用户名: 密码: 验证码:
接触网短路暂态仿真与行波测距装置开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触网是电力牵引供电系统的重要组成部分。由于接触网为沿线架设,又无备用,应该说接触网也是电力牵引中一个比较薄弱的环节。接触网一旦发生故障,对铁路运输将会造成极大的损失。而传统的阻抗测距法由于受过渡电阻影响大,测距精度低,因此,研究接触网的行波故障测距显得尤为重要。
     本文详细叙述了国内外电力系统输电线路的行波故障测距研究情况,在此基础上,结合电气化铁道接触网故障的特点,以京津城际铁路实际测试为背景,采用了以A型测距法为主,B型测距法和C型测距法为辅的测距方法。其中,B型和C型测距法在装置上的实现有待进一步开发。
     本文系统地研究了输电线路接地故障的行波波动方程、相模变换、故障暂态行波传播过程、小波分析基本理论和信号奇异性检测理论等理论知识。结合实际线路数据,利用电磁暂态仿真软件ATPDraw搭建了京津城际铁路接触网仿真模型,对线路空载运行、末端发生短路接地故障情况进行仿真,得到了京津城际铁路接触网短路故障时的电流行波故障信号。并将其与2008年6月京津城铁举行实际短路试验所采集到的电流信号对比,充分验证了所搭建模型的正确性。在此基础上,对线路在不同位置处发生故障、有机车负载运行等情况下的接触网短路故障电压电流波形做出了仿真预测。
     在仿真验证的基础上,本文进一步完成了行波故障测距装置的实现。在软件算法上,利用小波变换及奇异性检测理论,定位出了奇异点,提出了接触网行波故障测距的具体步骤。利用C语言编写了基于A型测距法的小波变换程序,利用该程序对采集到的电压电流行波信号进行处理,得到故障点的位置信息;利用C语言编写了接触网故障测距主程序,文中给出了各子程序的程序框图,并分析了程序设计的思想。装置硬件设计的核心部分主要为DSP控制板和ARM控制板两大板块,此外,还包括电源模块、液晶面板显示模块以及箱体设计。本文对DSP控制板、ARM控制板以及电源模块进行了电路设计、原理图和PCB绘制以及相关的制板、调试工作。
     最后,文章给出了行波故障测距装置对京津城际铁路实际短路录波数据的验证情况。结果表明,本装置能够精确有效的实现接触网的故障定位。
Catenary is an important component of the electric traction power supply system. For catenary is set up along the line and without backup, it is a rather weak-link of electric traction. Catenary breakdown will result in great losses to railway transport. For the traditional impedance fault location method is sensitive by transition resistance and the accuracy of fault location is low, so the research on traveling wave fault location of catenary is become very important.
     The paper discussed the research on the power system traveling wave transmission line fault location at home and abroad. Combining with the characteristics of electric railway catenary fault, as to the backdrop of the actual test of Beijing-Tianjin inter-city railway, this paper used A-type traveling wave fault location method as the main methods, and supplemented by B-type traveling wave fault location and C-type traveling wave fault location, which need further development.
     This paper systematically studied the wave equation of the transmission line grounded fault, phase mode transform, fault transient traveling wave propagation, wavelet analysis basic theory and singular signal detection theory. Using electromagnetic transient simulation software ATPDraw to build the catenary simulation model of Beijing-Tianjin inter-city railway, the model of no-load operation, the short-circuit fault is break at the end of line was built. The current travelling wave signal was got and compared to the actual current signal which measured in short-circuit experiment of Beijing-Tianjin inter-city railway in 2008.6. The correctness of the model was fully verified. At the same time, different simulation models which work under different fault location, load operation were built and the current travelling wave signal was got.
     In this paper, the travelling wave fault location device was developed. In the software, the 3-scale wavelet transform program based on A-type traveling wave fault location was developed by C language. The current travelling wave signal was processed by the program and fault location information was calculated. The main program of catenary fault location was developed, which included line initialization program, line start discrimination program, A/D interrupt and data saving program, and CAN communication program between DSP control board and ARM control board. The core hardware design of the device can be divided into two parts: DSP control board and ARM control board. In addition, power module, LCD panel display module, device box were designed. Hardware circuit design, schematic and PCB drawing, board making and debug of DSP control board and ARM control board were hold in this paper.
     Finally, the device was verified by using the actual recorded data of Beijing-Tianjin inter-city railway short-circuit experiment. The result had shown that the travelling wave fault location device can achieve the fault location accurately.
引文
[1]汪松滋.电气化铁道接触网事故与安全运行[M].北京:中国铁道出版社.1993.9
    [2]Crossley P A,McLaren P G.Distance Protection Based on Travelling Waves[J].IEEE Trans on Power Apparatus and Systems,1983,102(9):2971-2983
    [3]徐丙垠,朱锡贵,马长贵.行波特征鉴别式距离保护原理的研究[J].中国电机工程学报,1989
    [4]徐丙垠.利用暂态行波的输电线路故障测距技术[D].西安:西安交通大学,1991.
