用户名: 密码: 验证码:
新疆西天山阿吾拉勒铁矿带叠加成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿吾拉勒铁矿带是近年来在新疆西天山发现的一条极其重要的铁成矿带,带内分布有一系列超大型铁矿床。这些超大型铁矿床主要分布在石炭系大哈拉军山组火山岩中,普遍显示出复杂的叠加成矿作用特征。笔者在前人研究的基础上,对带内大哈拉军山组火山岩以及两个典型矿床(备战铁矿和敦德铁矿)进行了野外地质调研和镜下观察以及矿物学和地球化学分析,重点揭示了铁矿床特征和成矿过程,建立了区域成矿模型。
     通过论文工作,取得了以下主要成果和认识。
     ①大哈拉军山组火山岩形成于早石炭世,成岩年龄为316.1±2.2Ma。
     ②稀土和微量元素以及Rb-Sr和Pb同位素地球化学分析结果表明,大哈拉军山组火山岩可能形成于早石炭世晚期大陆边缘弧环境,受控于准噶尔洋向中天山-伊犁板块的俯冲作用。相应的岩浆可能是由俯冲带流(熔)体交代过的地幔楔尖晶石二辉橄榄岩发生1%~5%的部分熔融,并在上升过程中经历了一定程度的结晶分异和同化混染作用而形成的。
     ③铁矿石的Pb、O和S同位素组成表明本区铁矿床的成矿物质主要来源于深部岩浆系统。
     ④备战矿区矿石、火山岩和花岗岩显示出相似的稀土元素特征,说明三者具有密切的成因联系。结合相关研究成果,笔者推断,由于深部玄武岩浆补充的中断和更强的地壳混染作用导致初始岩浆(具火山岩成分)发生熔离作用,形成富铁矿浆和富硅岩浆(具花岗岩成分)。稀土元素模拟结果表明,初始岩浆:富铁矿浆:熔离岩浆为14:1:13。
     ⑤主量和微量元素以及同位素地球化学分析结果表明,备战矿区和敦德矿区矽卡岩的形成与传统接触交代矽卡岩不同,可能受控于温度更高的矿浆热液或者高温岩浆热液系统。
     ⑥备战和敦德铁矿均经历了矿浆和热液两个阶段的叠加成矿作用,备战铁矿以矿浆成矿作用为主,敦德铁矿以热液成矿作用为主。
Awulale iron metallogenic belt is a very important iron metallogenic belt foundin western Tianshan of Xinjiang province. A series of super large iron deposits aredistributed in this belt. These iron deposits occur mainly in the Carboniferousvolcanic rocks of the Dahalajunshan Formation, and display complex characteristicsresulted from superimposed metallogeny. Field investigation, microscopicobservation, and mineralogical and geochemical analysis have been carried out on theDahalajunshan Formation volcanic rocks (DFVR) and two typical iron deposits(Beizhan and Dunde iron deposits), with a focus on an analysis of ore depositcharacteristics and mineralization processes so as to set up a mode for regionalmetallogeny.
     The following are major achievements obtained in this dissertation.
     ①The DFVR are dated at316.1±2.2Ma, showing its formation in the Early
     Carboniferous.
     ②REEwith ME and Sr with Pb isotopic data show possible formation of theDFVR during the late period of the Early Carboniferous in the continental marginarc zone controlled by the subduction of Junggar plate to Middle Tianshan-Yili plate.The relevant magma might be produced by1%~5%partial melting of the mantlewedge spinel-lherzolite replaced by fluids from subduction zone, and undergo anAFC process during its ascending.
     ③Pb, O and S isotopic data of the ores support derivation of ore-formingmaterials mainly from the deep magma system.
     ④Ores, DFVR and granitic rocks from the Beizhan iron deposit have similarREE characteristics, indicating their close genetic relationship. Based on this resultcombined with relevant previous research data, It can be inferred that interruption offeeding of basaltic magma in the depth combined with more intensive crustalcontamination could result in liquation of the initial magma with composition of the volcanic rocks into an iron-rich magma and a silica-rich magma with composition ofthe granitic rocks. The REE simulation result shows that the weight proportion of theinitial magma, the iron-rich magma, and the silica-rich magma is14:1:13.
     ⑤Analyses of major and Trace elements and S and O isotopes indicate adifferent formation process of the skarn in the Beizhan and Dunde iron deposits fromthat of traditional contact metasomatic skarn. This formation process might becontrolled by an ore magma-hydrothermal or magma-hydrothermal system withhigher temperature.
     ⑥Both ofthe Beizhan and the Dunde iron deposits are superimposed deposits,which were formed by a complex processe of ore magma mineralization andhydrothermal mineralization. Ore magma mineralization played a key role in theformation of the Beizhan iron deposit, while magma hydrothermal mineralizationdid an important role in the formation of the Dunde iron deposit.
引文
Alien M B, Windley B F and Zhang C. Palaeozoic collisional tectonics and magmatism of theChinese Tien Shan, central Asia. Tectonophysics,1993,220(1–4):89~115
    Anderson D L. Komattites and picrites: evidence that “plume” source is depleted. Earth andPlanetary Science Letters,1994,128:303~311
    Appel P W U. Rare earth elements in the early Archaean Isua iron~formation, West England.Precambrian Res,1983,20:243~258
    Arndt N, Bruzak G and Reischmann T.2001. The oldest continental and oceanic plateaus:geochemistry of basalts and komatiites of the Pilbara Craton, Australia. In: Ernst, R.E.,Buchan, K.L.(Eds.), Mantle Plumes: Their Identification Through Time. GeologicalSociety of America Special Paper352. Geological Society of America.
