用户名: 密码: 验证码:
光接枝技术阻燃尼龙66织物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尼龙66(PA66)织物近年来被广泛应用于民用、军用服装以及家装等方面。PA66纤维作为世界上最早实现工业化的合成纤维,具有较好的力学性能以及尺寸稳定性,但由于具有织物比表面面积大的特点,PA66织物容易燃烧,其燃烧时的熔融滴落容易造成火势蔓延,融滴物也易于灼伤皮肤,造成人员伤亡,因此对PA66织物进行阻燃整理是十分有必要的。目前市面上常用的PA66后整理阻燃剂主要是通过高温半软化面料从而使阻燃剂渗入织物内部的方法达到阻燃目的的,但是此法的阻燃耐久性不佳,且对织物的其它物理性能损失较大,而国内外针对PA66织物的阻燃后整理的研究较少,迄今为止还未有开发出一种环保、高效、经济的PA66织物后整理阻燃体系。
     本论文首次将表面紫外光接枝技术引入织物的阻燃后整理中。较其他接枝改性方法而言,光接枝技术条件温和,在引发表面接枝反应的同时并不会对基材本身性能造成影响,通过此法改性的织物可与阻燃剂以共价键形式连接,提高了阻燃的耐久性,同时此项技术具有工艺简单,易于操作,污染低等优点。光接枝技术多用于改善织物、纤维的染色性能,亲水性能以及生物相容性等,迄今尚未见有将光接枝技术应用于织物阻燃后整理研究的报道。
     为了提高PA66织物的阻燃性能,研究中分别采用了一步光接枝改性法以及两步表面改性法对织物进行阻燃改性,一步法是在织物表面直接光接枝引入阻燃单体从而改善织物阻燃性能的方法,分别选取了光敏性单体丙烯酰胺(AM)及2-羟基乙基甲基丙烯酸酯磷酸酯(HEMAP)作为阻燃单体改善PA66织物的阻燃性能,两步法则是先通过光接枝聚合在织物表面引入活性基团,之后活性基团再与阻燃单体反应,进而达到耐久阻燃目的的方法,本研究中此法是以马来酸酐作为光接枝接枝单体,将马来酸酐接枝链引入织物表面,再将三乙醇胺与接枝链上的酸酐活性基团反应。研究中首次将丙烯酰胺(AM)以及2-羟基乙基甲基丙烯酸酯磷酸酯(HEMAP)用于织物阻燃,2-羟基乙基甲基丙烯酸酯磷酸酯更是首次用于材料阻燃,因此研究中试图对其阻燃机理进行深入探讨,为将来选择合适的PA66光接枝后整理阻燃剂提高了实验依据。
     本文采用以丙酮为溶剂,二苯甲酮为光引发剂,将丙烯酰胺光接枝于PA66织物表面,探索了单体、引发剂浓度,辐照时间以及整理工艺对光接枝率的影响,用ATR-FTIR、XRD、织物表面SEM照片、氧指数测试、垂直燃烧测试、热性能分析(TG、DTG)和锥形量热对改性织物结构和阻燃性能进行表征及评估。将阻燃测试结果与残余物剖面的SEM照片与气相TG-FTIR综合分析,对AM-g-PA66的阻燃机理进行了初步探讨。实验表明,当接枝率达到32.5%时,LOI值可达到26.2,垂直燃烧时无余燃和阴燃,无融滴,炭长6.8cm。洗涤10次后,仍可保持原LOI值的91.6%,洗涤50次后,阻燃性能降低较多,通过机理分析初步推测丙烯酰胺对PA66织物主要是以气相阻燃机理为主,通过聚丙烯酰胺接枝链提前分解释放出难燃气体NH3稀释可燃气体浓度,阻止火焰蔓延,从而达到改善阻燃性能的目的,研究中为了进一步提高阻燃耐久性,将光交联剂N,N’-亚甲基双丙烯酰胺(MBAAm)引入改性体系,实验表明,当MBAAm用量为0.05%,AM用量为20%,引发剂为2.0%时,可同时兼顾织物的的阻燃性及耐久性。
     研究中的第二个体系是以丙酮为溶剂,二苯甲酮为光引发剂,将2-羟基乙基甲基丙烯酸酯磷酸酯(HEMAP)光接枝于PA66织物表面,通过对单体、引发剂浓度,辐照时间,整理工艺等条件的探索得到光接枝的最佳工艺。采用ATR-FTIR,织物表面SEM照片、氧指数测试、垂直燃烧测试、热性能分析(TG, DTG)、锥形量热对改性织物结构和阻燃性能进行表征及评估。实验表明,当表面含磷量达到11%时,织物的LOI值可达到31.2,垂直燃烧时,离火自熄,无融滴,炭长5.2cm,洗涤50后,LOI值为26.2。结合残炭表面SEM照片、气相TG-FTIR分析和残炭红外及XPS分析,初步推断HEMAP对织物主要以凝聚相阻燃机理为主,通过PHEMAP接枝链在高温下热降解生成焦磷酸,多聚磷酸等促进成碳的化合物,提高残炭量,从而达到阻燃目的。同时还通过Flynn-Wall-Ozawa, Kissinger方法对两种改性的织物进行热氧化降解动力研究,通过对其反应活化能的计算和分析,推断出不同的阻燃机理可以导致活化能变化趋势的差别,但两者的活化能都较未改性前明显提高。
     两步法是以马来酸酐作为光接枝接枝单体,将马来酸酐接枝链引入织物表面,再将三乙醇胺与接枝链上的酸酐活性基团反应。通过对辐照时间、单体浓度、接枝反应时间以及接枝温度等条件的探索,得到了最佳光接枝及化学接枝工艺。用ATR-FTIR, XRD,织物表面SEM照片,氧指数测试,垂直燃烧测试,热性能分析(TG, DTG),锥形量热对改性织物结构和阻燃性能进行表征及评估。结果表明,当织物增重为6.6%时,LOI值为29.1,水洗10次后,LOI值为25.7,洗涤剂洗涤10次后,LOI值下降明显。
PA66 fiber as the world's first synthetic industrialized fiber has been widely used in military and civilian clothing, furnishings, upholstered furniture due to its excellent properties including good mechanical properties, low cost, resistance to shrinkage and pleasant aesthetics and so forth. However, PA66 fabric is easy to burn because of its higher specific surface area. And the melting drip during the burning might cause another fire and harm people's life. Therefore, there is an urgent need to improve the flame retardancy of PA66 fabric. At present, most flame retardant finishing used for PA66 fabric involves to the semi-softening of the substrate, which cause the infiltration of flame retardant into the fabric and the treated fabric has the low durability and the bad mechanical properties. Meanwhile, study on the flame retardant finishing of PA66 fabric is rarely. Until now, none of those technologies has achieved any substantial commercial success.
