用户名: 密码: 验证码:
直接甲醇燃料电池用新型质子交换膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜是直接甲醇燃料电池(DMFC)中的关键材料之一,阻止或减缓甲醇在质子交换膜中的渗透是DMFC研究中最富有挑战性的基础课题之一。本论文工作以提高质子交换膜的阻醇性能为目标,研制和探索了多种新型质子交换膜,考察了其结构与性能,制备了两种具有自主知识产权的阻醇型质子交换膜,获得了以下创新性成果:
     (1)首先建立了阻醇型质子交换膜的性能表征方法,主要包括甲醇透过系数的测定方法、电导率测定方法和复合膜中杂多酸稳定性的评价方法等,并组装了相应的测试装置,为研制阻醇型质子交换膜提供了研究手段。
     (2)以SiO_2、TiO_2、Al_2O_3和ZnO等纳米氧化物为改性剂,制备了的纳米氧化物/Nafio~(?)复合膜,XRD和IR分析表明纳米氧化物嵌入了Nation~(?)膜中。比较了这些复合膜性能,结果发现,复合膜的阻醇性能均有较大幅度的提高,且以SiO_2和TiO_2改性的Nafion~(?)膜最为明显,甲醇透过系数分别从-10~(-6)cm~2/s降低到-10~(-7)cm~2/s和-10~(-8)cm~2/s数量级。比较了不同SiO_2/含量的SiO_2/Nafion~(?)复合膜的性能,复合膜的质子电导率随着SiO_2含量的增大而减小,但其阻醇性能却随SiO_2含量的增大而增大。
     (3)首次制备了磷钨酸/二氧化硅/磺化聚醚醚酮(PTA/SiO_2/SPEEK)复合膜,XRD和IR测试结果表明二氧化硅和磷钨酸以无定形状态均匀分散于复合膜中。稳定性实验发现磷钨酸在复合膜有较好的稳定性,复合膜具有良好质子传导性能(在80℃下电导率达0.01S/cm)和阻醇性能(甲醇透过系数-10~(-7)cm~2/s),有望作为直接甲醇燃料电池用质子交换膜材料。
     (4)通过磺化反应把-SO_3H基团引入了聚醚砜(PES)的骨架,IR测试结果证明了磺化聚醚砜(SPES)中-SO_3H基团的存在。SPES膜在室温下的电导率和甲醇透过系数随着磺化度的增大而增大,当磺化度为31.2%的SPES膜的电导率达2.3×10~(-3)S/cm,甲醇透过系数在-10~(-7)cm~2/s;制备了PES/SPES共混膜,首次探讨了其阻醇性能,PES的加入导致甲醇透过系数降低,提高了膜的阻醇性能,当PES含量是50%时,甲醇透过系数降低到-10~(-9)cm~2/s。
     (5)制备了不同聚醚砜(PES)含量的聚醚砜/磺化聚醚醚酮(PES/SPEEK)共混膜。测试共混膜玻璃化转变温度发现,PES与SPEEK具有良好的相容性;共混膜的TGA测试结果显示,PES提高了SPEEK膜的热稳定性;与纯SPEEK膜相比,PES/SPEEK共混膜阻醇性能和溶胀性能有所提高,且PES含量增加,性能也逐步增加,当PES含量在30%时,甲醇透过系数在10~(-8)-10~(-9)cm~2/s之间,预示PES/SPEEK共混膜是一种良好的DMFC用质子交换膜材料。
     (6)制备了多种基于SPEEK的多层阻醇复合膜,提高了SPEEK等烃类膜的抗氧化能力。Nafion~(?)| SPEEK | Nafion~(?)和Nafion~(?)-TiO_2 | SPEEK | Nation~(?)-TiO_2多层复合膜的性能有所改善。首次制备了Nafion~(?)-TiO_2 | PES/SPEEK |Nafion~(?)-TiO_2多层复合膜,测试结果表明与PES/SPEEK相比,多层复合膜质子传导性能变化不大,但阻醇性能增加较大(P=-10~(-8)cm~2/s),而且抗氧化能力有较大幅度提高。讨论了多层阻醇复合膜抗降解机理,认为Nation~(?)保护层促进了中间物H_2O_2分解,抑制了·OH自由基的存在,从而阻止了多层复合膜的氧化降解,多层复合膜有望解决烃类膜普遍存在的降解问题。
Proton exchange membrane is one of the key materials in direct methanol fuel cell (DMFC). Perfluorosulfonate ionomer membranes( e.g. commercially available Nafion~(?) membranes, DuPont) have successfully been used in hydrogen-oxygen type proton exchange membrane fuel cell(PEMFC.).So Nafion~(?) membranes were used as PEM during the early years of the DMFC research. However, Nafion~(?) membranes have high methanol crossover for the water-dependence of proton conductivity, which has reduced cell efficiency of DMFC. These have motivated great efforts in developing new type proton exchange membranes (PEMs) based on different concept. The main aim of this work is to prepare novel PEMs with no or less methanol crossover. This thesis presents the preparation and characterization of novel PEMs for DMFC. The innovative achievements related to this aim are:
     (1) The methodology of membrane characterization was set up to evaluate the physical and chemical properties of the PEMs and characterize the membranes surface and cross-section morphologies. Gas chromatography was used to determinate methanol permeability through PEM according to solution diffusion mechanism. Proton conductivity measurements in normal direction were performed by the two-electrode AC impedance spectroscopy. Stability of phosphotungstic acid(PTA) in composite membrane was characterized by bledout experiment. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR) was measured to get information about the chemical structure of membranes. Characterization, to evaluate and improve the membranes obtained, is an important part of this work.
     (2) Nanometer oxide/Nafion~(?) composite membranes were prepared by solution casting. To realize good quality composite membranes, aliphatic alcohol and water in Nafion~(?) PFSA Polymer solution was firstly replaced by DMF under vacuum evaporation. XRD and ATR/FT-IR analysis showed that SiO_2、TiO_2、Al_2O_3 and ZnO were incorporated into Nafion~(?) polymer matrix. Compared with Nafion 112 membrane and blank Nafion~(?) membrane, methanol permeability of composite membrane decreased by a large extent, though proton conductivity of composite membrane decreased. SiO_2/Nafion~(?) and TiO_2/Nafion~(?) membranes have excellent methanol barrier performance, which permeability were about-10~(-8)cm~2/s at 25℃. The order of the proton conductivity and methanol permeability are SiO_2/Nafion~(?)>TiO_2/Nafion~(?)>Al_2O_3/Nafion~(?)>ZnO/Nafion~(?) and TiO_2/Nafion~(?)>SiO_2/ Nation~(?)>Al_2O_3/Nafion~(?)>ZnO/Nafion ~(?), respectively. It can be noticed that TiO_2/Nafion~(?) and SiO_2/Nafion~(?) have higher selectivity than Nafion~(?), Al_2O_3/Nafion~(?) and ZnO/Nafion~(?) membranes.
     (3) Novel PTA/SiO_2/SPEEK composite membranes were firstly prepared, which was one of innovations in this thesis. ATR/FT-IR spectrographic measurements indicated that the Keggin structure characteristics of PW_(12)O_(40)~(3-) anion was present in PTA/SiO_2/SPEEK composite membranes. XRD analysis of the composite membranes confirmed that PTA and SiO_2 were amorphous. It was found that the composite membranes had good proton conductivity(σ=0.01S/cm at 80℃) and low methanol permeability(P≈-10~(-7)cm~2/s).Due to enhancement of the PTA stability in composite membranes by doped SiO_2,PTA/SiO_2/SPEEK composite membranes have a potential to be considered for direct methanol fuel cells (DMFC) applications.
