用户名: 密码: 验证码:
基于纳米结构ZnO、SiO_2的功能棉制品及新型气凝胶的制备与应用性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展以及生活水平的提高,人们对多功能纺织品的需求愈来愈旺盛,而纳米技术的迅猛发展为纺织品的功能化提供了有利条件。其中,ZnO是一种重要的直接宽带隙半导体材料,一维纳米结构ZnO应用于纺织品整理可以赋予纺织品良好的抗紫外线、抗菌、自清洁等功能。SiO2气凝胶是一种由纳米SiO2颗粒相互连接形成三维网络骨架,并在网络孔隙中充满空气的轻质纳米固态材料。由于其独特的结构,SiO2气凝胶是目前世界上最好的隔热材料,应用SiO2气凝胶制备的纺织品具有绝佳的隔热阻燃效果。因此研究基于纳米结构ZnO、SiO2的功能纺织品及新型气凝胶中的制备和性能具有十分重要的科学价值和现实意义。本文正是围绕这一主题开展了一系列研究工作,主要的研究内容包括:
     (一)棉纤维表面ZnO纳米棒阵列的原位生长。
     利用水热法在覆盖有ZnO纳米晶种层的棉纤维表面竖直生长ZnO纳米棒阵列。探讨棉纤维表面ZnO纳米晶种层、水热反应溶液浓度、水热反应温度、水热反应时间对ZnO纳米棒阵列的制备与形貌结构的影响。研究表明:纤维表面的ZnO纳米晶种层是ZnO纳米棒阵列生长的前提和基础;通过调节水热反应条件可实现对ZnO纳米棒阵列形貌尺寸的控制;纤维表面生长有ZnO纳米棒阵列的棉织物具有超强的抗紫外线性能。
     (二)棉纤维表面微观粗糙结构的构筑与疏水性研究。
     利用SiO2纳米颗粒与ZnO纳米棒阵列在棉纤维表面构筑不同的微观粗糙结构,结合低表面能物质修饰成功制备超疏水棉织物。静态接触角和滚动角测试结果表明基于SiO2纳米颗粒构筑粗糙表面的棉织物具有更大的静态接触角,但纤维表面生长有ZnO纳米棒阵列的棉织物显示出更小的滚动角。我们认为,这主要和水滴与纤维表面接触时形成的固/液/气三相接触线有关,水滴与ZnO纳米棒阵列接触时更容易形成扭曲的、非连续性的固/液/气三相接触线,因而水滴更容易在其表面滚动。
     (三)柔性超疏水Si02气凝胶的常压干燥制备。
     以甲基三甲氧基硅烷(MTMS)作为反应前躯体,控制反应温度,常压干燥条件下制备SiO2气凝胶,制备过程避免传统常压干燥法制备SiO2气凝胶所需的溶剂置换、低表面能物质修饰等繁冗过程。研究表明:老化温度与凝胶化温度对SiO2气凝胶的制备具有重要影响。老化温度提高,SiO2醇凝胶网络进一步完善,网络骨架进一步增强,其抵御毛细管张力的能力增强,SiO2气凝胶体积收缩率与密度逐渐降低。凝胶化温度提高,凝胶网络内孔隙逐渐增大,通过调节凝胶化温度从而控制凝胶网络内孔隙结构可实现低密、低收缩SiO2气凝胶的制备。此外,制备的MTMS基SiO2气凝胶表现出良好的弹性和超疏水性能。
     (四)机械增强SiO2气凝胶的常压干燥制备。
     以MTMS和乙烯基三甲氧基硅烷(VTMS)作为共前躯体,常压干燥条件下制备SiO2气凝胶。研究表明:常压干燥过程中,孔隙结构是决定SiO2气凝胶形貌和性能的关键因素。如果凝胶网络比较致密,常压干燥过程中的毛细管效应比较显著,容易造成SiO2气凝胶的破裂。如果凝胶网络比较疏松,纳米颗粒团簇间的孔隙增大,降低毛细管效应在常压干燥过程中对凝胶网络的影响,有助于制备块状无碎裂的SiO2气凝胶;但过大的孔隙会降低纳米颗粒团簇间的连接密度,削弱SiO2气凝胶的物理机械性能,制备的SiO2气凝胶比较脆弱。前躯体浓度与凝胶化温度对凝胶网络的孔隙结构具有重要影响,因此控制前躯体浓度和凝胶化温度对SiO2气凝胶的制备十分重要。此外,MTMS/VTMS基SiO2气凝胶具有优良的弹性,在经受垂直方向多次重复压缩后几乎不发生收缩。
     为进一步改善SiO2气凝胶的物理机械性能,在MTMS/VTMS基SiO2溶胶中加入苯乙烯制备聚苯乙烯(PS)/SiO2杂化气凝胶。制备的PS/SiO2杂化气凝胶仍具有低密、高孔隙率的特点,但随着苯乙烯加入量的增多,纳米颗粒团簇变大,纳米颗粒间的部分孔隙被聚苯乙烯堵塞,导致PS/SiO2杂化气凝胶的比表面积逐步减少。红外光谱、核磁共振谱图表明PS成功沉积在凝胶网络内SiO2颗粒表面。压缩实验表明所制备的PS/SiO2杂化气凝胶具有良好的弹性,且杂化气凝胶的机械强度随着苯乙烯加入量的增多而迅速增大。此外,杂化气凝胶具有超疏水的特性。
With the development of society and the improvement of standard living, people's demands for multi-functional textiles have become increasingly stronger. The rapid development of nanotechnology provides advantageous conditions to the functionalization of textiles. ZnO is an important direct wide band gap semiconductor. Applying one dimensional nano-structured ZnO materials onto textiles can endow the textiles with UV-blocking, antimicrobial and self-cleaning properties. Furthermore, SiO2 aerogel is such a kind of solid materials which consists of SiO2 nanoparticles and has a continuous random network structure filling with gaseous dispersive medium. Due to its unique structure, SiO2 aerogel is currently the world's best heat insulator. The textiles incorporated with SiO2 aerogel show excellent thermal insulation and inflame-retarding effects. Therefore, investigating the preparation and properties of functional textiles and novel aerogels based on nano-structured ZnO and SiO2 is very important. A series of studies have been carried out, and the major studies include:
     (1) In situ growth of ZnO nanorod arrays on cotton fibers.