     In this study, surface photografting technology has been used in the flame retardant finishing of PA66 fabric. Photografting is often used in fabric surface modification to improve the wettability, biocompatibility and dyeability since it is an economical, environmentally sustainable and effective method for surface modification of materials without altering bulk properties. However, its application in flame retardant finishing of the fabric has been rarely reported. It is suggested that this could be the first time to use photografting technology to enhance the flame retardancy of fabric.
     The one-step modificaiton and the two-step photografting modification have been used to improve the flame retardancy of PA66 fabric. In the one-step approach, acrylamide (AM) and 2-hydroxyethyl methacrylate phosphate (HEMAP) have been used as the monomers. Maleic anhydride (MAn) and triethanolamine system has been used in the two-step approach. And the flame retardant mechanism has been investigated in this study in order to guide the future research.
     Acrylamide has used as a grafting monomer with benzophenone (BP) as photoinitiator to modify the sample surface in order to improve flame retardancy of the PA66 fabric. The effects of monomer concentration, photoinitiator concentration, irradiation time and finishing process on photografting have been investigated in this study. Flame retardancy and the chemical structure of the PA66 fabric have been studied by ATR-FTIR, XRD, SEM photo, LOI testing, the vertical burning testing, thermal analysis and cone calorimetry. The results show that untreated PA66 fabric sample has a LOI value of 19.9 while AM-g-PA66 fabric sample with DP of 32.5% has a LOI value of 26.2, which is 32% higher than that of the untreated sample and the sample has the shorter after-flame time, the shorter char length and no melt dripping in the vertical burning test. AM-g-PA66 could keep 91.6% of the original LOI after 10 cycles of washings with 0.5% commercial grade detergent solution. Combined to TG-FTIR and SEM photo of the residue, it is proposed that the improved flame retardancy of AM-g-PA66 fabric may be due to the earlier thermal degradation of fabric which can cause a rapider shrinkage and an earlier decompositon of amide groups from the grafting chains to release NH3 which can prevent fire from spreading.