     (4) Sulfonated poly (ether sulfone) (SPES) was synthesized with chlorosulfonic acid as sulfonating agent and methylene chloride as solvent at room temperature. The presence of sulfonic acid groups in SPES was identified by FT-IR Spectra. SPES Membranes and PES/SPES Blend Membranes were cast from solutions using N,N-dimethyllformamide(DMF). Both proton conductivity and methanol permeability of SPES membranes increased with the degree of sulfonation(DS), when DS=31.2%,σ=2.3×10~(-3) S/cm,P≈-10~(-7)cm~2/s. It was found that with the increasing of the PES content in PES/SPES blend membranes, methanol permeability of blend membranes decreased(P≈-10~(-9)cm~2/s when PES content is 50 %).Proton conductivity of blend membranes decreased due to the content of sulfonic acid groups decreased resulted from addition of PES. It was concluded that both SPES and PES/SPES blend membranes had lower methanol permeability and high proton conductivity.
     (5) PES/SPEEK blend membranes with various PES content were prepared by casting from solutions. The glass transition temperatures of blend membranes indicated the molecular miscibility between PES and SPEEK. It was found that methanol permeability of blend membranes decreased with the increase of PES content due to the formation of H bond between O=S=O group in PES and -SO_3H group in SPEEK. Though the proton conductivity of PES/SPEEK blend membranes decreased to some extent, their performance for barrier methanol(P≈10~(-8)-10~(-9)cm~2/s when PES content is below 30%) had remarkably enhanced, which showed the feasibility for direct methanol fuel cell.
     (6) SPEEK-Nafion~(?) multilayered composite membranes were also prepared by spraying two Nafion~(?) coated layers on both sides of basic SPEEK membranes to prevent SPEEK membranes from oxidating and degradating in fuel cells. Compared to the blank SPEEK membrane,the properties of Nafion~(?) | SPEEK |Nafion~(?) and Nafion~(?)- TiO_2 | SPEEK | Nafion~(?)- TiO_2 multilayered composite membranes were improved. Nafion~(?)-TiO_2 | PES/SPEEK | Nafion~(?)-TiO_2 multilayered composite membranes were firstly prepared, which was another important innovation in this thesis. The Fenton experiments indicated that the longevity of multilayered composite membranes was enhanced for Nafion~(?) coated layers protect the SPEEK membrane from degradation due to Nafion~(?) layer prevented·OH radical from attacking Ar-O-Ar band, which suggested that these novel membranes were excellent candidate membrane materials for DMFCs applications.
     There are 85 pictures,10 tables and 168 references in this thesis.
引文
[1] James Larminie, Andrew Dicks. Fuel Cell Systems Explained[M]. John Wiley & Sons Ltd,Chichester, England, 2003, 1-24.
    [2] 衣宝廉.燃料电池-原理·技术·应用[M].北京化学工业出版社,2003,1-61.
    [3] 毛宗强.可再生能源丛书-燃料电池[M].北京化学工业出版社,2005,1-32.
    [4] 日本电气学会编著,谢晓峰、范星河译,燃料电池发电21世纪系统技术调查专门委员会.燃料电池技术(中译本) 北京:化学工业出版社,2004,1-48.
    [5] Ballard公司网站,http://www.ballard.com/
    [6] 中国新能源网,http://www.newenergy.org.cn/
    [7] 国家中长期科学和技术发展规划纲要(2006-2020年),中国政府门户网站,http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [8] 中国可再生能源网,http://www.crein.org.cn/
    [9] 陈振兴.高分子电池材料[M],北京化学工业出版社,2005:377-380
    [10] 胜光科技网站,http://www.antig.com/t_Chinese/tech.html
    [11] 美国Du Pont公司(Nafio~((?)(?))膜),http://www.dupont.com/fuelcells/index.html;日本Asahi公司(Aciplex~(?)膜),http://www.asahi-america.com/;日本Asahi Glass公司(Flemion~(?)膜),http://www.agc.co.jp/english/index_text.html;美国Dow公司网站,http://www.dow.corn/;山东东岳集团公司,http://www.dongyuechem.com/
    [12] 方度,杨维驿.全氟离子交换膜-制法、性能和应用[M].北京:化学工业出版社,1993.
    [13] Sondheimer S J, Fyee C A, Fyee C A, Journal of Macromolecular Science: Reviews in Macromolecular Chemistry and Physics, 1986, C26 (3): 353.
    [14] Yeager H L. Perfluorinated Ionomer Membranes. ACS Symposium Series, Washington, DC,1982, 180: 41.
    [15] Robertson M A F . The nature of microphase separation in perfluorinated ionomers[D]. Ph. D. Thesis, University of Calgary, 1994.
    [16] Yeager H L, Steck A. Cation and water diffusion in Nafion ion. exchange membranes:influence of polymer structure[J]. J. Electrochem. Soc.1981, 128: 1880-1884.
    [17] Eisenberg A, Hird B,Moore,R B.A new multiplet cluster model for the morphology of random ionomers[J]. Macromolecules 1990, 23: 4098-4114.
    [18] Gierke T D, Munn G E, Wilson F C, et al.The morphology in Nafion~(?) perfluorinated membrane product, as determined by wide-and small- angle X -ray studies[J].J Polym Sci, 1981, 19: 1687-1704.
    