     By hydrothermal method, oriented ZnO nanorod arrays were vertically grown onto the surface of cotton fibers which were precoated with layers of ZnO nanocrystals. The effects of the precoated ZnO nanocrystals, the concentration of the hydrothermal solution, hydrothermal temperature, hydrothermal reaction time on the preparation and morphology structure of ZnO nanorod arrays were investigated. The results show that the ZnO nanocrystals onto the cotton fibers are the prerequisite to ZnO nanorod growth. Morphology control of the ZnO nanorod arrays can be achieved by adjusting the hydrothermal reaction conditions. The grown ZnO nanorod arrays on cotton fibers endow the cotton fabrics with remarkable UV-blocking property.
     (2) The fabrication of microscale rough structures on cotton fibers and the corresponding superhydrophobicities.
     Different microscale rough structures were fabricated onto the surface of the cotton fibers by SiO2 nanoparticles and ZnO nanorod arrays. Then superhydrophobic cotton fabrics were prepared by subsequent modification with low surface energy material. Static contact angle and roll-off angle measurements show that SiO2 modified cotton fabric displays a higher contact angle while the ZnO modified cotton fabric shows a much smaller roll-off angle. It is believed by us that the difference in roll-off angle is related to the solid/liquid/gas three-phase contact line. Distorted and non-continuous solid/liquid/gas three-phase contact line is more easily formed for the ZnO modified cotton fabric when the water droplet contacts with the ZnO nanorod arrays, and therefore the water droplet is more easily to roll off from the ZnO modified cotton fabrics.
     (3) Preparation of elastic and superhydrophobic SiO2 aerogel by ambient pressure drying.
     Methyltrimethoxysilane (MTMS) derived aerogel was prepared by controlling the reaction temperatures via ambient pressure drying. Tedious solvent exchange and hydrophobic modification which are commonly used during SiO2 aerogel preparation by ambient pressure drying were avoided. The studies show that the ageing temperature and gelation temperature have great influences on the preparation of SiO2 aerogel. Increasing the ageing temperature will further improve the SiO2 alcogel network and strengthen the gel network skeleton, enhancing the resistance of gel network against capillary forces generated during the ambient pressure dyring and resulting in the decreased volume shrinkage and bulk density. Increasing the gelation temperature leads to larger pore sizes within gel network. Low density and low volume shrinkage SiO2 aerogel can be obtained by adjusting the gelation temperature and controlling the pore structure within the gel network. In addition, MTMS derived SiO2 aerogel shows excellent elasticity and superhydrophobicity.
     (4) Preparation of ambient pressure dried hybrid aerogel with enhanced mechanical property.
     Methyltrimethoxysilane (MTMS) and vinyltrimethoxysilane (VTMS) derived aerogel was prepared by ambient pressure drying. The studies show that the pore structure is the key factor in determining the morphology and properties of SiO2 aerogel by ambient pressure drying. If the gel network is dense, the capillary pressure effects during ambient pressure drying are more significant, leading to cracks. If the gel network is loose, the spaces between SiO2 clusters increase, reducing the impact of capillary effect on the gel network during ambient pressure drying. This is beneficial for the preparation of crack-free and monolithic SiO2 aerogel. However, too large pore sizes will decrease the overall connectivity of the SiO2 clusters, weakening the physical and mechanical properties of SiO2 aerogels and the prepared SiO2 aerogel is very fragile. The precursor concentration and gelation temperature have great influences on the pore structure of gel network. Therefore, adjusting the precursor concentration and gelation temperature is crucial for preparing SiO2 aerogel. In addition, MTMS/VTMS based SiO2 aerogel shows excellent elasticity and no obvious shrinkage was observed after repeated compression.
     To further improve the mechanical property of SiO2 aerogel, polystyrene (PS)/ SiO2 hybrid aerogel was prepared by adding styrene into the MTMS/VTMS derived alcosol. The prepared PS/SiO2 hybrid aerogels keep low bulk density and high porosity. The as-obtained hybrid aerogels show an increased cluster feature size and a decreased specific surface area with the increased volume of styrene. FTIR and solid state NMR spectra show that polystyrene was deposited onto the surface of the SiO2 particles within the gel network. The compression testing shows that the PS/SiO2 hybrid aerogel is elastic and the strength of the hybrid aerogel is drastically increased with the increase of the added styrene. Furthermore, the hybrid aerogel shows superhydrophobicity.
引文
[1]Sawhney, A.P.S., Condon, B., Singh, K.V., et al. Modern applications of nanotechnology in textiles[J]. Textile Research Journal,2008,78(8):731-739.
    [2]Dawson, T.L. Nanomaterials for textile processing and photonic applications[J]. Coloration Technology,2008,124(5):261-272.
    [3]Liu, D.X., Dong, W.G. Nanotechnology in textiles finishment[J]. Modern Applied Science,2009,3(2):154-157.
    [4]Karst, D., Yang, Y.Q. Potential advantages and risks of nanotechnology for textiles[J]. Aatcc Review,2006,6(3):44-48.
    [5]Lu, X.F., Wang, C., Wei, Y. One-dimensional composite nanomaterials: synthesis by electrospinning and their applications[J]. Small,2009, 5(21):2349-2370.
    [6]Rutledge, G.C., Fridrikh, S.V. Formation of fibers by electrospinning[J]. Advanced Drug Delivery Reviews,2007,59(14):1384-1391.
    [7]Feng, C., Khulbe, K.C., Matsuura, T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization[J]. Journal of Applied Polymer Science,2010,115(2):756-776.
    [8]Greiner, A., Wendorff, J.H. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition, 2007,46(30):5670-5703.
    [9]Taylor, G. Disintegration of water drops in an electric Field[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1964,280(1382):383-397.
    [10]Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.O., et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies,2010,21(2):77-95.
    [11]Zhang, X.H., Reagan, M.R., Kaplan, D.L. Electrospun silk biomaterial scaffolds for regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009,61(12):988-1006.
    [12]Sell, S.A., Mcclure, M.J., Garg, K., et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering[J]. Advanced Drug Delivery Reviews,2009,61(12):1007-1019.
    [13]Yoo, H.S., Kim, T.G., Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery[J]. Advanced Drug Delivery Reviews, 2009,61(12):1033-1042.
