用户名: 密码: 验证码:
数字DC-DC变换器动态性能和系统稳定性提高方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器中载荷设备的性能在不断提高,对供电电源品质的要求也越来越高。目前使用的模拟电源技术已不能很好地满足其要求,主要表现在两个方面:首先是传统的拓扑结构无法满足新型用电设备的需求。目前航天用DC-DC模块多采用正激、反激或者推挽拓扑,这些拓扑不具备多路精确稳压输出能力,也不适合低压大电流应用。它们的反馈方式为光耦反馈或磁反馈,光耦器件可靠性差,容易受环境干扰。磁反馈电路复杂,带宽较低;其次,模拟电源控制芯片功能单一,不具备通讯、监测和电源管理功能,容易受环境影响产生参数漂移,造成不稳定工作甚至损坏。可见,电源已经成为制约航天器平台发展的瓶颈。
     本文研究目标首先就是从拓扑结构和控制器两方面对现有的航天器DC-DC电源技术进行改进,使其满足未来航天器系统发展的需求。本文采用具有中间母线的两级拓扑结构,前级采用开环工作的推挽拓扑,后级采用多个同步Buck拓扑实现多路精确稳压输出。每路同步Buck在后级独立闭环调节,避免了由隔离反馈器件带来的问题,因此这种拓扑结构适合多路精确输出,并且还具备低压大电流输出的能力。此拓扑结构优化、效率高,适用于大部分航天器中小功率电源。本文采用一款自主研发的数字电源控制芯片完成对此拓扑的控制,以三路输出电源为例研制了一款满足航天器指标要求的数字控制电源模块,为后续研究提供了验证平台。
     数字电源芯片通常都不具备大电流驱动能力,无法直接驱动功率开关。本文对传统的变压器隔离驱动电路进行改进,提高了驱动电路的响应速度。此驱动电路解决了传统变压器驱动电路存在的缺陷,在输入PWM信号占空比快速变化时仍能进行准确跟踪,为实现数字电源控制的准确性和快速性提供保障。
     研究了多相Buck拓扑参数和相位数的优化设计方法,建立了相位数和输入输出电流纹波的对应关系。基于此方法,采用数字电源芯片完成对多相Buck拓扑的控制,并在稳态性能和动态性能两方面与传统的单相Buck拓扑进行对比。
     为了提高数字DC-DC电源的动态响应能力,在数字控制器的基础上加入模拟补偿电路构成数模混合补偿器,显著提升了电源系统控制环路的相角裕量,达到高阶补偿器的补偿效果,满足高速负载点电源的需求。
     对阻抗负载下电源环路特性进行预估,分析了大容量电容组的电容量和等效串联电阻(ESR)对电源环路特性的影响,给出了量化的计算方法。在变换器输出端并联大容量电容组的情况下重新设计补偿器使电源达到较好的性能。
     采用理论分析和实验结合的方法对Buck型DC-DC变换器输出阻抗的小信号模型、影响因素及优化设计方法进行研究,为制定分布式电源系统中变换器的阻抗标准提供了参考依据。本文给出了一种实用的电流扰动测试法可以测量变换器的输入、输出阻抗以及级联变换器的阻抗比。采用此方法对本文搭建的一个级联式DC-DC变换器系统的输入输出阻抗以及阻抗比进行测量,并根据阻抗比禁止区对系统的稳定性进行判断。
The increasing performance of load equipment in spacecraft has significantly increased the requirement for high quality power supplies. However, the off-the-shelf power supplies with analog controllers are difficult to meet this requirement. There are mainly two drawbacks: first, the topology of the power supply can not meet the requirement for new load equipment. Topologies such as Forward, Flyback and Push-pull are now widely used in the DC-DC converters for the spacecraft. These topologies are not capable of supplying multiple outputs with precisely regulated voltage and they cannot handle the application with low-voltage high-current as well. Moreover, the feedback methods for these topologies normally use optical coupler feedback or magntic feedback. Optical coupler does not have high reliability, and its current transfer ratio drifts with the changing of the temperature. Magnetic feedback circuit is complicated and the bandwidth is low. Second, analog DC-DC controllers can not realize communication, monitoring and power management functions. They are susceptible to the interference of the working environment, and their parameters are llikely to drift. This will make the converters unstable or even cause them damage. Therefore, power supplies have become the bottleneck that limits the development of the spacecraft platform.