    [19] Gierke T D, Hsu W Y. The cluster—network model of ion clustering in perfluorosulfonated membranes[A] . Eisenberg A, Yeagerh L. Pefluorinated Iomer Membranes ACS Syrup [C]. Washington DC: American Chemical Society, 1982, 283-307.
    
    [20] Samms S R, Wasmu sS, Savinell R F, Thermal stability of Nafion~? in simulated fuel cell environments[J], J. Electrochem. Soc. , 1996, 143 (5) : 1498-1504.
    [21] Wang J T, Wasmus S, Savinell R F. Real—time mass spectrometric study of the methanol crossover in a direct methanol fuel cell[J]. J. Electrochem. Soc. , 1996, 143(4): 1233 — 1239.
    [22] Ren X. , Zawodzinske T. A. and Uribe F. et al. Proton Conducting Membrane Fuel Cells,Gotesfeld S. , Halpart G. andLandgrebe A. Editors, PV 95—23, p284. The Electrochemical Society Proceedings Series, Pennington, N J (1995) .
    
    [23] Edmondson C A, Stallworth P E and Wintersgill M C et al. Electrical conductivity and NMRstudies of methanol/water mixtures in Nafion~? membranes. Electrochimica Acta[J], 1998, 43(10-11) : 1295-1299.
    
    [24] John C, Keith S, The degree and effect of methanol crossover in the directmethanol fuel cell,J. Power Sources, 1998, 70: 40-47.
    
    [25] Kuver A, Vielstich W, Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system[J]. J. Power Sources, 1998, 74: 211-218.
    
    [26] (1) Kerres A. Development of ionomer membranes for fuel cells[J]. Journal of Membrane Science, 2001, 185: 3-27. (2) Li Qingfeng, He Ronghuan, Jensen Jens Oluf, et al. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃[J]. Chem. Mater. 2003, 15: 4896-4915.
    
    [27] Mauritz A, Moore B. State of Understanding of Nafion~?[J]. Chem. Rev. 2004, 104: 4535-4585.
    
    [28] Michael A. Hickner A, Ghassemi H, Kim Y S, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) [J]. Chem. Rev. 2004, 104: 4587-4612.
    [29]Zaidi S. M. J., Mikhailenko S. D., Robertson G. P., et al.. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. J. Membr. Sci. [J], 2000, 173: 17-34.
    
    [30] Lufrano F , Gatto I , Staiti P, et al. Sulfonated polysulfone ionomer membranes for fuel cells[J]. Solid State Ionics, 2001, 145: 47-151.
    
