(2):783-93.
    [53]Strachan NPW, Jovcic D. Stability of a Variable-Speed Permanent Magnet Wind Generator With Weak AC Grids[J]. IEEE Trans Power Deliv 2010,25(4):2779-88.
    [54]Katiraei F, Iravani MR, Lehn PW. Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources[J]. IET Gener Transm Distrib 2007,1(3):369-78.
    [55]Coelho EAA, Cortizo PC, Garcia PFD. Small-signal stability for parallel-connected inverters in stand-alone AC supply systems[J]. IEEE Trans Ind Appl 2002,38(2):533-42.
    [56]Timbus A, Teodorescu R, Blaabjerg F, Liserre M. Synchronization Methods for Three Phase Distributed Power Generation Systems. An Overview and Evaluation[C]. Power Electronics Specialists Conference,2005 PESC'05 IEEE 36th; 2005 16-16 June 2005,2005. p.2474-81.
    [57]Rocabert J, Luna A, Blaabjerg F, Rodri, x, guez P. Control of Power Converters in AC Microgrids[J]. Power Electronics, IEEE Transactions on 2012,27(11):4734-49.
    [58]Wang L, Truong DN. Dynamic Stability Improvement of Four Parallel-Operated PMSG-Based Offshore Wind Turbine Generators Fed to a Power System Using a STATCOM[J]. Power Delivery, IEEE Transactions on 2013,28(1):111-9.
    [59]Yao Z, Hao M. Theoretical and Experimental Investigation of Networked Control for Parallel Operation of Inverters[J]. Industrial Electronics, IEEE Transactions on 2012,59(4):1961-70.
    [60]Zhonghui B, Karimi KJ, Jian S. Input Impedance Modeling and Analysis of Line-Commutated Rectifiers[J]. Power Electronics, IEEE Transactions on 2009,24(10):2338-46.
    [61]Acevedo SS, Molinas M. Power electronics modeling fidelity:Impact on stability estimate of micro-grid systems[J]. Innovative Smart Grid Technologies Asia (ISGT),2011 IEEE PES; 2011 13-16 Nov.2011; 2011. p.1-8.
    [62]Cespedes M, Jian S. Methods for stability analysis of unbalanced three-phase systems[C]. Energy Conversion Congress and Exposition (ECCE),2012 IEEE; 201215-20 Sept.2012; 2012. p.3090-7.
    [63]Cespedes M, Jian S. Impedance shaping of three-phase grid-parallel voltage-source converters[C]. Applied Power Electronics Conference and Exposition (APEC),2012 Twenty-Seventh Annual IEEE; 20125-9 Feb.2012; 2012. p.754-60.
    [64]李晶,姜久春.纯电动汽车充电机输出阻抗特性[J].电机与控制学报2012,(07):90-6.
    [65]Jing L, Jiuchun J. Input Impedance Analysis and Optimization for BEV Battery Charger[C]. Power and Energy Engineering Conference (APPEEC),2012 Asia-Pacific; 201227-29 March 2012; 2012. p.1-5.
    [66]高吉磊.单相PWM整流器谐波电流抑制算法研究[博士学位论文].北京:北京交通大学,2012.
    [67]孙媛媛.非线性电力电子装置的谐波源模型及其在谐波分析中的应用[博士学位论文].山东:山东大学,2009.
    [68]Sadek K, Christl N, Lutzelberger P. AC/DC Harmonic Interaction in HVDC Systems[C]. Harmonics in Power Systems, ICHPS V International Conference on; 199222-25 Sept.1992; 1992. p.196-201.
    [69]Dickmander DL, Lee SY, Desilets GL, Granger M. AC/DC harmonic interactions in the presence of GIC for the Quebec-New England Phase Ⅱ HVDC transmission[J]. Power Delivery, IEEE Transactions on 1994,9(1):68-78.
    [70]Bronzeado HS, Brogan PB, Yacamini R. Harmonic analysis of transient currents during sympathetic interaction[J]. Power Systems, IEEE Transactions on 1996,11(4):2051-6.
    [71]Swamy MM, Rossiter SL. Harmonic interaction between 1500 kVA supply transformer and VFD load at an industrial plant[J]. Industry Applications, IEEE Transactions on 1998,34(5): 897-903.
    [72]Enslin JHR, Heskes PJM. Harmonic interaction between a large number of distributed power inverters and the distribution network[J]. Power Electronics, IEEE Transactions on 2004,19(6): 1586-93.
    [73]Jian S, Zhonghui B. Input impedance modeling of single-phase PFC by the method of harmonic linearization[C]. Applied Power Electronics Conference and Exposition,2008 APEC 2008 Twenty-Third Annual IEEE; 2008 24-28 Feb.2008; 2008. p.1188-94.