     One of the main goals of this dessertation is to improve the structure of the current DC-DC converters for the spacecraft in the aspects of topology and controller, so that it can meet the requirement for the future spacecraft. A two stage topology with intermediate DC bus is adopted. Open-loop Push-pull topology is adopted for the first stage. Several parralleled synchronous Buck converters are used for the second stage for the multiple outputs. Since each Buck converter is regulated independently, it eliminates the problems brought by the isolated feedback devices. So this topology can provide mutliple accurate outputs and has low-voltage high-current handling capability. This topology has an optimized structure and can achieve high efficiency. Thus it is suitable for most small and medium rating power supplies in the spacecraft. Furthermore, a digital controller chip for this topology is proposed and developed. A three output DC-DC converter is built here, which aims at providing a platform for the futher research.
     Digital controllers usually can not drive MOSFETs because they can not provide high trasient currents. An improved transformer coupled gate driver is proposed in this dissertation. It solves the defects caused by the conventional transformer coupled gate driver scheme. When the duty cycle of the input PWM signal changes drastically, the output of the driver can follow this signal rapidly and accuratly. This proposed driver scheme can be widely used in the high frequency switching power supply and motion control applications.
     An optimized design method for the topology parameters and the phase number of a multi-phase Buck converter is researched. Relationship between the phase number and the input/output current ripple is derived. Based on the proposed method, a multi-phase Buck converter is controlled by a digital controller chip. The steady-state performance and dynamic performance are compared with a traditional single-phase Buck converter.
     To improve the dynamic performance of the DC-DC converter., an analog compensation circuit is added into the digital control loop. It can improve the control loop phase margin and get the same compensation performance which is normaly achieved by using a high order compensator. So the peak to peak output voltage deviation caused by the changes of load or line voltage can be decreased to achieve a high quality Point-of-Load (POL) converter.
     The loop gains of DC-DC converters with load impedance is predicted. The influence of the large-capacitance capacitor and its equivalent series resistor (ESR) to the loop gain of the DC-DC converters is analyzed. A method to calculate a new loop gain for the DC-DC converters is derived. The compensator can be revised to improve the loop performance when a large-capacitance output capacitor is used..
     In this paper small-signal modeling, effect factors and optimized design methods for the output impedance of Buck type DC-DC converters in continuous conduction mode (CCM) are investigated theoretically and verified in experiment. The results will provide references for the standard of setting converters’impedance. A practical impedance measurement approach by using an external small-signal sinusoidal perturbation current is proposed. It can be used to measure the input and output impedance as well as the impedance ratio of cascased converter systems. A simple cascaded converter system is built and the impedance ratio between the source converter and the load converter is measured. According to the concept of the forbidden region, the stability of the system is analyzed.