    [31] Iwasaki K, Yamamoto T, Terahara A, et al. Polymer electrolyte and process for producing the same[P]. US 6087031, 2000-06-11.
    [32] Edmondson C A , Fontanella J J , Chung S H, et al. Complex impedance studies of S-SEBS block polymer proton-conducting membranes[J]. Electrochimica Acta, 2001, 46: 1623 - 1628.
    [33] Mokrini A, Acosta J L. Studies of sulfonated block copolymer and its blends[J]. Polymer,2001, 42 (1) : 9-15.
    [34] Honma I, Takeda Y, Bae J M. Protonic conducting properties of sol -gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules[J]. Solid State Ionics, 1999, 120 (1-4) : 255-264.
    [35] Li Xianfeng, Chen Dongju, Xu Dan, SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages, Journal of Membrane Science, 2006, 275:134-140.
    [36] 邱新平,史萌等.一种聚偏氟乙烯枝接聚苯乙烯磺酸质子交换膜的制备方法[P].CN1330425,2002.
    [37] Min -Kyu Song, Young-Taek Kim, James M. Fenton, et al. Chemically-modified Nafion~(?) 1/poly (vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells,Journal of Power Sources 2003, 117:14-21.
    [38] Bailly C, Williams D J, Karasz F E, et al. The sodium salts of sulphonated poly (aryl ether-ether-ketone) PEEK preparation and characterization[J]. Polymer, 1987, 28: 1009.
    [39] Rikukawa, M. , Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers[J]. Prog. Polym. Sci. 2000, 25, 1463-1502.
    [40] Guo Q, Pintauro P N, Tang H, et al. Sulfonated and crosslinked polyphosphazene basedp roton-exchange membranes[J].J Membr Sci,1999,154 (2) :175-181.
    [41] Kim J, Kim B,Jung B.Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers[J]. JMembrSci, 2001, 207: 129-137.
    [42] 周其风,胡汉杰.高分子化学[M].北京:化学工业出版社,2001.
    [43] Jung D H, Cho S Y, Peck D H, et al. Performance evaluation of a Nafion~(?)/silicon oxide hybrid membrane for direct methanol fuel cell[J]. J Power Sources, 2002, 106: 173-177.
    [44] Weilin Xu, Changpeng Liu, Xinzhong Xue et al. New proton exchange membranes based on poly (vinyl alcohol) for DMFCs.Solid State Ionics 171 (2004) 121-127.
    [45] Costamagna P, Yan C , Bocarsly A B,et al. Nafion~(?)115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃[J]. Electrochimica Acta, 2002,47:1023-1033.
    [46] Ponce, M. L. , Prado, L. A. S. U., Silva,V.Membranes for direct methanol fuel cell based on modified heteropolyacids[J]. Desalination, 2004, 162: 383-391.
    [47] 李磊,许莉,王宁新.磷钨酸/磺化聚醚醚酮质子导电复合膜[J].高等学校化学学报,2004,25(2):388-390.
    [48] Wu H.Ma C,Liu F, et al.Preparation and characterization of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend membranes[J]. European Polymer Journal, 2006, 42:1688-1695.
    [49] Ren Suzhen, Sun Gongquan, Li Chennan et al.Sulfonated poly (ether ether ketone)/polyvinylidene fluoride polymer blends for direct methanol fuel cells[J]. Materials Letters,2006,60(1), 44-47.
    [50] 宋文生,李磊,王宇新,等.磺化聚醚醚酮与聚砜共混膜导电与传质特性研究[J].膜科学与技术,2004,24(3):15-19.
    [51] 吴洪.直接甲醇燃料电池用阻醇质子导电膜的研究[D].天津大学博士论文,2000,6.
    [52] Faure S, Mercier R, Aldebert P, et al. Sulphonated polyimides, membrane and fuel cell[P]. FR 9742253,1997-11-13.
    [53] Genies G,Mercier R, Sillion B,et al.Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes[J]. Polymer,2001,42:359-373.
    [54] Hatanaka T, Hasegawa N, Kamiya A,et al.Cell performances of direct methanol fuel cells with grafted membranes[J]. Fuel, 2002, 81: 2173-2176.
    [55] Hietala S T, Maunu S L,SundholmF. Sorption and diffusion of methanol and water in PVDF-g-PSSA and nation (r) 117 polymer electrolyte membranes[J]. J Polym Sci:Part B: Polym Phy.2000.38:3277-3284.
    [56] 李文琼,邱新平.聚偏氟乙烯溶液法接枝苯乙烯磺酸膜的结构与形貌研究[J].功能高分子材料,2004,17:452-456.
    [57] Bae B., Chun B. H., Ha H.Y.,et al. Preparation and characterization of plasma treated PP composite electrolyte membranes[J], Journal of Membrane Science, 2002, 202:245-252.
    [58] Jongok Won, Sang Wook Choi, Yong SooKang, etal. Structure Characterization and Surface Modification of Sulfonted Polystyrene- (ethylene-butylene) -styrene Triblock Proton Exchange Membranes[J], Journal of Membrane Science, 2003, 214: 245-257.
    [59] Choi W C, Kim J D, Woo S I. Modification of proton conducting membrane for reducing methanol crossover in a direct- methanol fuel cell[J]. J Power Sources, 2001, 96 (2):411-414.
    [60] Cong, wenhua H, et al.A methanol imper meable proton conducting composite elect rolyte system[J]. JElectrochem Soc,1995,142(7):L119-L120.
    [61] Yoon S R, Hwang G H, et al.Modification of polymer electrolyte membrane for DMFCS using Pd films[J]. J. Power Sources, 2002, 106: 215-223.
    [62] Bo Yang, Arumugam Manthiram, Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells[J],Electrochemistry Communications, 2004, 6 : 231-236.
    [63] Hyun Jae Kim. Hyun Jong Kim. Yong Gun Shu,Nafion -Nafion /polyvinylidene fluoride-Nation~(?) laminated polymer membrane for direct methanol fuel cells[J], Journal of Power Sources, 2004,135: 66-71.
    [64] 黄倬,屠海令,张冀强,著.质子交换膜燃料电池的研究开发与应川[M].北京,冶金工业出版社,2002.
    [65] Kruczek B, MatsuuraT. Development and characterization of homogeneous membranes de from high molecular weight sulfonated polyphenylene oxide[J]. MembrSci, 1998,146: 263-275.
    [66] Wang F,Hickner M,Kim Y S,Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes[J]. J Membr Sci,2002, 197: 231-242.
    [67] Wilhelm FG,PuntI GM,VaMerVegt N FA,et al.Cation permeable membranes from blends of sulfonated poly(ether ether ketone) and poly(ether sulfone) [J]. J Membr Sci, 2002, 199:167-176.