    Barton M D and Johnson D A. Evaporitic-source model for igneous-related Feoxide-(REE-Cu-Au-U) mineralization. Geology,1996,24:259~262
    Barton M D and Johnson D A. Footprints of Fe-oxide(-Cu-Au) systems. University of WesternAustralia Special Publication,2004,33:112~116
    Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rockinteraction and significance of the oxidation state of europium. Chemical Geology,1991,93:219~230
    Bookstrom A A. The magnetite deposits of El Romeral, Chile. Economic Geology,1977,72:1101~1130
    Bullen M E, Burbank D W, Garver J I, et al. Late Cenozoic tectonic evolution of thenorthwestern Tien Shan: New age estimates for initiation of mountain building. GeologySociety of Amercia Bulletin,2001,113(12):1544~1559
    Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifsfrom Ariege(Northeastern Pyrenees, France): An ion microprobe study. Geochimica etCosmochimica Acta,1994,58:1825~1840
    Cheilletz A, Levresse G, Gasquet D, et al. The giant Imiter silver deposit: Neoproterozoicepithermal mineralization in the Anti-Atlas, Morocco. Mineralium Deposita,2002,37(8):772~781
    Chen H Y, Clark A H and Kyser T K. The Marcona Magnetite Deposit, Ica, South-Central Peru:A Product of Hydrous, Iron Oxide–Rich Melts. Economic Geology,2010.105:1441~1456
    Clayton R N and Mayeda T K. The use of bromine pentafluoride in the extraction of oxygenfrom oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta,1963,27:43~52
    Coleman R G. Continental growth of northwest China. Tectonics,1989,8(3):621~635
    Corey M C and Chatterjee A K. Characteristics of REE and other trace elements in response tosuccessive and superimposed metasomatism within a portion of the South MountainBatholith, Nova Scotia, Canada. Chemical Geology,1990,85(3~4):265~285
    Crane G W. The iron ores of Missouri: Missouri Bur. Geology Mines,1912,10(2):434
    Daliran F. The magnetite-apatite deposit of Mishdovan, East Central Iran An alkali rhyolitehosted,"Kirana type" occurrence in the infracambrian Bafg Metallotect (Mineralogic,Petrographic and Geochemical study of the ores and the host rocks). HeidelbergerGeowissenschaftliehe Abhandlungen, band37. Ruprecht Karls–Universitǎt, Heidelberg,1990.248pp.
    Dalziel I W D, Mosher S and Gahagan L M. Laaurentia~Kalahari collision and the assembly ofRodinia.J. Geol,2000,108
    DaPaolo D J and Daley E E. Neodymium isotopes in basalts of the southwest basin and rangeand lithospheric thinning during continental extension. Chem Geol,2000,169:157~185
    Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism.Subduction Top to Bottom. Geophys Monogr,96, American Geophysical Union,Washington D C,1996.251–262
    Deng J, Wang Q F, Wan L, et al. Self-similar fractal analysis of gold mineralization ofDayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal ofGeochemical Exploration,2009b,102:95~102
    Deng J, Wang Q F, Wan L, et al. A multifractal analysis of mineralization characteristics of theDayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China.Ore Geology Reviews,2011,53:54~64
    Deng J, Yang L Q, Gao B F, et al. Fluid evolution and metallogenic dynamics during tectonicregime transition: Example from the Jiapigou gold belt in Northeast China. ResourceGeology,2009a,59:140~152
    Dill H G, Botz R, Berner Z, et al., The Origin of Pre-and Synrift, Hypogene Fe-P Mineralizationduring the Cenozoic along the Dead Sea Transform Fault, Northwest Jordan. EconomicGeology,2010,105(7):1301~1319
    Duuring P and Hagemann S. Genesis of superimposed hypogene and supergene Fe orebodies inBIF at the Madoonga deposit, Yilgarn Craton, Western Australia. Mineralium Deposita,2012, DOI:10.1007/s00126~012~0429~0
    Eugster H P and Chou I-ming. A model for the deposition of Cornwall type magnetite deposits.Economic Geology,1979,74:763~774
    Fenner C N. The crystallization of Basalt. American Journal of Science,1929,18:223~253
    Fetter A H and Goldberg S A. Age and geochemical characteristics of bimodal magmatism in theNeoproterozoic Grandfather Mountain rift basin.J. Geol,1995,103
    F ster H and Knittel V. Petrographic observations on a magnetite deposit at Mishdovan, CentralIran. Economic Geology,1979,74:1485~1510
    Frietsch R and Perdahl L A. REE distribution in magnetite and apatite in some Early Proterozoicore types in Norrbotten, northern Sweden. Res. Rep. TULEA1989:26, Lule~University,37pp.