     2-hydroxyethyl methacrylate phosphate (HEMAP) as a grafting monomer and benzophenone (BP) as the photoinitiator has been used in the second system. The effects of monomer concentration, photoinitiator concentration, irradiation time and finishing process on photografting have been investigated. Flame retardancy and the chemical structure of the PA66 fabric have been studied by ATR-FTIR, LOI testing, the vertical burning testing, thermal analysis and cone calorimetry. The results show that P-g-PA66 fabric sample with P of 11% has a LOI value of 31.2 and has no melt dripping, no after-flame time, the shorter char length in the vertical burning test and the grafted sample could keep the LOI value of 26.1 after 50 cycles of washings with 0.5% commercial grade detergent solution. Combined to TG-FTIR, FTIR, XPS analysis and SEM photo of the residue, it is suggested that the improved flame retardancy of P-g-PA66 fabric may be due to the formation of phosphoric and polyphosphoric acids during the thernal oxidative degradation of the grafting chains, which as the dehydration agents drives the the formation of the heat resistant carbonaceous char by carbonisation. According to Kissinger and Flynn-Wall-Ozawa method, the activation energies have been calculated, indicating that the difference in the change of the activation energy could be attributed to the different flame retardant mechanism. However, compared to the ungrafted PA66 fabric, both AM-g-PA66 fabric and P-g-PA66 fabric have the higher activation energies.
     In the two step approach, surface photografting modification with maleic anhydride (MAn) under UV irradiation in association with a post reaction with triethanolamine has been used to improve the flame retardancy of polyamide66 (PA66) fabric. The effects of irradiation time and monomer concentration on the fabric surface grafting were investigated. Flame retardancy and thermal decomposition behaviour of the samples have been characterized by limiting oxygen index test (LOI), thermal analysis, cone calorimetry and it shows that flame retardancy of the treated PA66 fabric samples has been significantly improved. The chemical structures of the treated samples'surface were characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR). The results show that MAn-g-PA fabric sample reacted with triethanolamine has the LOI value of 29.1 and the sample's LOI value of about 25.7 is still retained after 10 cycles of water rinsing. However, MAn-g-PA fabric sample reacted with triethanolamine loses its flame retardancy after 10 cycles of washings with 0.5% commercial grade detergent solution. It is suggested the grafted chain is easy to degrade in the commercial grade detergent solution because of the alkaline condition.
引文
[1]欧育湘.实用阻燃技术[M].北京:化学工业出版社,2002:10-12
    [2]于永忠,吴启鸿,葛世成等.阻燃材料手册[M].北京:群众出版社,1990:135
    [3]Stowell JK, Yang CQ. A durable low-formaldehyde flame retardant finish for cotton fabrics[J], AATCC Rev.2003,3:7
    [4]彭治汉.材料阻燃新技术新品种[M].北京:化学工业出版社,2004:3-10
