用户名: 密码: 验证码:
血管内皮细胞和α-磷酸三钙促进骨髓基质干细胞成骨分化作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于肿瘤、外伤、炎症、畸形等因素所造成骨破坏的治疗一直是口腔医学领域的难题,利用组织工程技术构建人工骨进行骨缺损的治疗是目前主要的研究方向之一,而骨组织工程存在的主要问题是所构建的人工骨成骨能力有限。通过建立功能性微血管环境可以满足种子细胞新陈代谢需求,进一步促进新骨形成以及参与细胞间的相互作用。由于血管在骨形成中具有重要作用,使得血管内皮细胞(endothelial cells,ECs)在骨组织工程中应用被广泛关注,但其来源有限,且不易扩增。骨髓基质干细胞(bone mesenchymal stemcells,BMSCs)在骨髓中大量存在,容易获取,且有向血管内皮细胞等多向分化的潜能。因此,我们首先分离了兔的BMSCs作为种子细胞,经内皮细胞条件培养液中诱导培养,利用内皮细胞表面标记物CD34免疫组化染色证明其诱导的细胞为血管内皮细胞。体外以单纯BMSCs为对照组,ECs和BMSCs共培养为实验组,通过碱性磷酸酶活性检测、考马斯亮蓝总蛋白测定、碱性磷酸酶和茜素红染色,结果表明,ECs对BMSCs向成骨细胞分化具有促进作用。将共培养的种子细胞接种在PLGA支架材料上,植入直径为1cm的兔下颌骨缺损模型中,通过软X线和组织化学染色分别对4周和8周的实验动物进行观察,结果显示BMSCs可以在PLGA支架材料上生长且材料具有较好的生物相容性且无细胞毒性,诱导的ECs与BMSCs共培养在PLGA支架材料上,同BMSCs对照组比具有明显的促成骨作用及骨缺损修复能力。结果提示血管化组织工程骨有望成为修复大面积骨缺损的有效的途径。
     磷酸钙是天然骨的主要组成成分,作为骨替代物、人工骨和组织工程的支架等具有较好的应用前景。不同结构的磷酸钙中,羟基磷灰石(HA)和磷酸三钙(TCP)由于对人体生理环境具有较强的生物学反应而受到广泛的关注。由于HA的化学结构稳定使其具有较强的抗吸收作用,但其密度高、脆性大、弹性差等原因限制了其广泛应用。TCP按结构分为高温相(α-TCP)和低温相(β-TCP),其中α-TCP相对于β-TCP具有更好的生物降解性和生物相容性,并且植入人体后反应温和,基本不产热,降解后被生物体迅速吸收和取代,因此具有良好的生物医学应用前景。本研究通过共沉淀法合成了α-TCP,采用XRD、SEM、TEM等方法评价了其物理学及化学性能。通过与大鼠BMSCs共培养,检测MTT以评价材料的生物安全性,通过Real Time PCR检测ALPase、SP7、RUNX2、COL-Ⅰ等成骨细胞相关因子mRNA的表达,探讨α-TCP在体外对BMSCs成骨作用的影响。结果表明,α-TCP能够上调大鼠BMSCs向成骨细胞分化相关基因的表达,证明α-TCP可以促进BMSCs向成骨细胞分化的作用,这就为其在骨组织工程中的应用提供了一定的理论依据。
Tissue engineering strategies often fail to regenerate bones because of inadequatevascularization, especially in the reconstruction of large segmental bone defects. Large volumesof vascular endothelial cells (ECs) that functionally interact with osteoblasts during osteogenesisare difficult to obtain. In this study, we simulated bone healing by co-culturing differentiatedECs and mesenchymal stem cells (MSCs) either on a culture plate or on a polylactide glycolicacid (PLGA) scaffold in vitro. We also evaluated the effect of osteogenesis in repairingrabbitmandible defects in vivo. In this study, MSCs were separated from rabbit as the seed cells.After passage, the MSCs were cultured in an EC-conditioned medium to differentiate into ECs.Immunohistochemical staining analysis with CD34showed that the induced cells had thecharacteristics of ECs and MSCs. The induced ECs were co-cultured in vitro, and the inductionof MSCs to osteoblast served as the control. Alkaline phosphatase (ALP) and alizarin red (AZR)staining experiments were performed, and the Coomassie brilliant blue total protein and ALPactivity were measured. The MSCs proliferated and differentiated into osteoblast-like cellsthrough direct contact between the derived ECs and MSCs. The co-cultured cells were seeded onPLGA scaffold to repair1cm mandible defects in the rabbit. The effectiveness of the repairs wasassessed through soft X-ray and histological analyses. The main findings indicated that MSCssurvived well on the scaffold and that the scaffold is biocompatible and noncytotoxic. Theresults demonstrated that the co-cultured MSC-derived ECs improved MSC osteogenesis andpromoted new bone formation. This study may serve as a basis for the use of in vitroco-culturing techniques as an improvisation to bone tissue engineering for the repair of largebone defects.