    Frietsch R and Perdahl L A. REE in apatite and magnetite in Kiruna–type iron ores and someother iron ore types. Ore Geology Reviews,1995,9:489~510
    Frietsch R. New ore types in the northern part of the Fennoscandian shield. Geol. Fǒren.Stockholm F th,1991,113:46~48
    Frietsch R. On the magmatic origin of iron ores of the Kiruna type. Economic Geology,1978, v.73no.4p.478~485
    Frietsch R. Petrochemistry of the iron ore–bearing metavolcanites in Norrbotten county, northernSweden. Sver. Geol. Unders,1984,802,62pp
    Frietsch R. The Kiruna iron ores. Abstr,1989Annu. Meet. Geol. Soc. Am., Nov.6–9, p. A33.
    Fu B H, Lin A M, Kano K I, et al. Quaternary folding of the eastern Tian Shan, northwest China.Tectonophysics,2003,369:79~101
    Ganzeyev A A, Sotskav Y P and Lyapunov S M. Geochemical specialisation of ore-bearingsolutions in relation to rare-earth elements. Geochemistry,1984,20:160~164
    Gao J and Klemd R. Formation of HP–LT rocks and their tectonic implications in the westernTianshan Orogen, NW China: geochemical and age constraints. Lithos,2003,66(1–2):1~22
    Gao J, Li M S, Xiao X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen,northwestern China. Tectonophysics,1998,287(1–4):213~231
    Gao J, Long L L, Klemd R, et al. Tectonic evolution of the South Tianshan orogen and adjacentregions, NW China: geochemical and age constraints of granitoid rocks. InternationalJournal of Earth Science,2009,98(6):1221~1238
    Gast P W. Trace element fractionation and the origin of tholeiitic and alkaline magma types.Geochimica et Cosmochimica Acta,1968,32(10):1057~1068
    Geijer P. Some problems in iron ore geology in Sweden and in America. Economic Geology,1915, v.10, p.299~329
    Gow P and Walshe J L. The role of preexisting geologic architecture in the formation of giantporphyry-related Cu-Au deposits. Examples from New Guinea and Chile, EconomicGeology,2005,100,819~833
    Green D H and Hibberson W. The instability of plagioclase in peridotite at high pressure. Lithos,1970,3(3):209~221
    Green D H and Lieberman R C. Phase equilibria and elastic properties of a pyrolite model forthe oceanic upper mantle. Tectonophysics,1976,32(1–2):61~92
    Green D H and Ringwood A E. An experimental investigation of the gabbro to eclogitetransformation and its petrological applications. Geochimica et Cosmochimica Acta,1967,31(5):767~833
    Green T H, Ringwood A E.1968. Origin of garnet phenocrysts in calc~alkaline rock[J].Contributions to Mineralogy and Petrology,18(2):163~174.
    Gu L X, Khin Zaw, Hu W X, et al. Distinctive features of Late Palaeozoic massive sulphidedeposits in South China. Ore Geology Reviews,2007,31:107~138
    Hanson G N. Rare earth elements in petrogenic studies of igneous systems. Ann. Rev. EarthPlanet. Sci,1980,8:371~406
    Harris N B W, Pearce J A and Tindle A G. Geochemical characteristics of collision-zonemagmatism. In: Coward M P and Reis A C(eds), Collision tectonics. Spec. Publ. Grol. Soc.Lond,1986,19,67~81
    Hart S R. A large scale isotope anomaly in the Southern Hemisphere mantle. Nature,1984,309:753~757
    Hass J R, Shock E L and Sassani D C. Rare earth elements in hydrothermal systerms: Estimatesof standard partial modal thermodynamic properties of aqueous complexes of the rare earthelements at high pressures and temperatures. Geochim. Cosmochim. Acta,1995,59(21):4329~4350
    Hegemann F and Albrecht F. Zur Geochemieo xydischer Eisenerze. Chemic der Erde,1954, v.17, p.81~103
    Heivaci C and Griffin W L. Metamorphic feldspathization of metavolcanics and granitoids,Avnik area, Turkey. Contrib. Mineral. Petrol,1983,83:309~319
    Helvaci C. Apatite–rich iron deposits of the Avnik (Bing/51) region, southeastern Turkey.Economic Geology,1984, v.79, p.354~371
    Helvaci C. Rare earth elements in apatite–rich iron deposits and associated rocks of the Avnik(Bingtil) region, Turkey. Schweiz. Mineral. Petrogr. Mitt,1987,67:307~319
    Hildebrand R S and Bowring S A. A non–extensional model for the origin of continentalintra–arc depressions, with a Proterozoic example from Wopmay orogen. NorthwestTerritories, Canada: Geology,1984,12:73~77
    Hildebrand R S. Early Proterozoic LaBinc Group of Wopmay orogen: Remnant of a continentalvolcanic arc developed during oblique convergence. Canada Geol. Survey Paper,1981,81–10, p.133~156
    Hildebrand R S. Kiruna–type deposits: their origin and relationship to intermediate subvolcanicplutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology,1986,81(3):640~659
    Hildreth W. The Bishop Tuff: Evidence for the origin of Compositional zonation in silicicmagma chambers. Geol. Soc. America Spec,1979, Paper180, p.43~75
    Hirano S and Somiya S. Hydrothermal crystal growth of magnetite in the presence of hydrogen.Journal of Crystal Growth,1976,35:273~278
    Hitzman M W, Oreskes N and Einaudi M T. Geological characteristics and tectonic setting ofProterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research,1992,58:241~287
    Hoffman P F.Did the breakout of Laurentia turn Gondwanaland inside-out? Science,1991,252
    Hoffman P F and McGlynn J C. Great Bear batholith: A volcano–plutonic depression. In: WRABaragar, Volcanic Regi–mes in Canada. Geol. Assoc. Can. Spec,1977, Pap,16:170~192
    Hou T, Zhang Z C, Encarnacion J et al. Geochemistry of Late Mesozoic dioritic porphyriesassociated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores,Middle-Lower Yangtze Valley, Eastern China: Constraints on petrogenesis and iron sources.Lithos,2010,119:330~334