    [14]Lee, K.Y., Jeong, L., Kang, Y.O., et al. Electrospinning of polysaccharides for regenerative medicine[J]. Advanced Drug Delivery Reviews,2009, 61(12):1020-1032.
    [15]Cao, H.Q., Liu, T., Chew, S.Y. The application of nanofibrous scaffolds in neural tissue engineering[J]. Advanced Drug Delivery Reviews,2009, 61(12):1055-1064.
    [16]Jang, J.H., Castano, O., Kim, H.W. Electrospun materials as potential platforms for bone tissue engineering[J]. Advanced Drug Delivery Reviews, 2009,61(12):1065-1083.
    [17]Li, X.H., Ding, B., Lin, J.Y, et al. Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers[J]. Journal of Physical Chemistry C,2009,113(47):20452-20457.
    [18]Pedicini, A., Farris, R.J. Mechanical behavior of electrospun polyurethane[J]. Polymer,2003,44(22):6857-6862.
    [19]Lee, K.H., Kim, H.Y, Ryu, Y.J., et al. Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends[J]. Journal of Polymer Science Part B-Polymer Physics,2003,41(11):1256-1262.
    [20]Ding, B., Wang, M.R., Yu, J.Y, et al. Gas sensors based on electrospun nanofibers[J]. Sensors,2009,9(3):1609-1624.
    [21]Wang, X.F., Ding, B., Yu, J.Y, et al. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance[J]. Nanotechnology,2010,21(5):6.
    [22]Flueckiger, J., Ko, F.K., Cheung, K.C. Microfabricated formaldehyde gas sensors[J]. Sensors,2009,9(11):9196-9215.
    [23]Jia, W.Z., Su, L., Ding, Y., et al. Pd/TiO2 nanotibrous membranes and their application in hydrogen sensing[J]. Journal of Physical Chemistry C,2009, 113(37):16402-16407.
    [24]Wang, Z.G., Wan, L.S., Liu, Z.M., et al. Enzyme immobilization on electrospun polymer nanofibers:An overview[J]. Journal of Molecular Catalysis B-Enzymatic,2009,56(4):189-195.
    [25]Pedicini, A., Farris, R.J. Thermally induced color change in electrospun fiber mats[J]. Journal of Polymer Science Part B-Polymer Physics,2004, 42(5):752-757.
    [26]Paul, D.R., Robeson, L.M. Polymer nanotechnology:Nanocomposites[J]. Polymer,2008,49(15):3187-3204.
    [27]Usuki, A., Koiwai, A., Kojima, Y., et al. Interaction of Nylon-6 clay surface and mechanical-properties of Nylon-6 clay hybrid[J]. Journal of Applied Polymer Science,1995,55(1):119-123.
    [28]Brune, D.A., Bicerano, J. Micromechanics of nanocomposites:comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus[J]. Polymer,2002, 43(2):369-387.
    [29]Wang, J., Pyrz, R. Prediction of the overall moduli of layered silicate-reinforced nanocomposites--part I:basic theory and formulas[J]. Composites Science and Technology,2004,64(7-8):925-934.
    [30]Wang, J., Pyrz, R. Prediction of the overall moduli of layered silicate-reinforced nanocomposites--part Ⅱ:analyses[J]. Composites Science and Technology,2004,64(7-8):935-944.
    [31]Kojima, Y., Usuki, A., Kawasumi, M., et al. Mechanical properties of nylon 6-clay hybrid[J]. Journal of Materials Research,1993,8(5):1185-1189.
    [32]Sterky, K., Hjertberg, T., Jacobsen, H. Effect of montmorillonite treatment on the thermal stability of poly(vinyl chloride) nanocomposites[J]. Polymer Degradation and Stability,2009,94(9):1564-1570.
    [33]Porter, D., Metcalfe, E., Thomas, M.J.K. Nanocomposite fire retardants-A review[J]. Fire and Materials,2000,24(1):45-52.
    [34]Wang, Z., Du, X.H., Yu, H.O., et al. Mechanism on flame retardancy of polystyrene/clay composites-The effect of surfactants and aggregate state of organoclay[J]. Polymer,2009,50(24):5794-5802.
    [35]Bourbigot, S., Duquesne, S., Jama, C. Polymer nanocomposites:How to reach low flammability?[J]. Macromolecular Symposia,2006,233:180-190.
    [36]Rodolfo, A., Mei, L.H.I. Poly(vinyl chloride)/metallic oxides/organically modified montmorillonite nanocomposites:Fire and smoke behavior[J]. Journal of Applied Polymer Science,2010,116(2):946-958.
    [37]Bharadwaj, R.K. Modeling the barrier properties of polymer-layered silicate nanocomposites[J]. Macromolecules,2001,34(26):9189-9192.
    [38]Brule, B., Flat, J.J. High barrier polyamide/polyolefin/organoday nanocomposites[J]. Macromolecular Symposia,2006,233:210-216.
    [39]Choi, W.J., Kim, H.J., Yoon, K.H., et al. Preparation and barrier property of poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst[J]. Journal of Applied Polymer Science,2006,100(6):4875-4879.
    [40]Zimmerman, C.M., Singh, A., Koros, W.J. Tailoring mixed matrix composite membranes for gas separations[J]. Journal of Membrane Science,1997, 137(1-2):145-154.
    [41]Mani, G., Fan, Q.G., Ugbolue, S.C., et al. Effect of nanoparticle size and its distribution on the dyeability of polypropylene[J]. AATCC Review,2003, 3(1):22-26.
    [42]Razafimahefa, L., Chlebicki, S., Vroman, I., et al. Effect of nanoclays on the dyeability of polypropylene nanocomposite fibres[J]. Coloration Technology, 2008,124(2):86-91.
    [43]Toshniwal, L., Fan, Q.G., Ugbolue, S.C. Dyeable polypropylene fibers via nanotechnology[J]. Journal of Applied Polymer Science,2007, 106(1):706-711.
    [44]Fan, Q.G., Ugbolue, S.C., Wilson, A.R., et al. Nanoclay-modified polypropylene dyeable with acid and disperse dyes[J]. AATCC Review,2003, 3(6):25-28.
    [45]Iijima, S. Helical microtubules of graphitic carbon[J]. Nature,1991, 354(6348):56-58.
    [46]Munoz, E., Dalton, A.B., Collins, S., et al. Multifunctional carbon nanotube composite fibers[J]. Advanced Engineering Materials,2004,6(10):801-804.