引文
1 R. Ridley. The Digital Power Supply Revolution. Power Systems Design Europe. 2007,(4):16~20
    2 B. Laszlo. A Practical Introduction to Digital Power Supply Control. Texas Instruments Application Notes. 2005:2~6
    3 Intel Corp. Moore’s Law. http://www.intel.com/technology/mooreslaw, 2005
    4陆楠. Primarion:复杂系统应该采用数字电源.电子设计技术. 2008, 15(4): 42~44
    5 A. V. Peterchev. Digital Pulse Width Modulation Control in Power Electronic Circuits: Theory and Applications. University of California, Berkeley, PhD thesis. 2005:1~13
    6张世欣,高进,石晓郁.印制电路板的热设计和热分析.现代电子技术. 2007, (18):189~190
    7王建冈,阮新波,陈军艳.航空用大功率模块电源的设计及关键技术应用研究.电工技术学报. 2005, 20(12):95~100
    8 B. Carroll. Cost-effective Digital Control for Core Power. Darnell Digital Power Forum, 2004
    9 P. Geof. An Introduction to Digital Control of Switching Power Converters. DCDC Technical White Paper from Astec Power. 2004:1~3
    10 CPU World. Microprocessors/Central Processing Units (CPU) Families. http://www.cpu-world.com/CPUs/CPU.html, 2005
    11 International Technology Roadmap for Semiconductors. Executive summary. http://public.itrs.net, 2003
    12 International Technology Roadmap for Semiconductors. Update. http:// public.itrs.net, 2004
    13 K. W. Yao. High-Frequency and High-Performance VRM Design for the Next Generations of Processors. Virginia Polytech.Instituteand State University, PhD thesis. 2004:1~4
    14 M. Ravi, N. Raj, W. Vijay. Emerging Directions for Packaging Technologies. Intel Technology Journal. 2002,6(2):62~63
    15 E. Stanford. Power Technology Roadmap for Microprocessor Voltage Regulators. PSMA Power Technology Roadmap. 2006:32
    16 Y. C. Ren, M. Xu, F. C. Lee. Two-Stage Concept for Future 12V VRM. Center for Power Electronics Systems Seminar. Blacksburg, USA. 2003:3~8
    17张轶群.市场趋势——聚焦数字电源和AC/DC产品.电子设计技术. 2007, (1):17
    18胡元. Interpoint系列模块电源及其替代产品设计要点.第十四届全国混合集成电路学术会议论文集. 2005:71-79
    19 VPT Corperation. Space DC-DC Power Converters. http://www.vpt-inc.com/Products/?cat=18
    20雷卫军,李言俊.星上DC/DC变换器国内外研究现状.宇航学报. 2007, 28(6):1452-1457
    21樊川,李贤云,张小林.一种高可靠小功率混合集成DC/DC变换器的设计.微电子学. 2003, 33(2):144-147
    22郭清军,王俊峰.高可靠混合集成DC/DC变换器(5V/3A)的设计.电源技术应用. 2001, 7:343-346
    23李典林,卞震霆. DC/DC混合集成模块发展初步研究.通信电源技术. 2007, 24(3):17-20
    24 L. Brush.数字电源技术正由高阶应用进军主流市场.电子工程专辑. http://www.eet-china.com/ART_8800582318_628868_NT_7bf4440d.HTM, 2009
    25 Ericsson Corp. BMR453 Series Technical Specification. http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146395&Lang=EN&HighestFree=Y
    26 D. Xie.数字控制的隔离直流-直流变换器. http://21ic.org/down/mjj.pdf, 2009
    27 D. Marsh. Digital Power Comes of Age. EDN Europe. http://www.edn-europe.com/digitalpowercomesofage+article+2546+Europe.html, 2008
    28 D. Morrison. ICs Offer a Range of Digital Power Control. Power Electronics technology. http://powerelectronics.com/mag/power_ics_offer_range, 2005
    29 EDN China. TI借助数字电源产品进一步加强了电源系统设计. http://article.ednchina.com/2005-3/AtcShow2005314100007.htm, 2005
    30于振宇.德州仪器数字电源解决方案. http://www.ti.com/digitalpower, 2005