    Hou T, Zhang Z C and Kusky T. Gushan magnetite-apatite deposit in the Ningwu basin, LowerYangtze River Valley, SE China: hydrothermal or Kiruna-type? Ore Geology Reviews,2011,43(1):333~346
    Innocenti F, Agostini S, Divincenzo G, et al. Neogene and Quaternary volcanism in WesternAnatolia: Magma sources and geodynamic evolution. Marine Geology,2005,221(1-4):397~421
    Ito K and Stern R J. Oxygen-and strontium-isotopic investigations of subduction zonevolcanism: the case of the Volcano Arc and the Marianas Island Arc. Earth and PlanetaryScience Letters,1985,76:312~320
    Jiang N, Chu X L, Toshio M,et al. A magnetite–apatite deposit in the Fanshan alkalineultramafic complex. Northern China. Economic Geology,2004,99:397~408
    Kerr A C, Marriner G F, Tarney J, et al. Cretaceous Basaltic Terranes in Western Colombia:Elemental, Chronological and Sr-Nd Isotopic Constraints on Petrogenesis. Journal ofPetrology,1997,38(6):677~702
    Kisvarsanyi E B. Geology of the Precambrian St. Francois terrane, southeastern Missouri. NorthAmerican Conf. Tectonic Control of Ore Deposits and the Vertical and Horizontal Extent ofOre Systems. Univ. Missouri–Rolla, Rolla, Miss,1988, pp.312~321
    Kisvarsanyi E B. Granitic ring complexes and Precambrian hot–spot activity in the St. Francoisterrane, Midcontinent region, United States. Geology,1980,8:43~47
    Kisvarsanyi G and Proctor P D. Trace-element content of magnetites and hematites, southeastMissouri metallogenetic province, USA. Economic Geology1967,62(4):449~471
    Klinkhammer G P, Elderfield H and Mitra A. Geochemical implicat ions of rare earth elementpatterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta,1994,58(23):5105~5113
    Kolker A. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits andevaluation of the liquid immiscibility hypothesis. Economic Geology,1982,77(5):1146~1158
    Kontak D J, Michelle Y De,Wolfe De Young et al. Late–stage crystallization history of thejurassic North Mountain Basalt, Nova Scotia, Canada. I. Textural and chemical evidencefor pervasive development of silicate–liquid immiscibility. Canada Mineralogist,2002,40:1287~1311
    Kwon S T, Tilton G R, Coleman R G, et al. Isotopic studies bearing on the tectonics of westJunggar region, Xinjiang, China. Tectonics,1989,8(4):719~727
    Le Bas M J, Le Maitre R W, Streckeisen A et al. Chemical classification of volcanic rocks basedon the total alkali–silica diagram. Journal of Petrology,1986,27(3):745~750
    Li Z X, Baillie P W and Powell C M. Relationship between northwestern Tasmania and eastGondwanaland in the late Cambrian/Early Ordovician: Paleomagnetic evidence. Tectonics,1997,16(1)
    Lomize M G, Demina L I and Zarshchicov A V. The Kyrgyz-Terskei paleoceanic basin in theTienshan. Geotectonics,1997,31(6):463~482
    Lowenstern J B. Dissolved volatile concentrations in an ore-forming magma. Geology,1994,22(10):893~896
    Lyons J I. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico.Economic Geology,1988,83:1886~1906
    Macdonald R, Hawkesworth C J and Health E. The Lesser Antilles volcanic chain: a study in arcmagmatism. Earth Science Reviews,2000,49(1-4):1~76
    Mackin, J.H. Iron ore deposits of the Iron Springs district, Southwester Utah, in Ridge, J. D., ed,Ore deposits of the United States,1933–1967(Graton–Sales vol.):New York, Am. Inst.Mining, Metall. Petroleum Engineers,1968,2:992~1019
    Mark G, Foster D R W, Pollard P J, et al. Stable isotope evidence f or magmatic fluid inputduring large-scale Na-Ca alteration in the Cloncurry Fe oxide Cu-Au district, NWQueensland, Australia. Terra. Nova,2004,16:54~61
    Mark G, Wilde A, Oliver N H S, et al. Modeling outflow from the Ernest Henry Fe oxide Cu-Audeposit: implications for ore genesis and exploration. Journal of Geochemical Exploration,2005a,85:31~46
    Mark G, Williams P J, Oliver N H S, et al. Fluid inclusion and stable isotope geochemistry of theErnest Henry Fe-oxide-Cu-Au deposit, Queensland, Australia. Mineral Deposit Research:Meeting the Global Challenge,2005b, Session7:785~788
    McCulloch M T and Gamble J A. Geochemical and geodynamical constraints on subdution zonemagmatism. Earth and Planetary Science Letters,1991,102:358~374
    McMenamin M A and McMenamin D L S.The emergence of animals: the Cambrianbreakthrough.New York: Columbia University Press,1990
    Michard A. Rare earth element systematics in hydrothermal fluids. Geochimica etCosmochimica Acta,1989,53(3):745~750
    Mills R A and Elderfield H. Rare earth element geochemis try of hydrothermal deposits from theactive TAG Mound,26N Mid-Atlantic Ridge.Geochimica et Cosmochimica Acta,1995,59(17):3511~3524
    Mitchell and Carlile. Arc-related gold-copper mineralization, basement domes and crustalextension. Journal of Southeast Asian Earth Sciences,1994,10(1~2):39~50
    Molnar P and Tapponnier P. Cenozoic Tectonics of Asia: Effects of a Continental Collision.Science,1975,189(4201):419~426
    Nelson D R, Trendall A F, De Laeter J R, et al. A comparative study of the geochemical andisotopic systematics of late Archaean flood basalts from the Pilbara and Kaapvaal Cratons.Precambrian Res,1992,54:231~256
    Nielsen R G, Forsythe L M, Gallahan W E, et al.1994. Major and trace element magnetite meltequilibria[J]. Chem. Geol.,117(1~4):167~191.