    [47]Haggenmueller, R., Gommans, H.H., Rinzler, A.G., et al. Aligned single-wall carbon nanotubes in composites by melt processing methods[J]. Chemical Physics Letters,2000,330(3-4):219-225.
    [48]Kearns, J.C., Shambaugh, R.L. Polypropylene fibers reinforced with carbon nanotubes[J]. Journal of Applied Polymer Science,2002,86(8):2079-2084.
    [49]Gao, J.B., Itkis, M.E., Yu, A.P., et al. Continuous spinning of a single-walled carbon nanotube-nylon composite fiber[J]. Journal of the American Chemical Society,2005,127(11):3847-3854.
    [50]Vigolo, B., Poulin, P., Lucas, M., et al. Improved structure and properties of single-wall carbon nanotube spun fibers[J]. Applied Physics Letters,2002, 81(7):1210-1212.
    [51]Vigolo, B., Penicaud, A., Coulon, C., et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science,2000,290(5495):1331-1334.
    [52]Andrews, R., Jacques, D., Rao, A.M., et al. Nanotube composite carbon fibers[J]. Applied Physics Letters,1999,75(9):1329-1331.
    [53]Li, Z.F., Luo, G.H., Wei, F., et al. Microstructure of carbon nanotubes/PET conductive composites fibers and their properties [J]. Composites Science and Technology,2006,66(7-8):1022-1029.
    [54]Zhang, H.B., Zheng, W.G., Yan, Q., et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer,2010,51 (5):1191-1196.
    [55]Wei, Q.F., Yu, L.G., Mather, R.R., et al. Preparation and characterization of titanium dioxide nanocomposite fibers[J]. Journal of Materials Science,2007, 42(19):8001-8005.
    [56]Droval, G., Aranberri, I., Bilbao, A., et al. Antimicrobial activity of nanocomposites:poly(amide) 6 and low density poly(ethylene) filled with zinc oxide[J]. E-Polymers,2008.
    [57]Damm, C., Munstedt, H., Rosch, A. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites[J]. Materials Chemistry and Physics, 2008,108(1):61-66.
    [58]Paul, R., Bautista, L., De La Varga, M., et al. Nano-cotton fabrics with high ultraviolet protection[J]. Textile Research Journal,2010,80(5):454-462.
    [59]Wang, R.H., Xin, J.H., Tao, X.M., et al. ZnO nanorods grown on cotton fabrics at low temperature[J]. Chemical Physics Letters,2004,398(1-3):250-255.
    [60]Wang, R.H., Xin, J.H., Tao, X.M. UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics[J]. Inorganic Chemistry,2005, 44(11):3926-3930.
    [61]Lu, H.F., Fei, B., Xin, J.H., et al. Fabrication of UV-blocking nanohybrid coating via miniemulsion polymerization[J]. Journal of Colloid and Interface Science,2006,300(1):111-116.
    [62]Daoud, W.A., Xin, J.H. Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures[J]. Journal of the American Ceramic Society,2004, 87(5):953-955.
    [63]Xu, P., Wang, W., Chen, S.L. UV blocking treatment of cotton fabrics by titanium hydrosol[J]. AATCC Review,2005,5(6):28-31.
    [64]Li, Z.R., Xu, H.Y., Fu, K.J., et al. ZnO nanosol for enhancing the UV-protective property of cotton fabric and pigment dyeing in a single bath[J]. AATCC Review,2007,7(6):38-41.
    [65]Kathirvelu, S., D'souza, L., Dhurai, B. A Study on functional finishing of cotton fabrics using nano-particles of zinc oxide[J]. Materials Science-Medziagotyra,2009,15(1):75-79.
    [66]Becheri, A., Durr, M., Lo Nostro, P., et al. Synthesis and characterization of zinc oxide nanoparticles:application to textiles as UV-absorbers[J]. Journal of Nanoparticle Research,2008,10(4):679-689.
    [67]Parkin, I.P., Palgrave, R.G. Self-cleaning coatings[J]. Journal of Materials Chemistry,2005,15(17):1689-1695.
    [68]Nakajima, A., Hashimoto, K., Watanabe, T., et al. Transparent superhydrophobic thin films with self-cleaning properties[J]. Langmuir,2000, 16(17):7044-7047.
    [69]Li, X.M., Reinhoudt, D., Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews,2007, 36(8):1350-1368.
    [70]Bahners, T., Textor, T., Opwis, K., et al. Recent approaches to highly hydrophobic textile surfaces[J]. Journal of Adhesion Science and Technology, 2008,22(3-4):285-309.
    [71]Ramaratnam, K., Tsyalkovsky, V., Klep, V., et al. Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer[J]. Chemical Communications,2007(43):4510-4512.
    [72]Liu, Y.Y., Wang, R.H., Lu, H.F., et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles[J]. Journal of Materials Chemistry,2007,17(11):1071-1078.
    [73]Wang, T., Hu, X.G., Dong, S.J. A general route to transform normal hydrophilic cloths into superhydrophobic surfaces[J]. Chemical Communications,2007(18):1849-1851.
    [74]Zimmermann, J., Reifler, F.A., Fortunato, G., et al. A simple, one-step approach to durable and robust superhydrophobic textiles[J]. Advanced Functional Materials,2008,18(22):3662-3669.
    [75]Yu, M., Gu, G.T., Meng, W.D., et al. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent[J]. Applied Surface Science, 2007,253(7):3669-3673.
    [76]Xue, C.H., Jia, ST., Chen, H.Z., et al. Superhydrophobic cotton fabrics prepared by sol-gel coating of TiO2 and surface hydrophobization[J]. Science and Technology of Advanced Materials,2008,9(3):035001.
    [77]Michielsen, S., Lee, H J. Design of a superhydrophobic surface using woven structures[J]. Langmuir,2007,23(11):6004-6010.
    [78]Zhang, B.T., Liu, B.L., Deng, X.B., et al. Fabricating superhydrophobic surfaces by molecular accumulation of polysiloxane on the wool textile finishing[J]. Colloid and Polymer Science,2008,286(4):453-457.
    [79]Li, S.H., Xie, H.B., Zhang, S.B., et al. Facile transformation of hydrophilic cellulose into superhydrophobic cellulose[J]. Chemical Communications, 2007(46):4857-4859.