    [5]杨栋梁,赵阿金,刘晓荣.我国阻燃纺织品的现状及开发前景[J].1994,5:40-54
    [6]裘愉发.家纺织物的发展[J].纺织导报,2006.(2):59-62
    [7]欧育湘,李建军.阻燃剂——性能、制造及应用[M].北京:化学工业出版社,2006
    [8]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005:313
    [9]Horrocks A R. Flame-retardant finishing of textile[J]. Reveiw Progress Color, 1986;16:62-101
    [10]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,2005:2-3
    [11]张洪昆.纺织品阻燃综述[J].印染助剂,2009,26(2):7-11
    [12]宗若雯,胡源,汪少峰.尼龙的阻燃研究进展[J].火灾科学,2003,12(1):46-50
    [13]张爱英.聚酰胺纤维织物的阻燃研究进展[J].化工进展,2001,20(3):25-28
    [14]方志勇.我国纺织品阻燃现状及发展趋势[J].染料与染色,2005,42(5):46-49
    [15]周政懋.我国阻燃技术发展新动向[J].阻燃材料与技术,2002,5:1-3
    [16]欧育湘,郑德,陈宇.阻燃领域中一些理论研究课题及其进展[J].塑料,2006,35(1):1-4
    [17]邹振高,王西亭,施楣梧.常规阻燃纤维的技术现状与发展趋势[J].纺织导报,2006,23(3):45-49
    [18]D.E Stuetz, A.H DiEdwardo, F Zitomer. Polymer Flammability II[J]. Journal Polymer Science, Polymer Chemistry Edition,1980,18(3):967-987
    [19]Donald B.Dahm. Reformulation of fire retardant coating[J]. Progress in organic coating,1996,29:61-65
    [20]S V Levchik, G Camino. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants [J]. Polymer Degradation and Stability,1996,54(3):217-222
    [21]王晔.纺织品阻燃研究[J].消防技术与产品信息,2004,6:45-51
    [22]欧育湘,韩廷解,赵毅,孟征.膨胀阻燃剂在纤维和纺织品上的应用[J].合成纤维工业,2006,29(4):46-48
    [23]Lewin M. Unsolved Problems and unanswered questions in flame retardance of polymers[J]. Polymer Degradation and Stability,2005,88(1):13-19
    [24]S V Levchik,E D Well. A Review of Recent Progress in Phosphorus-based Flame Retardants[J].Journal of Fire Science,2006,24(5):345-366
    [25]邵阿娟,张幼珠.微胶囊化磷酸铵用于纺织品阻燃聚脲涂层[J].国外丝绸,2006,21(2):1-3
    [26]王浩,唐黎明,陈久军.硅烷偶联剂改性水性聚氨酯涂层[J].化学建材,2006,22(4):l-3
    [27]佘文骊.硅烷偶联剂封端改性水性聚氨酯的研究[J].中国胶粘剂,2008,17(6):10-15
    [28]Horrocks A R. Flame-retardant finishing of textile[J]. Review Progress Color, 1986;16:62-101
    [29]Burnell MR. U.S. Process for producing fire-retardant nylon fabric. Patent 2953480,1960-9-20
    [30]施菊,姜伟伟,张红兵.阻燃涂层胶FR-Ⅲ在尼龙织物上的应用[J].印染,2006,32(9):31-32
    [31]Edward D well, Sergei Levvchik.Current Practice and Recent Commercial Developments in Flame Retardancy of Polyamides[J] Journal of Fire Science, 2004,22(3):251-164
    [32]Nemes JJ, Polansky R, Herbes WF. The anti-dripping intumescent flame retardant finishing for nylon-6,6 fabric. U.S. Patent 3308089,1967-3-7
    [33]Weidong Wu, Charles Q Yang. Statistical analysis of the performance of the flame retardant finishing system consisting of a hydroxy-functional organophosphorus oligomer and the mixture of DMDHEU and melamineeformaldehyde resin[J]. Polymer Degradation and Stability,2004, 85(1):623-632
    [34]Lingyao Li, Guohua Chen, Wei Liu, Jianfu Li, Sheng Zhang. The anti-dripping intumescent flame retardant finishing for nylon-6,6 fabric[J]. Polymer Degradation and Stability,2009,94(6):996-1000
    [35]宁培森,王红梅,丁著明.磷系织物阻燃剂的研究进展[J].精细与专用化学品,2007,17(11):5-9
    [36]沈宗伟,杨玉清.锦纶及其制品阻燃性能的研究概述[J].合成纤维,1993, 22(3):29-33
    [37]张学平.阻燃锦纶纤维概述[J].山西化纤,1997,4:14-16
    [38]赵永霞.阻燃纺织品的技术进步与发展[J].纺织导报,2009,1:83-88