    Nystroem J O and Henriquez F. Magmatic features of iron ores of the Kiruna in Chile andSweden; ore textures and magnetite geochemistry. Economic Geology,1994,89(4):820~839hlander B, Billstr m K and Halenius E. Geochemistry of the Proterozoic wolframite-bearinggreisen veins and the associated granite at Rostberget, northern Sweden. Chemical Geology,1989,78:135~150
    Ohmoto H and Goldhaber M B. Sulfur and carbon isotopes. In: Barnes HL (ed.). Geochemistryof Hydrothermal Ore Deposits.3rdEdition. New York: John Wiley,1997,517~611
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. EconomicGeology,1972,67(5):551~578
    Oliver N H S, Cleverley J S, Mark G, et al. Modeling the role of sodic alteration in the genesis ofiron oxide-copper-gold deposits, Eastern Mount Isa block, Australia. Economic Geology,2004,99:1145~1176
    Osborn E F. Role of oxygen pressure in the crystallization and differentiation of basaltic magma.American Journal of Science,1959,257:609~647
    Oyarzún J M and Frutos J. Tectonic and petrological frame of the Cretaceous iron deposits ofNorth Chile. Min. Geol,1984,34:21~31
    Oyarzún J M. Syngenesis and epigenesis of ore deposits related to calc–alkalineextrusive–intrusive complexes in northern Chile. In: A. Wauschkuhn et al.(Editors),Syngenesis and Epigenesis in the Formation of Mineral Deposits. Springer, Berlin,1984,pp.608–615
    Panno S V and Hood W C. Volcanic stratigraphy of the Pilot Knob iron deposits Iron County,Missouri. Economic Geology,1983,78:972~982
    Parátk T. Kiruna iron ores are not "intrusive–magmatic ores of the Kiruna type". EconomicGeology,1975,70:1242~1258
    Parátk T. Phosphorus in different types of ore, sulfides in the iron deposits, and the type andorigin of ores at Kiruna. Economic Geology,1985,80:646~665
    Parátk T. Rare earths in the apatite iron ores of Lappland together with some data about the Sr,Th and U content of these ores. Economic Geology,1973,68:210~221
    Park J K, Buchan K L and Harlan S S. A proposed giant radiating dyke swarm fragmented by theseparation of Laurentia and Australia based on paleomagnetism of ca.780Ma maficintrusions in western North America. Earth Planet. Sci, Lett,1995,132
    Paster T B,Schauwecker D D S and Haskin L A. The behavior of some trace elements duringsolidification of the Skaergaard layerd series. Geochimica et Cosmochimica Acta,1974,38:1549~1577.
    Pearce J A and Cann J R. Tectonic setting of basic volcanic rocks determined using trace elementanalyses. Earth and Planetary Science Letters,1973,19:290~300
    Pearce J A and Peate D W. Tectonic implications of the composition of volcanic arc magmas.Annual Review Of Earth And Planetary Science,1995,23:251~286
    Pearce J A, Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks. J Petrol,1984,25:956~983
    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries. In: ThorpeR. S.(eds.), Andesits. Chichester: Wiley,1982,525~548
    Philpotts A R. Origin of certain iron–titanium oxide and apatite rocks. Economic Geology,1967,62:303~315
    Pickard A.L. Genetic stratigraphy and composition of the Dales Gorge Member, Brockman IronFormation in Western Australia, and the correlation of the Paleoproterozoic Brockman andKuruman iron formations using high–precision geochemistry and U–Pb SHRIMPgeochronology. Ph.D. Thesis. University of Western Australia,2003.
    Pisarvsky S A, Wingate M T D and Powell C McA. Models of Rodinia assembly andfragmentation. In: Yoshida, M, and Windley, B. F.(eds), Proterozoic EastGondwana:Supercontinent Assembly and Breakup.Geological Society,London,SpecialPublications,2003.