     Calcium phosphate ceramics of tricalcium phosphate(TCP) and hydroxyl apatite(HA)powders are widely applied in biomedical fields because of their biocompatibility andosteoconductivity.In orthopedic surgery,they are used for filling bone defects as a result of theremoval of diseased or damaged bones. In dentistry, calcium phosphate ceramics are used for the augmentation of deficient mandibular of maxillar ridges. Dense or porous calcium phosphateceramic coatings are often applied on strong and load-bearing core materials for biologicalfixation or osteointegration. In our study,we synthesized the ɑ-TCP, cocultured with rat BMSCsto evaluated the biological safety by MTT, analysis with ALPase mRNA,SP7mRNA, RUNX2mRNA and Col-ⅠmRNA throuh real-time quantitative PCR to investigate the osteogenesisinductivity of ɑ-TCP, and the results proved that ɑ-TCP improve the osteogenesis effection ofBMSCs. It maybe provide a theoretical basis for the further elucidate osteoblast differentiationand regulation mechanism and can apply in short and long-term bone regeneration.
引文
[1] Qi MC, Hu J, Zou SJ,et al. Mechanical strain induces osteogenic differentiation:Cbfal andEts-1expression in stretched rat mesenchymal stem cells[J].Int J Oral MaxillofacSurg,2008,37(5):453-458.
    [2] Jagodzinski M, Drescher M, Zeichen J, et al. Effects of cyclic longitudinal mechanicalstrain and dexamethasone on osteogenic differentiation of human bone marrow stromalcells [J].Eur Cell Mater,2004,16(7):35-41.
    [3] Sojo K, Sawaki Y, Hattori H,et al.Immunohistochemical study of vascular endothelialgrowth factor (VEGF) and bone morphogenetic protein-2,-4(BMP-2,-4) on lengthened ratfemurs[J].Craniomaxillofac Surg,2005,33(4):238-245.
    [4] Knabe C,Nicklin S,Yu Y, et al.Growth factor expression following clinical mandibulardistraction osteogenesis in humans and its comparison with existing animal studies[J]. JCraniomaxillofac Surg,2005,33(6):361-369.
    [5] Peters ML,Leonard M,Lieata AA, et al. Role of alendronate and rise-dronateinPreventing and treating osteoporosis[J].Cleve Clin J Med,2001,68(11):945-951.
    [6]郭世绂,骨质疏松症的药物治疗及其理论基础[J].中华骨科杂志,2004,24(11):691-695.
    [7]蒋四清,李锋等,阿仑麟酸钠对大鼠成骨细胞增殖的影响[J].中国矫形外科杂志,2005,13(12):918-920.
    [8] Fu LJ,Tang TT,MiaoYY,et al.Stimulation of osteogenic differentiation and Inhibition ofadipogenic differentiation in bone marrow stromal cells by alendronate Via ERK and JNKaetivation[J].Bone,2008,3(43):40-47.
    [9]董群伟,孙奋勇,洪曼杰等.阿仑磷酸钠对体外培养的间充质干细胞成骨能力的影响[J].广东医学,2006,4(27):462-464.
    [10] Endres M.Statins:potential new indications in inflammatory conditions[J].Atheroscler,2006,7(1):31-35.
    [11] Hong MK,Lee Cw,Kim YH,et al. Usefulness of follow-up low-density lipoproteincholesterol level as an independent predictor of changes of coronary atheroscleroticplaque size as determined by intravas cular ultrasound analysis after statin (atorvastatinor simvastatin)therapy[J].Am J Cardiol,2006,98(7):866-870.