    [39]Yao KD, Han WP, Han DC. Flame-retarding modification of nylon 6 textile[J]. Journal of Applied Polymer Science,1992; 46(3):467-470
    [40]张爱英.用含磷溴阻燃整理液处理的PA-6纤维织物的阻燃机理研究[J].阻燃材料与技术,2001,2:3-8
    [41]张爱英,陈贻德,韩德昌.耐久性阻燃尼龙-6织物的研制[J].北京理工大学学报,2001,21(3):392-397
    [42]陈贻德,韩德昌.尼龙-6织物耐久性阻燃整理[J].天津大学学报,1996,29(4):598-603
    [43]Charles Q Yang. Flame retarding system for nylon fabrics:United States Patent, 20060202175[P].2006-09-14
    [44]Yang CQ, Wu W. Combination of a hydroxyl-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton:part Ⅰ. The chemical reactions. Fire Material,2003, 27(4):223-230
    [45]Hui Yang, Charles Q Yang. Durable flame retardant finishing of the nylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer[J].Polymer Degradation and Stability,2005,88(3):363-370
    [46]Yang CQ, Wu W. Combination of a hydroxyl-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton:part II. Formation of calcium salt during laundering. Fire Material,2003; 27(2)239-246
    [47]Yang CQ, Wu W. Comparison of DMDHEU and Melamine-Formaldehyde as the Binding Agents for a Hydroxy-Functional Organophosphorus Flame Retarding Agent on Cotton[J]. Journal of Fire Sciences,2004,22(2):125-142
    [48]Wu W, Yang CQ. Statistical analysis of the performance of the flame retardant finishing system consisting of a hydroxyfunctional organophosphorus oligomer and the mixture of DMDHEU and melamine formaldehyde resin [J]. Polymer Degradation and Stability,2004,85(3):623-630
    [49]Horrocks A R, Kandola B K, Zhang S, et al. Developments in flame retardant textiles[J].Polymer Degradation and Stability,2005,88(1):3-12
    [50]Horrocks A R, Zhang S. Char formation in polyamides(nylon 6 and 6,6)and wool keratin phosphorylated by polyol phosphorylehorides[J].Textile Research Journal,2004,74:433-441
    [51]Zhang S, Horrocks A R. Substantive intumescence from phosphor rylated 1,3-propanediol derivatives substituted on to cellulose[J]. Journal of Applied Polymer Science,2003,90(12):3165-3172
    [52]Horrocks A R, Zhang S. Enhancing polymer flame retardaney by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate(proban CC)flame retardant[J]. Fire Material,2002,26(4):173-18
    [53]秦立红,刘曲锋.聚合物光接枝表面改性的方法和影响因素[J].弹性体,2004,14(2):62-66
    [54]王睿,谢雁,潘炯玺.聚合物表面光接枝改性研究进展[J].现代塑料加工应用,2004,16(6)61-65
    [55]邢晓东,王晓工.聚合物表面紫外光接枝技术及应用进展[J].化工进展,2008,27(1):50-58
    [56]刘莲英,邓建平,杨万泰.表面光接枝聚合反应新进展[J].中国科学B辑:化学.2009,39(7):569-579
    [57]宦庆松,范雪荣,王强,王平,崔莉.聚丙烯纤维光接枝改性及其在漆酶固定化中的应用[J].纺织学报,2009,30(10):21-26
    [58]Masanori Y, Kozue K. UV-irradiation-induced DNA immobilization and functional utilization of DNA on nonwoven cellulose fabric[J]. Biomaterials, 2001,23(22):3121-3126
    [59]刘晓洪,曾军河,易长海,陈明珍.聚酯纤维光接枝丙烯酸聚合反应动力学研究[J].纺织学报,2008,29(1):1-4
    [60]Liu RQ, Xie LD, Sheng KL. ESR signals from silk fabrics irradiated by UV-rays [J]. Nuclear Science and Techniques,2007,18(5):268-271
    [61]朱伟敏,刘金慧,姚雄健.聚酯纤维非织造布紫外光表面接枝改性研究[J].化学粘合,2003(3):113-116