    Poul E. Origin of the Meikle high-grade gold deposit from the superposition of late Devoniansedex and mid-Tertiary Carlin-type gold mineralization/--by Poul Emsbo. Thesis (Ph.D.)--Colorado School of Mines,1999
    Ray G E and Webster I C L. Geology and Chemistry of the Low Ti Magnetite–bearing HeffCu–Au Skarn and its Associated Plutonic Rocks, Heffley Lake, South–Central BritishColumbia. Exploration and Mining Geology,2007,16:159~186
    Reynolds I M. Contrasted mineralogy and textural relations in the uppermost T-imagnetite layersof the Bushveld Complex in the Bierkraal area north of Rustenburg. Econ Geol,1985,80:1027~1048
    Richards J P. Petrology and geochemistry of alkalic intrusives at the Porgera gold deposit, PapuaNew Guinea. Journal of Geochemical Exploration,1990,35:141~200
    Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.Economic Geology,2003,98:1515~1533
    Rickard D. Proterozoic Volcanogenic Mineralization Styles Geological Society, London. SpecialPublications, January1,1987,33:23~35
    Roedder E. Liquid immiscibility in K2O-FeO-Al2O3-SiO2. Nature,1977,267:558~559
    Roedder E. Low temperature liquid immiscibility in the systerm K2O-FeO-Al2O3-SiO2. Am. Min.1928,36:282~286
    Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York:Longman Publishing Group,1993,174~206
    Rollison H R. Another look at the constant sum problem in geochemistry. MineralogicalMagazine.1992,56:469~475
    Sakai H. Isotopic properties of sulfur compounds in hydrothermal processes. Geochem.J.1968,2:29~49
    Schock H H. Distribution of rare–earth and other trace elements in magnetites. ChemicalGeology,1979,26:119~133
    Semenov S V, Glebovitsky V A, Kol’tsov A B, et al. Metasomatic processes in theLukkulaisvaara layered intrusion, Russia, and formation of low-sulfide PGE mineralization.Geology of Deposits,2008,50(4):249~274
    Shellnutt J G and Zhou M F. Permian peralkaline, peraluminous and metaluminous A-typegranites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume.Chem. Geol,2007,243(3-4):286~316
    Shellnutt J G and Zhou M F. Permian, riftin grelated fayalite syenite in the Panxi region, SWChina. Lithos,2008,101:54~73
    Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermalgold deposits in the circum-Pacific region. Australian Journal of Earth Sciences,1997,44:373~388
    Sillitoe R H. Enargite-bearing massive sulfide deposits high in porphyry copper systems.Economic Geology,1983,78:348~352
    Sillitoe R H. Iron oxide-copper-gold deposits: An Andean view. Mineralium Deposita,2003,38:787~812
    Snachev A V and Snachev M V. Ore mineralization of the Amur stratiform zinc deposit(Southern Urals). Dokland Earth Sciences,2012,44(2):711~714
    Sokolova E N, Smirnov S Z, Astrelina E I, et al. Ongonite–elvan magmas of the Kalgutyore-magmatic system (Gorny Altai): composition, fluid regime, and genesis. RussianGeology and Geophysics,2011,52(11):1378~1400
    Song S G, Niu Y L, Wei C J, et al. Metamorphism, anatexis, zircon ages and tectonic evolutionof the Gongshan block in the northern Indochina continent—An eastern extension of theLhasa Block. Lithos,2010,120(3-4):327~346
    Storey M, Saunders A D, Tarney J, et al. Geochemical evidence for plume-mantle interactionsbeneath Kergulen and Herd Islans, Indian Ocean. Nature,1988,336:371~374
    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: Saunders A D and Norry M J(eds.),Magmatism in ocean basins. Geol. Soc. London. Spec. Publ.1989,42:313~345
    Sun X, Deng J, Yang Z R, et al. Using REE and isotope geochemistry to trace the origin of oreforming materials in Yixian fluorite deposits, China. Geochimica et Cosmochimica Acta,2009,73: A1293
    Taylor R P and Fryer B J. Multiple–stage hydrothermal alteration in porphyry copper systems innorthern Turkey: The temporal interplay of potassic, propylitic, and phyllic fluids.Canadian Journal of Earth Sciences,1980,17:901~926
    Taylor R P. Rare earth element lithogeochemistry of granitoid mineral deposits. CanadianMining Metall. Bull,1983,76(12):74~84
    Taylor S R and Mclennan S M. The continental crust: its composition and evolution. Oxford:Blackwell.1985,312
    Thompson R N. Some high–pressure pyroxenes. Mineralogical Magazine,1974.(39):768~787
    Toplis M J and Carroll M R. An experimental study of the influence of oxygen fugacit y onFe-Ti oxide stability, phase relations, and minera-melt equilibria in ferro-basaltic systems.Journal of Petrology,1995,36:1137~1170
    Torab F M and Lehmann B. Magnetite-apatite deposit of the Bafq district, Central Iran: Apatitegeochemistry and monazite geochronology. Mineralogical Magazine,2007,71:347~363
    Vavra G, Gebauer D, Schimed R, et al. Multiple zircon growth and recrystallization duringpolyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(Southern Alps.): an ion microprobe (SHRIMP) study. Contributions to Mineralogy andPetrology,1996,122(4):337~358
    Visser W and Koster G A F. Phase relations in the system K2O-FeO-Al2O3-SiO2.at1atmospherewith special emphasis on low temperature liquid immiscibility, Am. J. Sci.1979,276:70~91.