    [68] Gao Y,Robeasn G P,Guiver M D,Jian X G.Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials [J ]. J Polym Sci, Part A:PolymChem, 2003, 41: 497-07.
    [69] 任素贞.直接甲醇燃料电池用新型质子交换膜(SPEEK)的研究[D].博十学位论文:大连理工大学,2005,8.
    [70] 刘富强.质子交换膜燃料电池复合膜的研究[D].硕士学位论文:中国大连化学与物理研究所,2002.
    [71] Bahar B,Hobson A.R.,KoldeJ. A., etal. Ultra梩hinintegral composite membrane[P],US Patent 5, 547, 551 (1996).
    [72] R. F. Silva, M. De Francesco, A. Pozio. Tangential and normal conductivities of Nafion membranes used in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2004, 134: 18-26.
    [73] Zawodzinski T A. Neeman Jr M, Sillerud L O,et al.Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes[J], J. Phys. Chem.,1991, 95: 6040-6044.
    [74] Summer J J, Creager S E,Ma J J,et al.,Proton conductivity in Nafion~(?) 117 and in a novel bis[ (perfluoroalkyl) sulfonyl]imide ionomer membrane[J], J. Electrochem. Soc.,1998, 145(1):107-110.
    [75] Li Qiao. Improvement and characterization of polymer electrolyte membranes for fuel cell applications[D].Doctoral dissertation of the University of Alabama, 2001.
    [76] Gerald Pourcelly, Angeliki Oikonomou. Claude Gavach, Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes[J].J.Electroanal.Chem., 1990,287:43-59.
    [77] Finsterwalder F , Hambitzer G . Proton conductive thin films prepared byplasma polymerization[J]. Journal of Membrane Science, 2001,185:105-124.
    [78] 李磊.直接甲醇燃料电池聚合物电解质的研究[D].博士学位论文:天津大学,2003.
    [79] William YH, John R B,Paul M,Ion percolation and insulator-to-conductor transition in Nafion~(?) perfluorosulfonic acid membranes, Macromolecules[J],1980, 13: 198-200.
    [80] 徐又一,徐志康.高分子膜材料[M].化学工业出版社:北京,2005.
    [81] 陈建新,吴洪.分离膜透过系数的测量[J].仪器仪表学报,2002,23(3):58-59.
    [82] Mukoma P.,Jooste B.R.,Vosloo H.C.M..A comparison of methanol permeability in Chitosan and Nafion~(?) 117 membranes at high to medium methanol concentrations[J].Journal of Membrane Science, 2004, 243: 293-299.
    [83] Park Young-Sun, Yamazaki Yohtaro. Low methanol permeable and high proton-conducting Nafion~(?)/calcium phosphate composite membrane for DMFC[J]. Solid State Ionics, 2005, 176:1079-1089.
    [84] Ramya K,Dhathathreyan K S.Direct Methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane[J]. J Electroanal Chem,2003, 542:109-115.
    [85] 吴洪,王宁新,王世昌,聚乙烯醇膜的阻醇及导电性能研究(Ⅰ)热处理聚乙烯醇膜.高分子材料科学与工程,2003,19(2):172-175.
    [86] 于景荣,衣宝廉,邢丹敏等,燃料电池用磺化聚苯乙烯膜降解机理及其复合膜的初步研究[J],高等学校化学学报,2002,23:1792-1796.
    [87] Alexander Panchenko. DFT investigation of the polymer electrolyte membrane degradation caused by OH radicals in fuel cells[J]. Journal of Membrane Science,2006, 278: 269-278.
    [88] Hubner, G., Roduner, E. EPR investigation of HO/ radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes[J]. J. Mater. Chem. 1999, 9, 409-418.
    [89] Kosmala B, Schauer J. Ion exchange membranes by blending sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) with polybenzimidazole[J]. J Appl Polym Sci,2002, 85: 1118-1127.
    [90] 衣宝廉.燃料电池-原理·技术·应用[M].北京:化学工业出版社,2003,336-382.
    [91] 朱红,衣宝廉译(詹姆斯·拉米尼,安德鲁·迪克斯著),燃料电池系统-原理·设计·应用[M].北京:科学出版社,2006.
    [92] 毛宗强.燃料电池[M].北京:化学工业出版社,2005,225-228.
    [93] Deluca N W,Elabd YA,Polymer electrolyte membranes for the direct methanol fuel cell: A review[J], Journal of Polymer Science Part B-Polymer Physics,2006,44 (16):2201-2225 AUG15.
    [94] Viral Mehta, Joyce Smith Cooper. Review and analysis of PEM fuel cell design and manufacturing[J].Journal of Power Sources, 2003, 114, 32-53.
    [95] Claude Lamy,Alexandre Lima, et al,Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. Journal of Power Sources, 2002, 105: 283-296.
    [96] 中国科学院化学物理研究所色谱组.气相色谱手册[M].科学出版社:北京,1977.
    [97] 黄君礼.水分析化学[M],中国建筑工业出版社:北京,1997.
    [98] 常沁春,刘文君,陈丽华.毛细柱气相色谱法测定水和废水中的甲醇[J].中国环境监测,2002,18(3):15-16.
    [99] 常加林,陈世埏.合成甲醇液相产物的气相色谱分析[J].化学工业与工程技术,1998,19(1):51-54.
    [100] Savadogo O.Emerging membranes for electrochemical systems(1): Solid polymer electrolyte membranes for fuel cell systems[J]. J. New Mat. Electrochem. Systems,1998,1:47-65.
    [101] 徐琳,王乃岩,霸书红等.傅里叶变换衰减全反射红外光谱法的应用与进展[J].光谱学与光谱分析,2004,24(3):317-319
    [102] http: //www. micromemanalytical.com/ATR_Ken/ATR.htm
    [103] 吴培熙、张留城.聚合物共混改性[M].北京:中国轻工业出版社,2005.第4章
    [104] Rozière J, Jones D J. Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res, 2003, 33: 503-555.
    [105] 刘朝玮,王保国,何小荣.质子交换膜燃料电池研究及应Hj现状[J].现代化工,2004,24(9):10-13.
    [106] 史萌,邱新平.Nafion~(?)膜在直接甲醇燃料电池中的应用及改进[J].化学通报,2001,64(8):488-491,487.
    [107] 刘启志,浦鸿汀,廖欣.直接甲醇燃料电池用Nafion~(?)膜及其改性研究进展[J].胶体与聚合物,2004,22(3):28-30,39.
    [108] Park H S, Kim Y J, Hong W H, et al. Physical and electrochemical properties of Nafion~(?)/polypyrrole composite membrane for DMFC[J].J Membr Sci,2006, 272: 28-36.
    [109] Cho K Y, Eom J Y, Jung H Y, et al. Characteristics of PVdF copolymer/Nafion~(?) blend membrane for direct methanol fuel cell (DMFC) [J]. Electrochimica Acta, 2004, 50:583-588.
    [110] Jung D H, Cho S Y, Peck D H. Performance evaluation of a Nafion /silicon oxide hybrid membrane for direct methanol fuel cell[J]. J Power Soueces, 2002, 106:173-177.
    [111] Jiang R C, Kunz H R, Fenton J M. Composite silica/Nafion membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells[J]. J Membr Sci, 2006, 272: 116-124.
    