    [62]Periyasamy S, Gulrajani ML. Preparation of a multifunctional mulberry silk fabric having hydrophobic and hydrophilic surfaces using VUV excimer lamp[J]. Surface and Coatings Technology,2007,201(16-17):7286-7291
    [63]刘瑞芹,王会勇,谢雷东,侯铮迟.丝绸的光引发丙烯酸羟丙酯接枝研究[J].辐射研究与辐射工艺学报,2004,22(1):28-33
    [64]Hong KH, Liu N. UV-induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo-initiator [J]. European Polymer Journal,2009,45(8):2443-2449
    [65]Bae GY, Jang J, Young Jeong G, Lyoo WS, Min BG. Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups [J]. Journal of Colloid and Interface Science,2010,344(2):584-587
    [66]王磊,张建强,李瑞冬,冯岸洲,张贵才.丙烯酰胺类反相微乳液聚合研究及应用进展.油田化学,2009,4:23-26
    [67]Laishun Shi. An approach to the flame retardation and smoke suppression of ethylene-vinyl acetate copolymer by plasma grafting of acrylamide [J]. Reactive & Functional Polymer,2000,45:85-93
    [68]施来顺,曹晓新.EVA共聚物等离子体接枝聚丙烯酰胺的阻燃及抑烟性能.山东工业大学学报,2000,30(4):337-341
    [69]刘君丽,曲建林,周安宁.N-甲基丙烯酰胺熔融接枝PP的流变性能.合成树脂及塑料,2007,24(2):61-64
    [70]刘君丽,曲建林,周安宁.N-甲基丙烯酰胺熔融接枝聚丙烯的制备.塑料科技,2007,35(7):56-61
    [71]陈红梅,张纪梅.新型催化体系催化合成棉织物耐久阻燃剂.印染助剂,2007,24(9):21-24
    [72]杨兴钰,张丽萍,万石官,宦双燕.N-羟甲基5,5-二甲基-1,3,2-二氧磷杂环己烷膦酸基丙烯酰胺的合成及应用研究.化学与生物工程.2003年增刊,112-115
    [73]赵雪,朱平,董朝红,展义臻.棉用无甲醛阻燃剂FRC-P的制备及应用.印染,2006,24:14-17
    [74]李红,魏春艳,徐新伟.麻用无甲醛阻燃剂的合成及应用.大连工业大学学报,2009,28(2):154-156
    [75]相金燕,李毓陵.紫外光接枝用于高分子材料表面改性.国际纺织导报,2003,4:7-9
    [76]王睿,谢雁,潘炯玺.聚合物表面光接枝改性研究进展.现代塑料加工应用,2004,16(6):61-65
    [77]吴珊珊,程晓敏,汪乐春,唐根.聚丙烯膜表面光接枝MBA的合成及研究.安徽大学学报(自然科学版),2009,33(5):68-73
    [78]董涛,赵国巍,王晓丽,陈亚芍.接枝丙烯酰胺改善聚乙烯膜表面亲水性的研究.化学研究与应用,2007,19(1):49-52
    [79]刘莲英,何辰凤,孙玉凤,杨万泰.光引发淀粉-AM/AA反相乳液接枝聚合—光引发剂的影响.高分子材料科学与工程,2006,22(3):58-61
    [80]刘晓洪,王少军.聚丙烯纤维光接枝改性的研究.武汉科技学院学报,2006,19(1):18-20
    [81]Guangguo Wu, Yuanpei Li, Mei Han, Xiaoxuan Liu. Novel thermo-sensitive membranes prepared by rapid bulk photo-grafting polymerization of N,N-diethylacrylamide onto the microfiltration membranes Nylon. Journal of Membrane Science,2006,283(1):13-20
    [82]卢会敏,徐翔民,李亚东,李小红,张治军.可分散性纳米SiO2对尼龙66结晶行为的影响.应用化学,2006,23(10):1094-1098
    [83]卢会敏,徐翔民,李庆华,李亚东,张治军.尼龙66/SiO2纳米微粒复合材料的结晶行为.化学研究,2006,17(1):72-74
    [84]Lu Shen, In Yee Phang, Ling Chen, Tianxi Liu, Kaiyang Zeng. Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer,2004,45(10):3341-3349
    [85]On Huan Wen, Shin-ichi Kuroda, Hitoshi Kubota. Temperature-responsive character of acrylic acid and N-isopropylacrylamide binary monomers-grafted celluloses. European Polymer Journal,2001,37(1):807-813
    [86]吴灵茜,武海峰.壳聚糖整理液对纤维素织物性能的影响.纺织科技进展,2010,1:1-3
    [87]高悦,李学哲,齐轩,王雅珍.接枝改性腈纶织物亲水性能的研究.合成纤维工业,2009,32(1):15
    [88]P.N. Thanki, R.P. Singh. Photo-oxidative degradation of nylon 66 under accelerated weathering. Polymer,1998,39(25):6363-6367
    [89]P.N. Thanki, R.P. Singh. Photostabilization of Nylon 66 in presence of acid blue dyes. Polymer Degradation and Stability,2002,75(3):423-430
    [90]H. Matsuia,l, C.A. Schehra, J.J. Valentinia, J.N. Weber. Resonance Raman spectroscopic investigation of the mechanism and kinetics of the degradation of N,N-hexamethylene bishexamide, a Nylon 6,6 model compound. Polymer, 2001,42(2):5625-5632