    [12] Nyan M,Sato D,Oda M,et al. Bone formation with combination of simvastatin andcalcium sulfate in critical-sized rat calvarial defect [J]. J Pharmacol Sci,2007,104(4):384-396.
    [13] Bradley JD,Cleverly DG,Burns Am,et al. Cyclooxygenaoe-zinhibitor reducessimvastatin-induced bone morphogentic protein-2and bone formation in vivo[J]. Jperiodontal Res,2007,42(3):267-273.
    [14] Zhou Y, Ni Y, Zeng B, et al. The role of simvastatin in the osteogenesis of injectabletissue-engineered bone based on human adipose-derived stromal cells and pallet-richplasma [J]. Biomaterials,2010,31(20):5325-5335.
    [15] Urbich C,Dernbach E,Zeiher AM,et al.Double-edged role of statins in angiogenesissignaling[J].Circ Res,2002,90(6):737-744.
    [16] CHEN Jian-mei,ZHANG Fu-min,et al. Influence of simvastatin on the proliferation andparacrine functions of bone marrow-derived mesenchymal stem cells[J].ActaUniversitatis Medicinalis Nanjing,2010,30(1):20-24.
    [17] Malda J,Rouwkema J,Martens DE, et al. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling[J]. Biotechnol. Bioeng,2004,86(1):9-18.
    [18] Jain RK,Au P,Tam J, et al. Engineering vascularized tissue[J]. Nat.Biotechnol,2005,23(7):821-823.
    [19] Street J,Bao M,deGuzman L,et al.Vascular endothelial growth factor stimulates bonerepair by promoting angiogenesis and bone turnover[J].Proc Natl Acad Sci USA,2002,99(15):9656-9661.
    [20] Kaigler D, Krebsbach PH, Polverini PJ,et al, Role of vascular endothelial growth factor inbone marrow stromal cell modulation of endothelial cells [J].Tissue Eng,2003,9(1):95-103.
    [21]周江,吴江,唐戎等.血管内皮细胞对骨髓基质细胞促成骨作用的研究[J].生物医学工程杂志,2003,20(3):447-450.
    [22] Kent Leach J,Kaigler D,Wang Z,et al. Coating of VEGF-releasing scaffolds with boiactiveglass for angiogenesis and bone regeneration [J].Biomaterials2006,27(17):3249-3255.
    [23] Sieminski AL, Hebbel RP,Gooch KJ,et al.Improved microvasclar network in vitro byhuman blood outgrowth endothelial cells relative to vessel-derived endothelialcells[J].Tissue Eng2005,11(9):1332-1345.
    [24]张艳,文巍,罗进勇等.骨形态发生蛋白9定向诱导多潜能干细胞成骨分化[J]. Progressin Biochemistry and Biophysics,2009,36(10):1291-1298.
    [25] Agrawal CM, Athanasiou KA.Technique to control pH in vicinity of biodegradingPLA-PGA implants[J].J Biomed Mater Res,1997,38(2):105-114.
    [26] Olivares AL,Marsal E, Planell JA, et al. Finite element study of scaffold architecturedesign and culture conditions for tissue engineering[J]. Biomaterials,2009,30(30):6142-6149.
    [27] Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and futuretrends[J]. Macromol Biosci,2004,4(8):743-65.
    [28] Daiwon Choi, Prashant N., Kumta, et al.Mechano-chemical synthesis and characterizationof nanostructured β-TCP powder[J].Materials Science and Engineering,2007,27)(1):377-381.
    [29] Shaoyi Wang,Zhiyuan Zhang,Jun Zhao,et al.Vertical alveolar ridge augmentation withβ-tricalcium phosphate and autologous osteoblasts in canine mandible[J]. Biomaterials,2009,30(13):2489-2498.
    [30] Yong-Moo Lee, Yoon-Jeong Park, Seung-Jin Lee, et al.The bone regenerative effect ofplatelet-derived growth factor-B delivered with a chitosan/tricalcium phosphate spongecarrier[J]. J Periodontol,2000,71(3):418-424.
    [31]石海涛,β一磷酸三钙/聚乳酸复合材料的制备、性能分析及应用[D].广州:暨南大学,2002.