    31 Zilker Labs :专注数字电源产品的开发. http://www.eet-china.com/ART_8800510140_628868_NT_4d5b61fe.HTM, 2008
    32 D. Savadatt.以高品质、低价位、专业化挑战数字电源管理. http://www.chinaaet.com/article/index.aspx?id=10832, 2008
    33 M. Ravi, Brett Etter.一种最佳的数字开关电源控制器架构.电子设计应用. 2006, (9):60~64
    34 Silicon Laboratory. Si8250 Datasheet. 2006:1~19
    35 B. Erickson, D. Maksimovic, R. Zane. Advancing Digital Control of Switched-Mode Converters. http://ece.colorado.edu/~pwrelect, 2004
    36 A. Prodic, D. Maksimovic, R.W. Erickson. Design and Implementation of a Digital PWM Controller for a High-frequency Switching DC-DC Power Converter. Proceedings of IEEE Industrial Electronics Society Annual Conference, Denver, USA, 2001:893~898
    37 B. J. Patella, A. Prodic, A. Zirger. High-frequency Digital Controller IC for DC/DC Converters. IEEE Applied Power Electronics Conference and Exposition, Dallas, USA, 2002:375~380
    38 V. Yousefzadeh, N. Wang, Z. Popovic. Digitally Controlled DC-DC Converter for RF Power Amplifier. IEEE Applied Power Electronics Conference and Exposition, 2004:81~87
    39 J. Q. Chen, A. Prodic, R. W. Erickson. Predictive Digital Current Programmed Control. IEEE Transactions on Power Electronics. 2003,18(1): 411~419
    40 M. Shirazi, L. Corradini, R. Zane. Autotuning Techniques for Digitally Controlled Point-of-load Converters with Wide Range of Capacitive Loads. IEEE Applied Power Electronics Conference, 2007:14~20
    41 A. Prodic, D. Maksimovic, R. W. Erickson. Dead-zone Digital Controllers for Improved Dynamic Response of Low Harmonic Rectifiers. IEEE Transactions on Power Electronics. 2006, 21(1):173~182
    42 D. Maksimovic, R. Zane, R. W. Erickson. Impact of Digital Control in Power Electronics. Proceedings of 2004 Intemational Symposium on Power Semiconductor Devices & ICs, 2004:13~22
    43 A. V. Peterchev and S. R. Sanders. Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters. IEEE Transactions on Power Electronics. 2003, 18(1):301-308
    44 S. White. Quantizer-induced Digital Controller Limit Cycles. IEEE Transactions on Automatic Control. 1969, 14(4):430-432
    45 B. A. Mather, D. Maksimovic. Quantization Effects and Limit Cycling in Digitally Controlled Single-phase PFC Rectifiers. IEEE PESC, 2008: 1297-1303
    46 R. W. Erickson, D. Maksimovic. Fundamentals of Power Electronics-second Edition, Kluwer, 2000
    47 T. Takayama and D. Maksimovic. Digitally Controlled 10 Mhz Monolithic Buck Converter. IEEE COMPEL, 2006:154-158
    48 F. Kurokawa, T. Mizoguchi. A Smart Control Approach for Digitally Controlled Multiple-output DC-DC Converter. IEEE PEDS, 2009:405-410
    49 S. Choudhury. Designing a TMS320F280x Based Digitally Controlled DC-DCSwitching Power Supply. TI application report spraab3, 2005,7
    50 R. D. Middlebrook. Modeling Current-programmed Buck and Boost Regulators. IEEE Transactions on Power Electronics. 1989, 4(1):36-52
    51 R. D. Middlebrook. Small-signal Modeling of Pulse-width Modulated Switched-mode Power Converters. Proceedings of the IEEE. 1988, 76(4):343-354