    [112] Baglio V, Arico AS, Blasi A D. Nafion~?—TiO2 composite DMFC membranes: physical—chemical properties of the filler versus electrochemical performance[J]. Electrochimica Acta,2005, 50: 1241-1246.
    
    [113] Baglio V, Blasi A D, Blasi A D, et al. Composite mesoporous Titania Nafion~?—based membranes for direct methanol fuel cell operation at high temperature[J]. J Electrochem Soc,2005, 152 (7): 1373-1377.
    
    [114] Arico A S, Baglio V, Blasi A D, et al. Influence of acid—base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells[J]. Solid State Ionics, 2003, 161: 251-265.
    
    [115] Moore R B, Martin C R. Morphology and chemical properties of the Dow perfluorosufonate ionomers[J]. Macromolecules, 1989, 22: 3594—3599.
    
    [116] Chu D, Gervasio D, Razaq M, et al. , Infrared reflectance absorption spectroscopy ( IRRAS ). Study of the thermal stability of perfluorinated sulphonic acid ionomers on Pt[J]. J. Appl. Electrochem., 1990, 20: 157-162.
    
    [117] Luneau G., Denoyelle A., Sanchez J. Y., Poinsignon C. , Organic-inorganic protonic polymer electrolytes as membrane for low—temperature fuel cell[J]. Electrochem. Acta, 1992,37: 1615.
    
    [118] Heitner — Wirguin C . Infra — red spectra of perfluorinated cation — exchanged membranes[J]. Polymer, 1979, 20: 371.
    
    [119] Falk M . An infrared study of water in perfluorosulfonate ( Nafion~?) membranes[J]. Can. J. Chem., 1980, 58: 1495-1501.
    