    [80]Brewer, S.A., Willis, C.R. Structure and oil repellency-textiles with liquid repellency to hexane[J]. Applied Surface Science,2008,254(20):6450-6454.
    [81]Leng, B.X., Shao, Z.Z., De with, G., et al. Superoleophobic cotton textiles[J]. Langmuir,2009,25(4):2456-2460.
    [82]Hoefnagels, H.F., Wu, D., De with, G., et al. Biomimetic superhydrophobic and highly oleophobic cotton textiles[J]. Langmuir,2007, 23(26):13158-13163.
    [83]Qi, K.H., Daoud, W.A., Xin, J.H., et al. Self-cleaning cotton[J]. Journal of Materials Chemistry,2006,16(47):4567-4574.
    [84]Qi, K.H., Xin, J.H., Daoud, W.A., et al. Functionalizing polyester fiber with a self-cleaning property using anatase TiO2 and low-temperature plasma treatment[J]. International Journal of Applied Ceramic Technology,2007, 4(6):554-563.
    [85]Daoud, W.A., Leung, S.K., Tung, W.S., et al. Self-cleaning keratins[J]. Chemistry of Materials,2008,20(4):1242-1244.
    [86]Uddin, M.J., Cesano, F., Bonino, F., et al. Photoactive TiO2 films on cellulose fibres:synthesis and characterization[J]. Journal of Photochemistry and Photobiology A-Chemistry,2007,189(2-3):286-294.
    [87]Uddin, M.J., Cesano, F., Scarano, D., et al. Cotton textile fibres coated by Au/TiO2 films:Synthesis, characterization and self cleaning properties[J]. Journal of Photochemistry and Photobiology A-Chemistry,2008, 199(l):64-72.
    [88]Wang, R.H., Wang, X.W., Xin, J.H. Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 Photocatalysts[J]. ACS Applied Materials & Interfaces,2010,2(1):82-85.
    [89]Yuranova, T., Laub, D., Kiwi, J. Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation[J]. Catalysis Today,2007,122(1-2):109-117.
    [90]Yuranova, T., Mosteo, R., Bandara, J., et al. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating[J]. Journal of Molecular Catalysis a-Chemical,2006,244(1-2):160-167.
    [91]Tung, W.S., Daoud, W.A. Photocatalytic self-cleaning keratins:A feasibility study[J]. Acta Biomaterialia,2009,5(1):50-56.
    [92]Tung, W.S., Daoud, W.A. Photocatalytic formulations for protein fibers: Experimental analysis of the effect of preparation on compatibility and photocatalytic activities[J]. Journal of Colloid and Interface Science,2008, 326(1):283-288.
    [93]Bozzi, A., Yuranova, T., Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry and Photobiology A-Chemistry,2005,172(1):27-34.
    [94]Bozzi, A., Yuranova, T., Guasaquillo, I., et al. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation[J]. Journal of Photochemistry and Photobiology A-Chemistry,2005,174(2):156-164.
    [95]Pierre, A.C., Pajonk, GM. Chemistry of aerogels and their applications[J]. Chemical Reviews,2002,102(11):4243-4266.
    [96]Oh, K.W., Kim, D.K., Kim, S.H. Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation[J]. Fibers and Polymers,2009, 10(5):731-737.
    [97]Hansen, J.G.R., Frame, B.J. Flame penetration and burn testing of fire blanket materials[J]. Fire and Materials,2008,32(8):457-483.
    [98]沈海军,史友进.纳米抗菌材料的分类、制备、抗菌机理及其应用[J].中国粉体工业,2006(2):18-20.
    [99]Ren, X.H., Kocer, H.B., Kou, L., et al. Antimicrobial polyester[J]. Journal of Applied Polymer Science,2008,109(5):2756-2761.
    [100]Lin, J., Winkelman, C., Worley, S.D., et al. Antimicrobial treatment of nylon[J]. Journal of Applied Polymer Science,2001,81(4):943-947.
    [101]Lee, H.J., Jeong, S.H. Bacteriostasis of nanosized colloidal silver on polyester nonwovens[J]. Textile Research Journal,2004,74(5):442-447.
    [102]Lee, H.J., Jeong, S.H. Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics[J]. Textile Research Journal,2005,75(7):551-556.
    [103]Perelshtein, I., Applerot, G., Perkas, N., et al. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity[J]. Nanotechnology,2008,19(24).
    [104]Saponjic, V.I.Z., Vodnik, V., Mihailovic, D., et al. A study of the antibacterial efficiency and coloration of dyed polyamide and polyester fabrics modified with colloidal Ag nanoparticles[J]. Journal of the Serbian Chemical Society, 2009,74(3):349-357.
    [105]Ki, H.Y., Kim, J.H., Kwon, S.C., et al. A study on multifunctional wool textiles treated with nano-sized silver[J]. Journal of Materials Science,2007, 42(19):8020-8024.
    [106]Falletta, E., Bonini, M., Fratini, E., et al. Clusters of poly(acrylates) and silver nanoparticles:Structure and applications for antimicrobial fabrics[J]. Journal of Physical Chemistry C,2008,112(31):11758-11766.
    [107]Radetic, M., Ilic, V, Vodnik, V, et al. Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics[J]. Polymers for Advanced Technologies,2008,19(12):1816-1821.
    [108]Tam, K.H., Djurisic, A.B., Chan, C.M.N., et al. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method[J]. Thin Solid Films,2008, 516(18):6167-6174.
    [109]Yang, C., Liang, G.L., Xu, K.M., et al. Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates[J]. Journal of Materials Science,2009,44(7):1894-1901.
    [110]Vigneshwaran, N., Kumar, S., Kathe, A.A., et al. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites[J]. Nanotechnology,2006,17(20):5087-5095.
    [111]Zhang, L.X., Wang, X.L., Peng, L., et al. Low temperature deposition of TiO2 thin films on polyvinyl alcohol fibers with photocatalytical and antibacterial activities[J]. Applied Surface Science,2008,254(6):1771-1774.
    [112]Daoud, W.A., Xin, J.H., Zhang, Y.H. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities[J]. Surface Science,2005,599(1-3):69-75.
    [113]Daoud, W.A., Xin, J.H. Synthesis of single-phase anatase nanocrystallites at near room temperatures[J]. Chemical Communications,2005(16):2110-2112.
    [114]王中林.纳米材料表征[M].北京:化学工业出版社,2005.