    52 W. Stefanutti, P. Mattavelli, S. Saggini, and M. Ghioni. Autotuning of Digitally Controlled DC-DC Converters Based on Relay Feedback. IEEE Transactions on Power electronics. 2007, 22(1):199-207
    53 B. Miao, R. Zane, and D. Maksimovic. System Identification of Power Converters with Digital Control through Cross-correlation Methods. IEEE Transactions on Power Electronics. 2005, 20(5):1093-1099
    54 Z. Zhao, H. Li, A. Feizmohammadi, A. Prodic. Limit-cycle Based Anto-tuning System for Digitally Controlled Low-power SMPS. IEEE APEC, 2006:1143-1147
    55 V. Aggarwal, M. Mao and U. O’reilly. A Self-tuning Analog Proportional-Integral-Derivative (PID) Controller. IEEE AHS, 2006:12-19
    56 M. J. Patyra, J. L. Grantner, and Kirby Koster. Digital Fuzzy Logic Controller: Design and Implementation. IEEE Transactions on Fuzzy systems. 1996, 4(4):439-459
    57 P. T. Krein. Nonlinear Control and Control of Chaos. Nonlinear Phenomena in Power Electronics: Attractors, Bifurcation, Chaos, and Nonlinear Control, Wiley-IEEE Press, 2001
    58 R. Redl, N. O. Sokal. Current-mode Control, Five Different Types, Used with the Three Basic Classes of Power Converters: Small-signal AC and Large-signal DC Characterization, Stability Requirements, and Implementation of Practical Circuits. Proc. IEEE PESC conf., 1985:771-785
    59 A. Soto, A. P. Alou, J. A. Cobos. Nonlinear Digital Control Breaks Bandwidth Limitations. Proc. IEEE APEC Conf. 2006:42-47
    60 G. Feng, W. Eberle and Y. Liu. A New Digital Control Algorithm to Achieve Pptimal Dynamic Performance in DC-DC Converters. Proc. IEEE PESC Conf. 2005:2744-2748
    61 G. Feng, W. Eberle and Y. Liu. High Performance Digital Control Algorithms for DC-DC Converters Based on the Principle of Capacitor Charge Balance. Proc. IEEE PESC Conf. 2006: 1740-1743
    62 G. Feng, E. Meyer, and Y. F. Liu. Novel Digital Controller Improves Dynamic Response and Simplifies Design Process of Voltage Regulator Module. Proc.IEEE APEC, 2007: 1447-1453
    63 G. Feng, E. Meyer, and Y. F. Liu. A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters. IEEE Transactions on Power Electronics. 2007, 22(4):1489-1498
    64 L. Corradini,P. Mattavelli. Analysis of Multiple Sampling Technique for Digitally Controlled DC-DC Converters. IEEE PESC, 2006:1-6
    65 A. Syed, E. Ahmed, D. Maksimovic. Digital PWM Controller With Feed-forward Compensation. IEEE APEC, 2004:60-66
    66 H. Peng, D. Maksimovic. A Digital Current Mode Control Technique for DC-DC Converters. IEEE APEC, 2005: 885-891
    67 A. Emadi, J. P. Johnson and M. Ehsani. Stability Analysis of Large DC Solid-State Power Systems for Space. IEEE AES Systems Magazine. 2000, 15(2): 25-30
    68 S. G. Luo. A Review of Distributed Power Systems. IEEE A&E System Magzine. 2005,20(8):5~15
    69 A. Emadi, J. P. Johnson and M. Ehsani. Stability Analysis of Large DC Solid-State Power Systems for Space. IEEE AES Systems Magazine. 2000, 15(2): 25-30
    70 R. D. Middlebrook. Input Filter Considerations in Design and Application of Switching Regulators. Proc. IEEE Industrial Application Society Annual Meeting, 1976