    Wager L R, Brown G M and Wadsworth W J. Types of igneous cumulates. Petrology,1960,1:73~85
    Weidinger J T, Schramm J-M and Nuschej F. Ore mineralization causing slope failure in ahigh-altitude mountain crest—on the collapse of an8000m peak in Nepal. Journal ofAsian Earth Sciences,2002,21(3):295~306
    Weihed P, Arndt N, Billstr m K, et al. Precambrian geodynamics and ore formation: TheFennoscandian Shield. Ore Geology Reviews,2005,27:273~322
    Wilson M,杨祝良.岩浆分异作用.国外火山地质,1994(04):52~64
    Wilson M. Igneous petrology. Oxford University Press, London,1989:1~441
    Windley B F, Allen M B, Zhang C, et al. Paleozoic accretion and Cenozoic redeformation of theChinese Tien Shan Range, central Asia. Geology,1990,18(2):128~131
    White W M and Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantleevolution. Nature,1982,296:821~825
    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmaticclassification and to establishing the nature of crustal contamination of basaltic lavas of theBritish Tertiary volcanic province. Earth and Planetary Science Letters,1980,50(1):11~30
    Xavier R.P, Wiedenbeck M, Trumbull R B, et al. Tourmaline B-isotopes fingerprint marineevaporites as the source of high~salinity ore fluids in iron oxide copper-gold deposits,Carajas Mineral Province(Brazil). Geology,2008,36(9):743~746
    Xia L Q, Xia Z C and Xu X Y. Properties of middle-late Proterozoic volcanic rocks in SouthQinling and the Precambrian continental break-up. Science in China (series D),1996,39(3):256~265
    Xia L Q, Xia Z C, Zhao J T, et al. Determination of properties of Proterozoic continental floodbasalts of western part from North Qilian Mountains. Science in China (series D),1999,45(5):506~514
    Xia L Q, Xu X Y, Xia Z C, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in theTianshan, Northwestern China. Geological Society of America Bulletin,2004,116:419~433
    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of theeastern Tianshan (China): Implications for the continental growth of central Asia. AmericanJournal of Science,2004,304(4):370~395
    Xu Y G, Luo Z Y, Huang X L, et al. Zircon U-Pb and Hf isotope constraints on crustal meltingassociated with the Emeishan mantle plume. Geochim. Cosmochim. Acta,2008,72:3084~3104
    Xu Z G. Mesozoic volcanism and volcanogenic iron_ore deposits in eastern China. GeologicalSociet y of America,1990,237:1~46
    Xu Z W, Lu X C and Ling H F. Metallogenetic Mechanism and Timing of Late SuperimposingFluid Mineralization in the Dongguashan Diplogenetic Stratified Copper Deposit, AnhuiProvince. Acta Geologica Sinica,2005,79(3):405~413
    Yang F Q, Wu H, Pirajno F, et al., The Jiashan syenite in northern Heibei: A record oflithospheric thinning in the Yanshan intracontinental orogenic belt. Journal of Asian EarthSciences,2007,29:619~636
    Yaxley G M. Experimental study of the phase and melting relations of homogeneous basalt+peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions toMineralogy and Petrology,2000,139:326~338
    Zartman R E and Doe B R.1981. Plumbotectonics-The model. Tectonophys,1981,75:135-162
    Zeng P S, Hou Z Q, Mo X X, et al. Relationship of the Cenozoic Beiya Cu-Au mineralization toalkali~rich porphyries in western Yunnan, China. Mineral Deposit Reserch: Meeting theGlobal challenge,2005,11:1279~1281
    Zhai Y S, Wang J P, Deng J, et al. Superimposed Mesozoic metallogenic systems in easternChina. Mineral Deposit Reserch: Meeting the Global challenge,2005,10:1209~1212