    [115]蓝闽波.纳米材料测试技术[M].上海:华东理工大学出版社,2009.
    [116]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006.
    [117]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [1]张留成,蔡克峰.纳米氧化锌材料的最新研究和应用进展[J].材料导报,2006(20):13-15.
    [2]施利毅,马书蕊,欣冯.一维氧化锌纳米棒制备技术的最新研究进展[J].材料导报,2006,20:86-89.
    [3]Wang, Z.L. Zinc oxide nanostructures:growth, properties and applications[J]. Journal of Physics-Condensed Matter,2004,16(25):829-858.
    [4]Yi, GC., Wang, C.R., Park, W.I. ZnO nanorods:synthesis, characterization and applications[J]. Semiconductor Science and Technology,2005, 20(4):22-34.
    [5]Law, M., Goldberger, J., Yang, P.D. Semiconductor nanowires and nanotubes[J]. Annual Review of Materials Research,2004,34(1):83-C82.
    [6]Kim, J.H., Kim, E.M., Andeen, D., et al. Growth of heteroepitaxial ZnO thin films on GaN-Buffered Al2O3(0001) substrates by low-temperature hydrothermal synthesis at 90℃[J]. Advanced Functional Materials,2007, 17(3):463-471.
    [7]Tong, Y.H., Liu, Y.C., Dong, L., et al. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique[J]. Journal of Physical Chemistry B,2006,110(41):20263-20267.
    [8]Yamabi, S., Imai, H. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J]. Journal of Materials Chemistry,2002, 12(12):3773-3778.
    [9]Chen, Z.T., Gao, L. A facile route to ZnO nanorod arrays using wet chemical method[J]. Journal of Crystal Growth,2006,293(2):522-527.
    [10]Guo, M., Diao, P., Wang, X.D., et al. The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films[J]. Journal of Solid State Chemistry,2005, 178(10):3210-3215.
    [11]Ma, T., Guo, M., Zhang, M., et al. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays[J]. Nanotechnology,2007,18(3):-
    [12]Vayssieres, L., Keis, K., Lindquist, S.E., et al. Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO[J]. Journal of Physical Chemistry B,2001,105(17):3350-3352.
    [13]Wang, R.H., Xin, J.H., Tao, X.M., et al. ZnO nanorods grown on cotton fabrics at low temperature[J]. Chemical Physics Letters,2004,398(1-3):250-255.
    [14]Wang, R.H., Xin, J.H.,Tao, X.M. UV-Blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics[J]. Inorganic Chemistry,2005, 44(11):3926-3930.
    [15]Qin, Y., Wang, X.D., Wang, Z.L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature,2008,451(7180):809-U805.
    [16]Greene, L.E., Law, M., Tan, D.H., et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds[J]. Nano Letters,2005, 5(7):1231-1236.
    [17]Pacholski, C., Kornowski, A., Weller, H. Self-assembly of ZnO:From nanodots to nanorods[J]. Angewandte Chemie International Edition,2002, 41(7):1188-1191.
    [18]Greene, L.E., Law, M., Goldberger, J., et al. Low-temperature wafer-scale production of ZnO nanowire arrays[J]. Angewandte Chemie International Edition,2003,42:3131-3134.
    [19]Goncalves, G., Marques, P.A.A.P., Neto, C.P., et al. Growth, structural, and optical characterization of ZnO-coated cellulosic fibers[J]. Crystal Growth & Design,2009,9(1):386-390.
    [20]Guo, M., Diao, P., Cai, S.M. Hydrothermal growth of well-aligned ZnO nanorod arrays:Dependence of morphology and alignment ordering upon preparing conditions[J]. Journal of Solid State Chemistry,2005, 178(6):1864-1873.
    [21]Briois, V., Giorgetti, C., Baudelet, F., et al. Dynamical study of ZnO nanocrystal and Zn-HDS layered basic zinc acetate formation from sol-gel route[J]. Journal of Physical Chemistry C,2007, 111(8):3253-3258.
    [22]Spanhel, L., Anderson, M.A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids[J]. Journal of American Chemical Society,1991,113(8):2826-2833.
    [23]刘晓新,靳正国,王惠.ZnO棒晶阵列薄膜的水溶液法生长[J].无机材料学报,2006,21(4):6.
    [24]Sun, Y., Riley, D.J., Ashfold, M.N.R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates[J]. Journal of Physical Chemistry B,2006,110(31):15186-15192.
    [25]Ashfold, M.N.R., Doherty, R.P., Ndifor-Angwafor, N.G., et al. The kinetics of the hydrothermal growth of ZnO nanostructures[J]. Thin Solid Films,2007, 515(24):8679-8683.
    [26]Badre, C., Dubot, P., Lincot, D., et al. Effects of nanorod structure and conformation of fatty acid self-assembled layers on superhydrophobicity of zinc oxide surface[J]. Journal of Colloid and Interface Science,2007, 316(2):233-237.
    [27]余可,靳正国,刘晓新.氨水溶液制备ZnO纳米晶阵列的研究[J].无机化学学报,2006,22(11):2065-2069.
    [28]Yi, S.H., Choi, S.K., Jang, J.M., et al. Low-temperature growth of ZnO nanorods by chemical bath deposition[J]. Journal of Colloid and Interface Science,2007,313(2):705-710.
    [29]Yang, M., Yin, G.F., Huang, Z.B., et al. Well-aligned ZnO rod arrays grown on glass substrate from aqueous solution[J]. Applied Surface Science,2008, 254(10):2917-2921.
    [30]Wei, A., Sun, X.W., Xu, C.X., et al. Growth mechanism of tubular ZnO formed in aqueous solution[J]. Nanotechnology,2006,17(6):1740-1744.
    [31]杨红英,潘宁,朱苏康.无机紫外线屏蔽剂的功能机理研究[J].东华大学学报(自然科学版),2003,29(6):8-14.
    [1]Li, X.M., Reinhoudt, D., Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews,2007, 36(8):1350-1368.
    [2]Feng, X.J., Jiang, L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials,2006,18(23):3063-3078.
    [3]Genzer, J., Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling:a review[J]. Biofouling,2006, 22(5):339-360.
    [4]Zhang, X., Shi, F., Niu, J., et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry,2008, 18:621-633.