    [32] Rojbani H,Nyan M,Ohya K,et al.Evaluation of the osteoconductivity of alpha-tricalcium phosphate,beta-tricalcium phosphate,and hydroxyapatite combined with orwithout simvastatin in rat calvarial defect[J].J Biomed Mater Res A,2011,98(4):488-498.
    [33]程晓兵,薛振恂,杨耀武等.多块状B-磷酸三钙陶瓷兔颅骨骨膜下埋置引导成骨的组织学观察[J].上海口腔医学,2002,11(1):40.
    [34] Martin I,Shastri VP,Padera RF,et al.Selective differentiation of mammalian bone marrowstormal cells cultured on three-dimensional polymer foams[J]. J Biomed MaterRes,2001,55(2):229.
    [35] Kruyt MC, Van Gaalen SM, Oner FC,et al. Bone tissue engineering and spinal fusion: thepotential of hybrid constructs by combining osteoprogenitor cells and scaffolds[J].Biomaterials,2004,25(9):1463-1473.
    [36] Chen WQ,Zhang XD,Weng J,et al.Effect of small pores on the osteoinductivity ofmacroporous calcium phosphate ceramics[J]. The1st Far-Eastern Symposium onBiomedical Materials, Beijing,1993:157.
    [37] Ochoa, E. R., Vacanti, J. P., et al. An overview of the pathology and approaches to tissueengineering [J]. Annals of the New York Academy of Sciences,2002,979:10–26.
    [38] Orban, J. M., Marra, K. G., Holliginger, J. O., et al. Composition options for tissue-engineered bone. Tissue Engineering,2002,8(4):529–539.
    [39] Hongchen, S., Zhe, Q., Ying, G., Guangxiang, Z., et al.. In vitro and in vivo effects of ratkidney vascular endothelial cells on osteogensis of rat bone marrow mesenchymal stemcells growing on polylactide-glycoli-acid (PLGA) scaffolds [J]. Biomedical EngineeringOnline,2007,6:41.
    [40] Barry, F. P.,&Murphy, J. M. Mesenchymal stem cells:Clinical applications and biologicalcharacterization [J]. International Journal of Biochemistry and Cell Biology,2004,36(4):568-584.
    [41] Toma, C.,Pittenger MF,Cahill KS, et al. Human mesenchymal stem cells differentiate to acardiomyocyte phenotype in the adult murine heart [J].Circulation,2002,105(1):93-98.
    [42] Jinhua Li,Yubao Li,Sancheng Ma,et al. Enhancement of bone formation by BMP-7transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds inrepair of mandibular defects [J]. JOURNAL OF BIOMEDICAL MATERIALSRESEARCH,2010,95(4):973-981.
    [43] Yu-Chun Wua, Shyh-Yu Shawb,et al. Bone tissue engineering evaluation based on ratcalvaria stromal cells cultured on modified PLGAscaffolds [J]. Biomaterials,2006,27:896-904.
    [44] Lammet, E., Cleaver, O.,&Melton, D.. Introduction of pancreatic differentiation bysignals from blood vessel. Science,2001,294(5542),564-567.
    [45] Jian zhou,Hong Lin,Taolin Fang, et al. The repair of large segmental bone defects in therabbit with vascularized tissue engineered bone [J], Biomaterials,2010,31:1171-1179.
    [46] Asahara T., Murohara T., Sullivan A., et al. Isolation of putative progenitor endothelialcells for angiogenesis [J]. Science,1997,275(5302):964-967.
    [47] Villars F., Bordenave L., Bareille R., et al.Effect of human endothelial cells on humanbone marrow stromal cell phenotype: Role of VEGF?[J]. Journal of Cell Biochemistry,2000,79(4):672-685.
    [48] Villars, F., Guillotin, B., Amedee, T., Dutoya, S., Bordenave, L., Bareille, R., et al. Effectof HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junctioncommunication [J]. American Journal of Physiology and Cell Physiology,2002,282(4):775-785.
    [49] Johnson MR., Lee HJ., Bellamkonda RV.,et al. Sustained release of BMP-2in alipid-based microtube vehicle [J]. Acta Biomaterialia,2009,5(1):23-28.