    [74]Cespedes M, Jian S. Modeling and mitigation of harmonic resonance between wind turbines and the grid[C]. Energy Conversion Congress and Exposition (ECCE),2011 IEEE; 201117-22 Sept.2011; 2011. p.2109-16.
    [75]Xin C, Jian S. A study of renewable energy system harmonic resonance based on a DG test-bed[C]. Applied Power Electronics Conference and Exposition (APEC),2011 Twenty-Sixth Annual IEEE; 20116-11 March 2011; 2011. p.995-1002.
    [76]Radwan AAA, Mohamed YAI. Assessment and Mitigation of Interaction Dynamics in Hybrid AC/DC Distribution Generation Systems[J]. Smart Grid, IEEE Transactions on 2012; 3(3): 1382-93.
    [77]Fei W, Duarte JL, Hendrix MAM. Analysis of harmonic interactions between DG inverters and polluted grids[C]. Energy Conference and Exhibition (EnergyCon),2010 IEEE International; 2010 18-22 Dec.2010; 2010. p.194-9.
    [78]de Mello FP. Harmonic interaction in generator pre-sunchronous operation[C]. Power System Technology (POWERCON),2012 IEEE International Conference on; 2012 Oct.302012-Nov. 22012; 2012. p.1-7.
    [79]IIves K, Antonopoulos A, Norrga S, Nee HP. Steady-State Analysis of Interaction Between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters[J]. Power Electronics, IEEE Transactions on 2012,27(1):57-68.
    [80]Krishna Chillara V, Lissenden CJ. Interaction of guided wave modes in isotropic weakly nonlinear elastic plates:Higher harmonic generation[J]. Journal of Applied Physics 2012, 111(12):124909-7.
    [81]Sainz L, Balcells J. Harmonic Interaction Influence Due to Current Source Shunt Filters in Networks Supplying Nonlinear Loads[J]. Power Delivery, IEEE Transactions on 2012,27(3): 1385-93.
    [82]De la Rosa F. Harmonics and power systems[M]. USA:CRC Press,2006.
    [83]Zhu GY, McDonald BA, Wang KR. Modeling and Analysis of Coupled Inductors in Power Converters[J]. Ieee Transactions on Power Electronics 2011,26(5):1355-63.
    [84]Feng Y, Lee FC, Mattavelli P. A small signal model for average current mode control based on describing function approach[C]. Energy Conversion Congress and Exposition (ECCE),2011 IEEE; 201117-22 Sept.2011; 2011. p.405-12.
    [85]何娜.电力系统谐波检测及有源抑制技术的研究[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [86]Hegazy O, Van Mierlo J, Lataire P. Analysis, Modeling, and Implementation of a Multidevice Interleaved DC/DC Converter for Fuel Cell Hybrid Electric Vehicles[J]. Ieee Transactions on Power Electronics 2012,27(11):4445-58.
    [87]Li HY, Chen HC. Dynamic Modeling and Controller Design for a Single-Stage Single-Switch Parallel Boost-Flyback-Flyback Converter[J]. Ieee Transactions on Power Electronics 2012, 27(2):816-27.
    [88]Nejabatkhah F, Danyali S, Hosseini SH, Sabahi M, Niapour SM. Modeling and Control of a New Three-Input DC-DC Boost Converter for Hybrid PV/FC/Battery Power System[J]. Ieee Transactions on Power Electronics 2012,27(5):2309-24.
    [89]Yan YY, Lee FC, Mattavelli P. Unified Three-Terminal Switch Model for Current Mode Controls[J]. Ieee Transactions on Power Electronics 2012,27(9):4060-70.
    [90]Zhou HL, Xiao S, Yang G, Geng H. Modeling and Control for a Bidirectional Buck-Boost Cascade Inverter[J]. Ieee Transactions on Power Electronics 2012,27(3):1401-13.
    [91]Dezhi X, Fei W, Yi R, Hualong M. Output impedance modeling of grid-connected inverters considering nonlinear effects[C]. Control and Modeling for Power Electronics (COMPEL), 2012 IEEE 13th Workshop on; 201210-13 June 2012; 2012. p.1-7.
    [92]Blaabjerg F, Teodorescu R, Liserre M, Timbus AV. Overview of Control and Grid Synchronization for Distributed Power Generation Systems[J]. Industrial Electronics, IEEE Transactions on 2006,53(5):1398-409.
    [93]Jian S. Impedance-Based Stability Criterion for Grid-Connected Inverters[J]. Power Electronics, IEEE Transactions on 2011,26(11):3075-8.
    [94]Lian KL. Derivation of a Small-Signal Harmonic Model for Closed-Loop Power Converters Based on the State-Variable Sensitivity Method[J]. IEEE Trans Circuits Syst I-Regul Pap 2012, 59(4):833-45.
    [95]IEC6100-2-2:Electromagnetic compatibility[S],2001.
    [96]IEC6100-3-2:Electromagnetic compatibility[S],2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700