    [5]Roach, P., Shirtcliffe, N.J., Newton, M.I. Progess in superhydrophobic surface development[J]. Soft Matter,2008,4:224-240.
    [6]Guo, Z.G., Liu, W.M. Biomimic from the superhydrophobic plant leaves in nature:Binary structure and unitary structure[J]. Plant Science,2007, 172(6):1103-1112.
    [7]Barthlott, W., Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8.
    [8]Gao, X.F., Jiang, L. Water-repellent legs of water striders[J]. Nature,2004, 432(7013):36-36.
    [9]Daoud, W.A., Xin, J.H., Zhang, Y.H., et al. Pulsed laser deposition of superhydrophobic thin Teflon films on cellulosic fibers[J]. Thin Solid Films, 2006,515(2):835-837.
    [10]Zhang, J., France, P., Radomyselskiy, A., et al. Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film[J]. Journal of Applied Polymer Science,2003,88(6):1473-1481.
    [11]Zimmermann, J., Reifler, F.A., Fortunato, G., et al. A simple, one-step approach to durable and robust superhydrophobic textiles[J]. Advanced Functional Materials,2008,18(22):3662-3669.
    [12]Zimmermann, J., Rabe, M., Artus, GR.J., et al. Patterned superfunctional surfaces based on a silicone nanofilament coating[J]. Soft Matter,2008, 4(3):450-452.
    [13]Zimmermann, J., Artus, GR.J., Seeger, S. Superhydrophobic silicone nanofilament coatings[J]. Journal of Adhesion Science and Technology,2008, 22(3-4):251-263.
    [14]Zimmermann, J., Reifler, F.A., Schrade, U., et al. Long term environmental durability of a superhydrophobic silicone nanofilament coating[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007, 302(1-3):234-240.
    [15]Zimmermann, J., Artus, G.R.J., Seeger, S. Long term studies on the chemical stability of a superhydrophobic silicone nanofilament coating[J]. Applied Surface Science,2007,253(14):5972-5979.
    [16]Hoefnagels, H.F., Wu, D., De with, G., et al. Biomimetic superhydrophobic and highly oleophobic cotton textiles[J]. Langmuir,2007, 23(26):13158-13163.
    [17]Leng, B.X., Shao, Z.Z., De with, G., et al. Superoleophobic Cotton Textiles[J]. Langmuir,2009,25(4):2456-2460.
    [18]Stober, W., Fink, A.,Bohn, E. Controlled growth of monodisperse silica spheres in micron size range[J]. Journal of Colloid and Interface Science,1968, 26(1):62-69.
    [19]Greene, L.E., Law, M., Goldberger, J., et al. Low-temperature wafer-scale production of ZnO nanowire arrays[J]. Angewandte Chemie International Edition,2003,42(26):3131-3134.
    [20]Pacholski, C., Kornowski, A., Weller, H. Self-assembly of ZnO:From nanodots to nanorods[J]. Angewandte Chemie International Edition,2002, 41(7):1188一1191.
    [21]Zimmermann, J., Seeger, S., Reifler, F.A. Water shedding angle:A new technique to evaluate the water-repellent properties[J]. Textile Research Journal,2009,79(17):1565-1570.
    [22]Qin, Y., Wang, X.D., Wang, Z.L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature,2008,451(7180):809-813.
    [23]Wu, Y.L., Tok, A.I.Y., Boey, F.Y.C., et al. Surface modification of ZnO nanocrystals[J]. Applied Surface Science,2007,253(12):5473-5479.
    [24]Wagner, P., Furstner, R., Barthlott, W., et al. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces[J]. Journal of Experimental Botany,2003,54(385):1295-1303.
    [25]Young, T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London,1805,95:65-87
    [26]Nishino, T., Meguro, M., Nakamae, K., et al. The lowest surface free energy based on-CF3 alignment[J]. Langmuir,1999,15(13):4321-4323.
    [27]Wenzel, R.N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.
    [28]Cassie, A.B.D., Baxter, S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:0546-0550.
    [29]Gao, L.C., Mccarthy, T.J. "Artificial lotus leaf"prepared using a 1945 patent and a commercial textile[J]. Langmuir,2006,22(14):5998-6000.
    [30]Anantharaju, N., Panchagnula, M.V., Vedantam, S., et al. Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces[J]. Langmuir,2007,23(23):11673-11676.
    [31]Chen, W., Fadeev, A.Y., Hsieh, M.C., et al. Ultrahydrophobic and ultralyophobic surfaces:some comments and examples[J]. Langmuir,1999, 15(10):3395-3399.
    [32]Oner, D.,Mccarthy, T.J. Ultrahydrophobic surfaces. effects of topography length scales on wettability[J]. Langmuir,2000,16(20):7777-7782.
    [1]Akimov, Y.K. Fields of application of aerogels (Review)[J]. Instruments and Experimental Techniques,2003,46(3):287-299.
    [2]Dorcheh, A.S., Abbasi, M.H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008, 199(1-3):10-26.
    [3]Pierre, A.C., Pajonk, G.M. Chemistry of aerogels and their applications[J]. Chemical Reviews,2002,102(11):4243-4266.
    [4]秦国彤,门薇薇,魏微.气凝胶研究进展[J].材料科学与工程学报,2005,23(2):293-296.
    [5]Rao, A.V., Kalesh, R.R. Organic surface modification of TEOS based silica aerogels synthesized by co-precursor and derivatization methods[J]. Journal of Sol-Gel Science and Technology,2004,30(3):141-147.
    [6]Kim, C.Y., Jang, A.R., Kim, B.I., et al. Surface silylation and pore structure development of silica aerogel composites from colloid and TEOS-based precursor[J]. Journal of Sol-Gel Science and Technology,2008, 48(3):336-343.
    [7]Hwang, S.W., Kim, T.Y.,Hyun, S.H. Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying[J]. Microporous and Mesoporous Materials, 2010,130(1-3):295-302.
    [8]Aravind, P.R., Shajesh, P., Soraru, G.D., et al. Ambient pressure drying:a successful approach for the preparation of silica and silica based mixed oxide aerogels[J]. Journal of Sol-Gel Science and Technology,2010,54(1):105-117.
    [9]Rao, A.V., Nilsen, E., Einarsrud, M.A. Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method[J]. Journal of Non-Crystalline Solids,2001,296(3):165-171.