    [5]陈平,徐丙垠,李京等.现代行波故障测距装置及其运行经验[J].电力系统自动化.2003,27(6):66-69
    [6]陈平,牛燕雄,徐丙垠等.现代行波故障测距系统的研制[J].电力系统自动化.2003,27(12):81-85
    [7]D.J.Marihart.Automatic Fault Locator for Bonneville Power Administration.IEEE PES Summer Meeting,1972
    [8]T.W.Stringfield.Fault location Methods for Overhead Lines.IEEE Trans Power Delivery,1957(8):518-530
    [9]毛志芳,和敬涵,周文.电气化铁道牵引网故障测距中行波法的应用[J].高电压技术.2005年7月,第31卷第7期
    [10]吴伊昂.电力系统行波故障测距[D].南京:南京理工大学,2004.
    [11]甘磊,张哲,尹项根.基于电容式电压互感器二次信号的行波故障定位方法[J].电网技术,2006年3月,第30卷第5期
    [12]唐兴祚.高电压技术[M].重庆:重庆大学出版社,1991,70-78.
    [13]郁惟镛,吴小建等.基于暂态分量的小电流接地系统故障定位新方案[J].中国电力.1998.31(2).P13-16.
    [14]Christopoulos C,and Thomas D W P.Wright A.Signal processing and discriminating techniques incorporation in a protective scheme based on traveling waves.IEE Proc,1989,136r-Pt.C(5).P279-288.
    [15]束洪春.基于分布参数线路模型的架空电力线路故障测距方法研究.哈尔滨:哈尔滨工大学.1997.5
    [16]夏道止.电力系统分析(下册)[M].中国电力出版社.1995年
    [17]解广润.电力系统过电压[M].武汉:水利电力出版社.1985.6,P36-106
    [18]束洪春,司大军,葛耀中,陈学允.小波变换应用于输电线路行波故障测距[J].云南水力发电.2002.2(2).P16-20
    [19]王春.双回线故障精确测距法[J].武汉水利电力学院学报.1992 25(2).
    [20]Lawrence,D.J.,Waser,D.L.Transmission Line Fault Location Using Digital Fault Recorders.IEEE Transaction on Power Delivery,1988.4(2).
    [21]蔡晓.行波测距原理在电力系统中的一种实现方法.全国高等学校电力系统及其自动化专业第十六届学术年会论文集.P716-721.
    [22]胡昌华,张军波,夏军,张伟编著.基于MATLAB的系统分析与设计——小波分析[M].西安电子科技大学出版社.1999年
    [23]飞思科技产品研发中心编著.MATLAB 6.5辅助小波分析与应用[M].电子工业出版社.2003年
    [24]董新洲,贺家李,葛耀中.小波变换一第2讲 离散小波变换[J].继电器.1999,27(2):57-60
    [25]董新洲,贺家李,葛耀中.小波变换一第3讲 二进小波变换及信号的奇异性检测[J].继电器.1999,27(3):65-68
    [26]彭玉华.小波变换与工程应用[M].北京:科学出版社.2002.38-43
    [27]杨福生.小波变换的工程应用与分析[M].北京:科学出版社.2001,1-12
    [28]Mallat S and Hwang W L.Singularity detection and processing with wavelets[J].IEEE Trans on Information Theory,1992,38(1):20 -30
    [29]姚天任,孙洪.现代数字信号处理[M1.武汉:华中科技大学出版社.1999.251-27
    [30]李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报.第27卷第3期,2005年6月
    [31]韩丽娜,杨志坚,李虎.ATP-EMTP在500kV配电系统中的应用[J].电测与仪表.2005年第12期
    [32]铁道部运输局.京津城际供电、电力运行维护人员培训[M].北京交通大学.2008年5月
    [33]吴命利.牵引供电系统电气参数与数学模型研究[D].北京交通大学.2006年7月
    [34]冉旭,廖培金,陈平.行波故障测距法在电气化铁道牵引网中的应用研究[J].电网技术.2001年2月
    [35]焦在滨,高仕斌.行波法在电气化铁道牵引网故障测距中应用的可行性研究[J].继电器.2003年7月
    [36]曹笃峰.电气化铁道接触网行波故障测距研究[D].北京交通大学.2007年12月
    [37]钟庭剑.基于行波法输电线路故障测距的研究及其实现方案[D].南昌大学.2007年6月
    [38]覃剑,葛维春等.影响输电线路行波故障测距精度的主要冈素分析[J].电网技术.2007年1月
    [39]Texas Instruments Incorporated.TMS320C28x系列DSP的CPU与外设(上)[M].清华大学出版社.2005年1月
    [40]周立功等.ARM嵌入式系统基础教程[M].北京航空航天大学出版社.2006年8月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700