    [120] Jung D. H., Cho S. Y., Peck D. H. et al. Performance evaluation of a Nafion~?/silicon oxide hybrid membrane for direct methanol fuel cell[J]. Journal of Power Sources, 2002, 106: 173-177.
    [121] Baglio V., Arico A. S., Blasi A. Di, et al. Nafion~?-TiO_2 composite DMFC membranes:physico-chemical properties of the filler versus electrochemical performance[J]. Electrochimica Acta 2005, 50: 1241-1246.
    
    [122] Dimitrova P., Friedrich K. A., StimmingU., Modified Nafion~?—based membranes for use in direct methanol fuel cells[J]. Solid State Ionics, 2002, 150: 115 — 122.
    [123] Dimitrova P., FriedrichK. A., VogtB., et al., Transport properties of ionomer composite membranes for direct methanol fuel cells[J]. J. Electroanal. Chem., 2002, 532: 75—83.
    [124] Miyake N., Wainright J. S., Savinell R. F., Evaluation of a sol—gel derived Nafion~?/silica hybrid membrane for proton electrolyte membrane fuel cell applications II. methanol uptake and methanol permeability[J]. J. Electrochem. Soc., 2001, 148 (8): 905-909.
    [125] Kreuer K D, Fuchs A, Ise M, et al. Imidazole and pyrazole—besed proton conducting polymers and liquids[J]. Electrochimica Acta, 1998, 43: 1281 — 1288.
    
    [126] Bonnet B., Jones DJ, RoziereJ., etal., [J]. J. New Mater. Electrochem. Syst. 2000,3: 87.
    
    [127] Kaliaguine Serge, Mikhailenko Sergei, Zaidi S. M. Javak. Composite electrolyte membranes for fuel cells and methods of making same[P]. United States Patent, 6, 716, 548, April 6, 2004.
    [128] Goedel Werner A, Jaumann Manfred, Moeller Martin, et al. Method for manufacturing composite membranes[P]. United States Patent 6, 953, 634, October 11, 2005.
    [129] Staiti P., Freni S., Hocevar S.. Synthesis and characterization of protonconducting materials containing dodecatungstophosphoric and dodecatungstosilicacid supported on silica[J]. J. Power Sources, 1999, 79: 250-255.
    
    [130] Luisa Di Von M., Marani D., D'Epifanio A. et al.. Crosslinked Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes[J]. Polymer, 2005, 46: 1754—1758.
    [131] Luiz A. M. Cardoso a, 1, Walter Alves. Jr. a, Angelica R. E. Gonzaga, et al. Friedel-Crafts acylation of anisole with acetic anhydride over silica—supported heteropolyphosphotungstic acid (HPW/SiO2). Journal of Molecular Catalysis A: Chemical 209 (2004) 189-197.
    [132] Nunes S. P., Ruffmann B., Rikowski E., et al. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells[J]. J Membr Sci, 2003, 203: 215—225.
    [133] Lee. Y., AraiT., NakataS. etal. Catalysis by Heteropoly Compounds. 20. ~+An NMR Study of Ethanol Dehydration in the Pseudoliquid Phase of 1 2 — Tungstophosphoric Acid[J] J. Am. Chem. Soc., 1992, 114: 2836-2842.
    
    [134] Shao Zhi—Gang, Joghee P., Hsing I—Ming. Preparation and characterization of hybrid Nafion~? silica mmbrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells[J]. J. Membr. Sci., 2004, 229: 43—51.
    [135] Pang Jiebin, Na Hui, Lu Yunfeng. Effect of ionic polymer on cetyltrimethyl ammonium bromide templated synthesis of mesoporous silica[J]. Microporous and Mesoporous Materials,2005, 86: 89-95.
    