    [10]杨凯,庞佳伟,吴伯荣.二氧化硅气凝胶改性方法及研究进展[J].北京 理工大学学报,2009,29(9):833-877.
    [11]Hegde, N.D., Hirashima, H., Rao, A.V. Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor[J]. Journal of Porous Materials,2007,14(2):165-171.
    [12]Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P., et al. Superhydrophobic silica aerogels based on methyl trimethoxysilane precursor[J]. Journal of Non-Crystalline Solids,2003,330(1-3):187-195.
    [13]Rao, A.V., Bhagat, S.D., Hirashima, H., et al. Synthesis of flexible silica aerogels using methyl trimethoxysilane (MTMS) precursor[J]. Journal of Colloid and Interface Science,2006,300(1):279-285.
    [14]Kanamori, K., Aizawa, M., Nakanishi, K., et al. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties[J]. Advanced Materials,2007,19(12):1589-1594
    [15]Wright, J.D., Sommerdijk, N.A.J.M., Sol-gel Materials:chemistry and applications[M]. London:Taylor & Francis Books Ltd,2000, p24-26.
    [16]Scherer, G.W. Aging and drying of gels[J]. Journal of Non-Crystalline Solids, 1988,100(1-3):77-92.
    [17]Strom, R.A., Masmoudi, Y., Rigacci, A., et al. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation[J]. Journal of Sol-Gel Science and Technology,2007,41(3):291-298.
    [18]H(?)reid, S., Anderson, J., Einarsrud, M.A., et al. Thermal and temporal aging of TMOS-based aerogel precursors in water[J]. Journal of Non-Crystalline Solids,1995,185(3):221-226.
    [19]Colby, M.W., Osaka, A.,Mackenzie, J.D. Temperature dependence of the gelation of silicon alkoxides[J]. Journal of Non-Crystalline Solids,1988, 99(1):129-139.
    [20]Colby, M.W., Osaka, A.,Mackenzie, J.D. Effects of temperature on formation of silica gel[J]. Journal of Non-Crystalline Solids,1986,82(1-3):37-41.
    [21]Sefcik, J., Mccormick, A.V. Kinetic and thermodynamic issues in the early stages of sol-gel processes using silicon alkoxides[J]. Catalysis Today,1997, 35(3):205-223.
    [22]Dong, H.J., Brennan, J.D. Controlling the morphology of methylsilsesquioxane monoliths using a two-step processing method[J]. Chemistry of Materials,2006,18(2):541-546.
    [23]Kanamori, K., Aizawa, M., Nakanishi, K., et al. Elastic organic-inorganic hybrid aerogels and xerogels[J]. Journal of Sol-Gel Science and Technology, 2008,48(1-2):172-181.
    [1]H(?)reid, S., Anderson, J., Einarsrud, M.A., et al. Thermal and temporal aging of TMOS-based aerogel precursors in water[J]. Journal of Non-Crystalline Solids,1995,185(3):221-226.
    [2]Strom, R.A., Masmoudi, Y., Rigacci, A., et al. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation[J]. Journal of Sol-Gel Science and Technology,2007,41(3):291-298.
    [3]Scherer, G.W. Aging and drying of gels[J]. Journal of Non-Crystalline Solids, 1988,100(1-3):77-92.
    [4]Katti, A., Shimpi, N., Roy, S., et al. Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels[J]. Chemistry of Materials,2005,18(2):285-296.
    [5]Boday, D.J., Defriend, K.A., Wilson, K.V., et al. Formation of polycyanoacrylate-silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels[J]. Chemistry of Materials,2008, 20(9):2845-2847.
    [6]Leventis, N., Palczer, A., Mccorkle, L., et al. Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying[J]. Journal of Sol-Gel Science and Technology,2005,35(2):99-105.
    [7]Leventis, N., Sotiriou-Leventis, C., Zhang, G.H., et al. Nanoengineering strong silica aerogels[J]. Nano Letters,2002,2(9):957-960.
    [8]Boday, D.J., Stover, R.J., Muriithi, B., et al. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels[J]. ACS Applied Materials & Interfaces,2009,1(7):1364-1369.
    [9]Meador, M.A.B., Capadona, L.A., Mccorkle, L., et al. Structure-property relationships in porous 3D nanostructures as a function of preparation conditions:isocyanate cross-linked silica aerogels[J]. Chemistry of Materials, 2007,19(9):2247-2260.
    [10]Mulik, S., Sotiriou-Leventis, C., Churu, G., et al. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization[J]. Chemistry of Materials,2008, 20(15):5035-5046.
    [11]Martin, L., Osso, J.O., Ricart, S., et al. Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties [J]. Journal of Materials Chemistry,2008,18(2):207-213.
    [12]Wingfield, C., Baski, A., Bertino, M.F., et al. Fabrication of sol-gel materials with anisotropic physical properties by photo-cross-linking[J]. Chemistry of Materials,2009,21(10):2108-2114.
    [13]Ilhan, U.F., Fabrizio, E.F., Mccorkle, L., et al. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica[J]. Journal of Materials Chemistry,2006,16(29):3046-3054.
    [14]Nguyen, B.N., Meador, M.A.B., Tousley, M.E., et al. Tailoring elastic properties of silica aerogels cross-linked with polystyrene[J]. ACS Applied Materials & Interfaces,2009, 1(3):621-630.
    [15]Meador, M.A.B., Fabrizio, E.F., Ilhan, F., et al. Cross-linking amine-modified silica aerogels with epoxies:mechanically strong lightweight porous materials[J]. Chemistry of Materials,2005,17(5):1085-1098.
    [16]Meador, M.A.B., Weber, A.S., Hindi, A., et al. Structure-property relationships in porous 3D nanostructures:Epoxy-cross-linked silica aerogels produced using ethanol as the solvent[J]. ACS Applied Materials & Interfaces,2009, 1(4):894-906.
    [17]Leventis, N. Three-dimensional core-shell superstructures:Mechanically strong aerogels[J]. Accounts of Chemical Research,2007,40(9):874-884.
    [18]Dong, H.J., Brennan, J.D. Controlling the morphology of methylsilsesquioxane monoliths using a two-step processing method[J]. Chemistry of Materials,2006,18(2):541-546.
    [19]Kanamori, K., Aizawa, M., Nakanishi, K., et al. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties[J]. Advanced Materials,2007,19(12):1589-1594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700