    [91]Bengt Ranby. Photochemical Modification of Polymers-Photocrosslinking, Surface Photografting, and Lamination. Polymer engineering and science,1998, 38(8):1229-1243
    [92]GB/T 5454-1997,纺织品燃烧性能试验氧指数法
    [93]GB/T 5455-1997,纺织品燃烧性能试验垂直法
    [94]关晋平.有机磷化合物对真丝绸的阻燃整理[D].苏州大学,2008
    [95]彭华乔.不同结构的双环笼状含磷阻燃剂的合成及其在聚丙烯阻燃改性中的应用[D].四川大学,2007
    [96]郝权,蒋曙光,位爱竹,吴征艳,王兰云.锥形量热仪在火灾科学研究中的应用.能源技术与管理,2009,1:72-75
    [97]Chunming Su, Robert W. Puls. Kinetics of Trichloroethene Reduction by Zerovalent Iron and Tin:Pretreatment Effect, Apparent Activation Energy, and Intermediate Products. Environ. Sci. Technol.,1999,33 (1), pp 163-168
    [98]吴昆.膨胀型阻燃剂核一壳结构的设计、制备及其阻燃性能的研究[D].中国科学技术大学,2009
    [99]张强,乔小晶,张建国,左小丽.三硝基均苯三酚金属(Li,Na,K,Mg)化合物的快速热分解.物理化学学报,2009,25(6):1081-1087
    [100]田建军,姜恒,苏婷婷,张晓彤,孙兆林.基于TGA-FTIR联用技术的EVA热解研究.分析测试学报,2003,22(5):100-102
    [101]Maria Elisa S.R. e Silva a, Eider R. Dutra, Valdir Mano, JoseA C. Machado. Preparation and thermal study of polymers derived from acrylamide. Polymer Degradation and Stability,2000,67(99):491-495
    [102]李玉芳.亚甲基双丙烯酰胺的生产和应用.精细化工原料及中间体,2006,5:29-31
    [103]刘欢,许凯,艾好,陈鸣才.含磷反应型阻燃聚合物体系的研究进展.合成材料老化与应用,2008,37(4):42-47
    [104]Danqi Chen, Yuzhong Wang, Xiaoping Hu, Deyi Wang, Minghai Qu, Bing Yang. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polymer Degradation and Stability,2005,88(1):349-356
    [105]Wei Liu, Danqi Chen, Yuzhong Wang, Deyi Wang, Minghai Qu. Char-forming mechanism of a novel polymeric flame retardant with char agent. Polymer Degradation and Stability,2007,92 (2):1046-1052
    [106]Xilei Chen, Chuanmei Jiao. Flammability and thermal degradation of epoxy acrylate modified with phosphorus-containing compounds. Polymer advanced technologies,2009, Published online in Wiley InterScience
    [107]王德龙.聚乙烯醇用新型膨胀型阻燃剂的合成与应用及阻燃机理研究[D].四川大学.2007
    [108]皮红.聚氯乙烯/阻燃抑烟剂体系热分解过程中结构演变及阻燃抑烟机理的研究[D].四川大学.2003
    [109]王建荣,欧育湘,刘治国,李锦.三聚氰胺据磷酸盐对玻璃纤维增强PA66的膨胀阻燃作用.阻燃材料与技术,2003,6:1-4
    [110]陈丹琦.涤棉织物后整理阻燃剂的合成与应用研究[D].四川大学,2005
    [111]刘微.棉织物无醛后整理阻燃剂的合成与应用研究[D].四川大学,2007
    [112]Bo Wu, Yuzhong Wang, Xiuli Wang, Keke Yang, Yongdong Jin, Hong Zhao. Kinetics of thermal oxidative degradation of phosphorus-containing flame retardant copolyesters. Polymer Degradation and Stability,2002,76:401-409
    [113]Yinghong Chen, Qi Wang. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polymer Degradation and Stability, 2007,92:280-291
    [114]Chunming Su, Robert W. Puls. Kinetics of Trichloroethene Reduction by Zerovalent Iron and Tin:Pretreatment Effect, Apparent Activation Energy, and Intermediate Products. Environmental Science and Technology.,1999,33 (1):163-168
    [115]李博,龙军,侯栓弟.烯烃催化裂解反应动力学的研究.计算机与应用化学,2009,26(2):129-132
    [116]Xing CM, Deng JP, Yang WT. Surface functionalization of polypropylene film via UV-induced photografting of N-Vinylpyrrolidone/maleic anhydride binary monomers. Macromolecular chemistry and physics,2005,206(11):1106-1113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700