    71 B. H. Cho, B. Choi. Analysis and Design of Multi-stage Distributed Power Systems. Telecommunications Energy Conference, Kyoto, Japan, 1991:220~225
    72 S. Schulz, B. H. Cho, F. C. Lee. Design considerations for a Distributed Power System. IEEE PESC, 1990:611-617
    73 C. M. Wildrick, F. C. Lee, B. H. Cho, et al. A Method of Defining the Load Impedance Specification for a Stable Distributed Power System. IEEE Transactions on Power Electronics. 1995, 10(3):28-285
    74 X. G. Feng, C. G. Liu, Z. H. Ye, et al. Monitoring the Stability of DC Distributed Power Systems. IEEE IECON, 1999:367-372
    75 X. G. Feng, Z. H. Ye, K. Xing, et al. Impedance Specification and Impedance Improvement for DC Distributed Power System. IEEE PESC, 1999,2:889-894
    76 X. G. Feng, Z. H. Ye, K. Xing, et al. Individual Load Impedance Specification for a Stable DC Distributed Power System. IEEE APEC, 1999,2:923-929
    77 X. G. Feng, F. C. Lee. On-line Measurement on Stability Margin of DC Distributed Power System. IEEE APEC, 2000,2:1190-1196
    78 X. G. Feng, J. J. Liu, F. C. Lee. Impedance Specifications for Stable DCDistributed Power Systems. IEEE Transactions on Power Electronics, 2002, 17(2):157-162
    79 J. J. Liu, X. G. Feng, F. C. Lee. Stability Margin Monitoring for DC Distributed Power Systems via Perturbation Approaches. IEEE Transactions on Power Electronics, 2003, 18(6):1254-1261
    80 E. W. Gholdston, K. Karimi, F.C. Lee, J. Rajagopalan, et al. Stability of Large DC Power Systems using Switching Converters with Application to the International Space Station. IEEE IECEC, 1996:166-171
    81 P. Li, B. Lehman. Quantative Methods for DC-DC Converter Performance Analysis in Distributed Power Systems. IEEE APEC, 2001:778-783
    82 P. Li, B. Lehman. Combining Experimental Measurements and Simulation within a Software Environment for DC-DC Converters. IEEE COMPEL, 2000:188-191
    83 P. Li, B. Lehman. Performance Prediction of DC-DC Converters with Impedances as Loads. IEEE Transactions on Power Electronics, 2004, 19(1):201-208
    84 P. Li, B. Lehman. Accurate Loop Gain Prediction for DC-DC Converter due to the Impact of Source/Input Filter. IEEE Transactions on Power Electronics, 2005, 20(4):754-761
    85王润新,刘进军,侯丹.用于实现互联系统仿真的电源模块大信号模型.西安交通大学学报, 2009, 43(6): 76-81
    86王润新,刘进军,陈璐,张璞.用于PFC设计的DC/DC变流器大信号行为模型.电力电子技术, 2005, 39(6): 48-50
    87 T. Wu, X. B. Ruan. Standardization of Input/output Impedance Specifications of Buck Converters Based on the System Integration Concept. IEEE ISIE, 2006:982-987
    88吴涛,阮新波.分布式供电系统中源变换器输出阻抗的研究[J].中国电机工程学报. 2008, 28(3):66-72
    89吴涛,阮新波.分布式供电系统中负载变换器的输入阻抗分析[J].中国电机工程学报. 2008, 28(12):20-25
    90王建华,张方华,龚春英,等.电压控制型Buck DC/DC变换器输出阻抗优化设计.电工技术学报. 2007, 22(8): 18-23.
    91朱成花,严仰光.一种改进的阻抗比判据.南京航空航天大学学报. 2006, 38(3):315-320
    92甘久超,谢运祥,颜凌峰. DC-DC变换器的多路输出技术综述.电工技术杂志. 2002, (4):1~4
    93王其岗,李莹.多路输出开关电源的设计及应用原则.电源技术应用. 2003, 6(6):32~33
    94 Design on High Frequency Mag Amp Regulators Using Metglas Amorphous Alloy 2714A. Metglas Application Guide. www.elnamagnetics.com.