    [50] Li G., Simpson AH., Kenwright J., et al,Assessment of cell proliferation in regeneratingbone during distraction osteogenesis at different distraction rates [J]. Journal ofOrthopaedics Research,1997,15(5):765-772.
    [51] DorozhkinSV, Epple M. Biological and medical significance of calcium phosphates[J].Angew Chem Int Ed Engl.,2002,41(17):3130-3146.
    [52] Amany Neamat, Abeer Gawish, Amira M.et al.β-Tricalcium phosphate promotes cellproliferation,osteogenesis and bone regeneration in intrabonydefects in dogs[J].Archivesof oral biology,2009,54(12):1083-1090.
    [53] Sergey V. Dorozhkin and Matthias Epple. Biological and Medical Significance ofCalcium Phosphates[J]. Angewandte Chemie-InternationalEdition,2002,41(17):3130-3146.
    [54] Palti A, Hoch T. A concept for the treatment of various dental bone defect[J]s. ImplantDent,2002,11(1):73-78.
    [55] Oonishih H, Hench LL, Wilson J, et al. Comparative bone growth behavior in granulesof bioceramic materials of various sizes[J]. Journal of Biomedical Materials Research,1999,44(1):31-43.
    [56] Jung Sang Cho,You Na Ko,Hye Yong Koo,et al. Synthesis of nano-sized biphasic calciumphosphate ceramics with spherical shape by flame spray pyrolysis[J].MaterMed,2010,21(4):1143-1149.
    [57] Suvorova EI,Arkharova NA,Buffat PA. Transmission electron microscopy of Ca oxidenano-and microcrystals in alpha-tricalcium phosphate prepared by sintering of beta-tricalcium phosphate[J]. Micron,2009,40(5-6):563-570.
    [58]富尔默,康斯坦茨,艾林等.活性磷酸三钙组合物和应用:中国, CN11404,42[P].1997-01-15.
    [59]赵萍,孙康宁.磷酸三钙生物骨水泥的制备[J].稀有金属材料与工程,2005,34(6):1168-1170.
    [60]强辉,王坤正,张明宇等,β-磷酸三钙复合成骨细胞的异位成骨[J].中国组织工程研究与临床康复,2009;13(12):2300-2304
    [61]王新荣,阮立坚.磷酸三钙的晶型转变的研究[J].硅酸盐学报,1992,20(2):117-122.
    [62] Maria GG, Gadolfi, Gabriela C,et al. Apatite formation on bioactive calcium-silicatecements for dentistry affects surface topography and human marrow stromal cellsproliferation [J]. Dental Materials,2010,26(2):974-992.
    [63] Brunner TJ, Bohner M, Dora C, et al. Comparison of amorphous TCP nanoparticles tomicron-sized alpha-TCP as starting materials for calcium phosphate cements [J].Biomed.Mater.Res.2007,83(2):400-407.
    [64] Brunner TJ,Tobias J, Grass RN, et al. Effect of particle size, crystal phase and crystallinityon the reactivity of tricalcium phosphate cements for bone reconstruction [J]. J. Mater.Chem.,2007,17(38):4072-4078.
    [65] Xu HH, Simon CG Jr. Self-hardening calcium phosphate composite scaffold for bonetissue engineering[J].Journal of Orthopaedic Research,2004,22(3):535-543.
    [66] Yang Hong, Fu Shangang. Preparation of α-Tricalcium Phosphate by Co-precipitation[J],www.hxtb.org,2007,5(1):392-395.
    [67] Pioletti DP, Takei H,et al. The effects of calcium phosphate cement particles on osteoblastfunctions[J]. Biomaterials,2000,21(11):1103-1114.
    [68] Chunyan Qiao, Kai Zhang, Han Jin,et al. Using poly(lactic-co-glycolic acid) microspheresto encapsulate plasmid of bone morphogenetic protein2/polyethylenimine nanoparticlesto promote bone formation in vitro and in vivo[J]. Int J Nanomedicine.2013,8:2985–2995.
    [69] J Zhao, J Hu, S Wang,et al. Combination of b-TCP and BMP-2gene-modified bMSCs toheal critical size mandibular defects in rats [J]. Oral Diseases,2010,16(1):46–54.
    [70]石海涛,β一磷酸三钙/聚乳酸复合材料的制备、性能分析及应用[D].广州:暨南大学,2002.