    [136] Ahmad M. Irfan, S. M. Javaid Zaidi, Shakeel Ahmedb, Proton conducting composites of heteropolyacids loaded onto MCM—41 [J]. Journal of Power Sources, 2006, 157: 35-44.
    [137] Zaidi S. M. J., Ahmad M. I. Novel SPEEK/heteropolyacids loaded MCM—41 composite membranes for fuel cell applications[J]. Journal of Membrane Science, 2006, 279: 548-557.
    [138] Mikhailenko S. D., Zaidi S. M. J., Kaliaguine S.. Sulfonated polyether ether ketone based composite polymer electrolyte membranes[J]. Catalysis Today, 2001, 67: 225-236.
    [139] Smitha B., Sridhar S., Khan A. A.. Solid polymer electrolyte membranes for fuel cell applications-a review[J]. Journal of Membrane Science. 2005,259:10-26.
    [140] Kice J. L.,Puls A.R..The reaction of hypochlorite with various oxidized derivatives of disulfides and with sulfinations[J],J.Am.Chem.Soc.1977,99:3455.
    [141] 张德庆,张东兴,刘立柱等.高分子材料科学导论.哈尔滨:哈尔滨工业大学出版社,1999:182.
    [142] Nohe R,Ledjef K, Bauerb M, et al.Partially sulfonated poly (arylene ether sulfone) A versatile proton conducting membrane material for modern energy conversion technologies[J].J MembrSci,1993,83:211-220.
    [143] Rong Guan, Hua Zou, Deping Lu, Chunli Gong et al,Polyethersulfone sulfonated by chlorosulfonic acid andits membrane characteristics[J].European Polymer Journal 2005,41:1554-1560.
    [144] Ma Chengsong, Zhang Lei, Mukerjee Sanjeev, et al.An investigation of proton conduction in select PEM's and reaction layer interfaces-designed for elevated temperature operation[J]. Journal of Membrane Science, 2003, 219: 123-136.
    [145] 蒲通,曾作祥,磺化聚醚砜的制备方法,CN1267676,2000.09.27.
    [145] 吕慧娟,申连春,王彩霞,等.聚醚砜的磺化及表征[J].高等学校化学学报,1998,19(5):833-835.
    [146] 任彦荣,李志强.磺化聚醚砜的研究及其应用进展[J].化学推进剂与高分子材料,2005,3(2):23-27.
    [147] Krishnan N N, Kima H J, et al.Synthesis and characterization of sulfonated poly (ether sulfone) copolymer membranes for fuel cell applications[J]. J Power Sources, 2006, 158:1246-1250.
    [148] Ueda M, Toyota H,Ouchi T, et al.Synthesis and characterization of aromatic poly (ether suflone) s containing pendant sodium sulfonate groups[J]. J Polym Sci Part A:Polym Chem,1993,31:853-858.
    [149] Kim I C,Choi J G,Tak T M.Sulfonated polyethersulfone by heterogeneous method and its membrane performances[J].J Appl Polym Sci, 1999;74:2046.
    [150] 代化,邹华,许晶,等.磺化聚醚砜质子交换膜的制备及性能研究[J].现代塑料加工应用,2006,18(3):22-25.
    [151] Swier S,Ramani V,Fenton J M,et al.Polymer blends based on sulfonated poly(ether ketone ketone) and poly (ether sulfone) as proton exchange membranes for fuel cells[J]. J Membr Sci,2005, 256: 122-133.
    [152]Ponce M L,Prado L,Ruffmann B,Richau K,Mohr R,Nunes S P.Reduction of methanol permeability in polyetherketone-heteropolyacid membranes[J]. J Membr Sci 2003;217: 5-15.
    [153]Ruffmann B, SilvaH, SchulteB, Nunes SP. Organic/inorganic composite membranes for application in DMFC[J]. Solid State Ion 2003: 162-3, p. 269-275.
    
    [154]Cui W, Kerres J, Eigenberger G. Development and characterizationof ion—exchange polymer blend membranes[J]. SepPuri Tech 1988;14: 145-154.
    
    [155] Manea Carmen , Mulder Marcel . Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications[J]. Journal of Membrane Science. 2002, 206: 443-453.
    
    [156] Wilhelm FG, Punt IGM, van der Vegt NFA, Strathmann H, WesslingM. Cation permeable membranes from blends of sulfonated poly (ether ether ketone) and poly (ether sulfone) [J]. J Membr Sci 2002, 199: 167-176.
    
    [157] Richard Bowen W, Doneva TA, Yin HB. Polysulfonesulfonated poly (ether ether) ketone blend membranes: systematic synthesis and characterization[J]. J Membr Sci 2001, 181: 253-263.
    
    [158] Nam K, Xu H, Cao S, Olmeijer D, Servaites J, Wang Y. International Patent WO 03/062493;2003.
    
    [159] Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system[J]. Bull Am Phys Soc 1956,1:123.
    
    [160] Kwei TK. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures[J]. JPolym Sci, Polym Lett Ed 1984, 22: 307-13.
    
    [161] Tang, Haolin; Pan, Mu; Jiang, Sanping et al, Self—assembling multi—layer Pd nanoparticles onto Nation~? membrane to reduce methanol crossover[J] , Colloids and Surfaces A :Physicochem. Eng. Aspects, 2005, 262: 65-70.
    
    [162] Kim Dong Wook, Choia Hwa —Sup, Lee Changjin et al, Investigation on methanol permeability of Nafion~? modified by self — assembled clay — nanocomposite multilayers[J],Electrochimica Acta, 2004, 50: 659-662.
    
    [163] Sheng—Li Chena, A. B. Bocarsly, J. Benziger, Nafion~?—layered sulfonated polysulfone fuel cell membranes[J], Journal of Power Sources, 2005, 152: 27-33.
    
    [164] Marrony M. , Roziere J. , Jones D. J. , et al, Multilayer Sulfonated Polyaromatic PEMFC Membranes, Fuel Cells, 2005, 5 (3) : 412-418.
    
    [165] Hobson L. J. , NakanoY. , etal, Targeting improved DMFC performance[J], Journal of Power Sources, 2002, 104: 79-84.
    
    [166] Ren Suzhen, Li Chennan, Zhao Xinsheng. Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion~? solution for direct methanol fuel cells[J], Journal of Membrane Science, 2005, 247: 59-63.
    
    [167] Zhang L, Mukerjee S. Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application[J]. J Electrochem Soc, 2006, 153: A1062-A1072.
    [168] Mantegazza M. A., Petrini G. SpanoG. , et al. Selective oxidations with hydrogen peroxide and titanium silicalite catalyst[J], J. Mole. Catal. A: Chem. 1999,146: 223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700