    95高利兵.开关电源的多路输出技术.电子技术应用. 2003,29(11):35
    96魏应冬,吴燮华,顾亦磊.基于磁放大技术的新型正激-反激型直流变换器.中国电机工程学报. 2005,25(21):70~71
    97鲁力,张胜发,姚国顺.一种新型同步整流式多路输出变换器研究.通信电源技术. 2005, 22(1):22~24
    98 Y. Xi, K.P. Jain. A Forward Converter Topology with Independently and Precisely Regulated Multiple Outputs. IEEE Transactions on Power Electronics. 2003,18(2):648~657
    99 L. Balogh. Design and Application Guide for High Speed MOSFET Gate Driver Circuits. Power Supply Design Seminar SEM-1400, Topic 2. Texas Instruments Literature No. SLUP169. 2002
    100 R. Ridley. Gate Drive Design Tips. Power Systems Design Europe. 2006:14-18
    101 J. Dunn. MOSFET驱动器与MOSFET的匹配设计. Microchip Technology Inc. 2006
    102 M. Xu, Y. C. Ren, J. H. Zhou, F. C. Lee. 1-MHz Self-Driven ZVS Full-Bridge Converter for 48V Power Pod and DC/DC Brick. IEEE Transactions on power electronics. 2005,20(5):1801-1806
    103布朗著;徐德鸿等译.开关电源设计指南.北京.机械工业出版社. 2004.1
    104 D. Garinto. Voltage Regulator Module with Multi-interleaving Technique for Future Microprocessors. IEEE PESC, 2006:1-6
    105 K. Abe, K. Nishijima, K. Harada, et al. A Novel Multi-Phase Buck Converter for Lap-top PC. 2007 IEEE Power Conversion Conference. Nagoya, 2007:885-891
    106 R. Panguloori, D. Kastha, A. Patra, et al. High Performance Voltage Regulator for High Step-down DC-DC Conversion. IEEE IECON 2008:761-765.
    107 W. Chen. High Efficiency High Density Polyphase Converters for High Current Applications. Linear Application Note 77. Sept. 1999
    108 A. Rozman, K. Fellhoelter. Circuit Considerations for Fast, Sensitive, Low-voltage Loads in a Distributed Power System. IEEE APEC, 1995, 5: 33-42
    109 M. Zhang, M. Jovanovic, F. C. Lee. Design Considerations for Low-voltage On-board DC/DC Modules for Next Generations of Data Processing Circuits. IEEE Transactions on Power Electronics, 1996, 11: 328-337
    110 Z. Ping, Z. Q. Gao. An FPGA-Based Digital Control and Communication Module for Space Power Management and Distribution Systems. Proceedings of the American Control Conference. 2005, 7:4941-4946
    111 Z. Lukic, K. Wang, A. Prodic. High-frequency Digital Controller for DC-DC Converters Based on Multi-bit∑-Δpulse-width Modulation. IEEE APEC, 2005: 35-40
    112 B. J. Patella, A. Prodic, A. Zirger, D. Maksimovic. High-frequency Digital PWM Controller IC for DC-DC Converters. IEEE Transactions on Power Electronics, 2003, 18(1): 438-446
    113 G. F. Franklin, J. D. Powell. Digital Control of Dynamic Systems. Addision-Wesley Publishing company, 1998
    114 A. Peterchev, S. Sanders. Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters. IEEE Transactions on Power Electronics, 2003, 18(1): 301-308
    115 W. A. Tabisz, M. M. Jovanovic, F. C. Lee. Present and Future of Distributed Power Systems. IEEE APEC, 1992:11-18
    116 G. C. Hua, W. A. Tabisz, C. S. Leu, et al. Development of a DC Distributed Power System. IEEE APEC, 1994,2:763-769
    117 F. C. Lee, M. Xu, S. Wang, et al. Design Challenges for Distributed Power Systems. IEEE IPEMC, 2006
    118 F. C. Lee, P. Barbosa, P. Xu, et al. Topologies and Design Considerations for Distributed Power System Applications. Proceedings of the IEEE. 2001, 89(6):939-950
    119姚雨迎,张东来,徐殿国.级联式DC/DC变换器输出阻抗的优化设计与稳定性.电工技术学报. 2009, 24(3):147-152
    120 P. T. Wong. Performance Improvements of Multi-channel Interleaving Voltage Regulator Modules with Integrated Coupling Inductors. Virginia Polytechnic Institute and State University, Virginia, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700