    [71]王朝元,磷酸钙生物陶瓷对成骨细胞骨相关基因表达影响的体外实验研究[D].成都:四川大学,2003.
    [72] Nakashima K., Zhou X., Kunkel G.,et al. The novel zinc finger-containing transcriptionfactor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108(1):17–29.
    [73]束志勇.阿伦磷酸钠和淫羊蕾昔对骨髓间充质干细胞骨向诱导的实验研究[D].广州:暨南大学,2009.
    [74] He G,George A. Dentin matrix protein1immobilized on type I collagen fibrils facilitatesapatite deposition in vitro [J], J Biol Chem,2004,279:11649-11656.
    [75]于健.成骨细胞分化过程中相关基因的表达[D].济南:山东大学口腔医学院,2013.
    [76] Reily TM,Seldes R,Luchetti W,et al. Similarities in the phenotypic expression of pericytesand bone cells[J]. Clin Orthop Relat Res,1998,1(346):95-103.
    [77] KiharaT,OshimaA,HiroseM,OhgushiH.Tree-dimensionalvisualization Analysis of invitrocultured bone fabrieated by rat marrow mesenchymal stem cells[J].Biochemical andBioPhysical Research Conununleations,2004,316(3):943
    [78] Samrnons J,Ahmed N.The role of BMP-6,IL-6,and BMP-4in mesenehylnal Stem cell-dependent bone development:effects on osteoblastic dlffrentiation induced By parathyroidhormone and vitaminD(3)[J].stemCells,2004,13(3):273.
    [79] Lian J., Stein G.. Concepts of osteoblast growth and differentiation: basis for modulationof bone cell development and tissue formation[J]. Crit. Rev. Oral Biol. Med,1992,3(3):269-305.
    [80] Hosoi T.Bone and bone related biochemical examinations Bone and collagen Relatedmetabolites Structure and metabolisms of collagen[J].Clin Calcium,2006,16(6):971.
    [81] Liu G,HuYY,Zhao JN,et al.Effect of type1collagen on the Adhesion,Proliferation,andosteoblastic gene expression of bone marrow-derived Mesenchymal stem cells[J].Chin JTraumatol,2004,7(6):358-362.
    [82] Wenstrup RJ,Witte DP,Florer JB.Abnormal diffrentiation in MC3T3-EI Preosteoblastsexpressing a dominant-negative type1collagen mutation[J].ConnectTissue Res,1996,35(l-4):249-257.
    [83] Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., Karsenty, G.. Osf2/Cbfa1: a transcriptionalactivator of osteoblast differentiation [J]. Cell,1997,89,747-754.
    [84] Chiu R., Smith KE., Ma GK.,et al. Polymethylmethacrylate particles impairosteoprogenitor viability and expression of osteogenic transcription factors Runx2, osterix,and Dlx5[J]. J. Orthop. Res,2010,28(5):571-577.
    [85] Komori T., Yagi H., Nomura S., et al. Targeted disruption of Cbfa1results in a completelack of bone formation owing to maturational arrest of osteoblasts [J]. Cell,1997,89(5):755-764.
    [86] Nakashima K., Zhou X., Kunkel G.,et al. The novel zinc finger-containing transcriptionfactor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108(1):17-29.
    [87] Ming-Jaw Don, Lie-Chwen Lin, Wen-Fei Chiou. Neobavaisoflavone stimulatesosteogenesis via p38-mediated up-regulation of transcription factors and osteoid genesexpression in MC3T3-E1cells[J]. Phytomedicine,2012(19):551-561.
    [88] Ge C., Xiao G., Jiang D., et al. Critical role of the extracellular signal-regulatedkinase-MAPK pathway in osteoblast differentiation and skeletal development[J]. J. CellBiol.2007,176(5):709-718.
    [89] Greenblatt MB., Shim JH., Zou W.,et al. The p38MAPK pathway is essential forskeletogenesis and bone homeostasis in mice[J]. J.Clin. Invest.2010,120(7):2457-2473.
    [90] Jadlowiec J., Koch H., Zhang X., et al. Phosphophoryn regulates the gene expression anddifferentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via theintegrin/MAPK signaling pathway[J]. J. Biol. Chem,2004,279(51):53323-53330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700