    Zhang Z H, Hong W, Jiang Z S, et al. Geological Characteristics and Zircon U-Pb Dating ofVolcanic Rocks from the Beizhan Iron Deposit in Western Tianshan Mountains, Xinjiang,NW China. Acta Geologica Sinica,2012,86(3):737~747
    Zhong H, Zhu W G, Chu Z Y, et al. SHRIMP U-Pb zircon geochronology, geochemistry, andNd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SWChina. Chem. Geol,2007,236:112~133
    Zhou M F, Arndt N T, Malpas J, et al. Two magma series and associated ore deposit types in thePermian Emeishan large igneous province, SW China. Lithos,2008,103(3-4):352~368
    阿丽娜,弓小平,徐谢军.新疆和静县备战铁矿矿体特征及围岩蚀变.西部探矿工程,2012,(03):171~172
    艾永亮,张立飞,李旭平,等.新疆西南天山超高压榴辉岩、蓝片岩地球化学特征及大地构造意义.自然科学进展,2005,(11):1346~1356
    安芳,朱永峰.西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究.岩石学报,2008,24(12):2741~2748
    白建科,李智佩,徐学义,等.新疆西天山吐拉苏—也里莫墩火山岩带年代学:对加曼特金矿成矿时代的约束.地球学报,2011,32(3):322~330
    曹毅.安徽沿江地区中生代矽卡岩岩浆-热液成矿作用.博士学位论文,中国地质大学(北京),2011
    常兆山,冯钟燕,陈廷礼.河北涞源岩基中的超镁铁质岩研究.地质与勘探,2000(03):36~39
    车自成,刘良,刘洪福,等.论伊犁古裂谷.岩石学报,1996,12(3):478~490
    陈大经.陆相火山岩型铁矿的成矿作用及成矿系列(摘要).矿产与地质,1982(00):15~19
    陈丹玲,刘良,车自成,等.中天山骆驼沟火山岩的地球化学特征及其构造环境.岩石学报,2001,17(3):378~384
    陈雷,秦克章,李光明,等.西藏山南努日铜钼钨矿床矽卡岩地球化学特征及成因.地质与勘探,2011,1:78~88
    陈学明,林棕,谢富昌.云南白牛厂超大型银多金属矿床叠加成矿的地质地化特征.地质科学,1998(01):116~125
    陈义兵,张国伟,柳小明,等.中天山巴仑台地区变形花岗岩类LA-ICP-MSU-Pb年代学及其构造意义.地质论评,2012(01):117~125
    陈毓川,盛继福,艾永德.梅山铁矿——一个矿浆热液矿床.中国地质科学院矿床地质研究所文集(3),1981:26~48
    陈毓川,张荣华,盛继福,等.玢岩铁矿矿化蚀变作用与成矿机理.中国地质科学院矿床地质研究所文集(3),1982:1~29
    陈毓蔚,朱炳泉.矿石铅同位素组成特征与中国大陆地壳的演化.中国科学(B),1984,(03):269~277
    陈岳龙,王中刚.新疆东天山花岗岩类的地球化学特征.地球化学,1993,(03):288~302
    陈正乐,万景林,刘健,等.西天山山脉多期次隆升-剥露的裂变径迹证据.地球学报,2006,27(2):97~106
    池际尚.中国东部新生代玄武岩及上地幔研究.北京:中国大地出版社,1987
    邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用.矿床地质,2010,(01):37~42
    邓军,王长明,李龚健.三江特提斯叠加成矿作用样式及过程.岩石学报,2012,(05):1349~1361
    邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展.岩石学报,2011,(09):2501~2509
    丁俊,张术根,徐忠发,等.印度尼西亚塔里亚布岛锡铁多金属矿床的地质地球化学特征与成因.地球学报,2011,(03):313~321
    丁振举,刘丛强,姚书振,等.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展,2000,(03):307~312
    丁振举,姚书振,刘丛强,等.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪.岩石学报,2003,19(4):792~798
    杜建国,马晓红.长江中下游成矿带陆相火山岩型铁矿成矿规律.安徽地质,2011,(02):131~137
    段超.宁芜矿集区凹山玢岩型铁矿床成矿作用研究.中国地质大学(北京)博士论文,2012:1~132
    段年高,苏良赫.云南曼养铁矿成矿实验研究.现代地质,1987,2:253~259
    鄂莫岚,赵大升.中国东部新生代玄武岩及深源岩石包体.北京:科学出版社,1987
    范良伍,张乾,温汉捷.安庆铜铁矿床磁铁矿成矿机理探讨.矿物学报,2008,4:476~482
    冯金星,石福品,汪帮耀,等.西天山阿吾拉勒成矿带火山岩型铁矿.北京:地质出版社,2010,1~177
    冯京,徐仕琪,田江涛,等.东天山海相火山岩型铁矿成矿规律研究方法.新疆地质,2009(04):330~336
    高俊,张立飞,刘圣伟.西天山蓝片岩榴辉岩形成和抬升的40Ar/39Ar年龄记录.科学通报,2000(01):89~94
    高俊.西南天山榴辉岩的发现及其大地构造意义.科学通报,1997,(07):737~740
    高振家,等.新疆北部前寒武系.北京:地质出版社,1993
    葛良胜,邓军,李汉光,等.云南大坪大型金多金属矿床叠加成矿作用:地质、流体包裹体和稳定同位素证据.岩石学报,2007,(09):2131~2143
    耿新霞,杨富全,杨建民,等.新疆阿尔泰铁木尔特铅锌矿床稳定同位素组成特征.矿床地质,2010,6:1088~1100
    顾连兴,胡受奚,于春水,等.论博格达俯冲撕裂型裂谷的形成与演化.岩石学报,2001a,17(4):585~597
    顾连兴,胡受奚,于春水,等.博格达陆内碰撞造山带挤压~拉张构造转折期的侵入活动.岩石学报,2001b,17(2):187~198
    顾连兴,张遵忠,吴昌志,等.关于东天山花岗岩与陆壳垂向增生的若干认识.岩石学报,2006,(05):1103~1120.
    郭新成,张建收,余元军,等.新疆和静县备战铁矿地质特征及找矿标志.新疆地质,2009,(04):341~345
    韩宝福,何国琦,吴泰然,等.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义.新疆地质,2004,(01):4~11
    何国琦,成守德,徐新,等.中国新疆及邻区大地构造图(1:2500000)说明书.北京:地质出版社,2004:1~65
    洪为,张作衡,蒋宗胜,等.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约.岩石学报,2012,(07):2089~2102
    洪为.新疆西天山查岗诺尔铁矿地质特征与矿床成因.中国地质科学院硕士学位论文,2012
    侯通,张招崇,杜杨松.宁芜南段钟姑矿田的深部矿浆-热液系统.地学前缘,2010,(01):186~194
    胡霭琴,王中刚,涂光炽等.新疆北部地质演化及成岩成矿规律.北京:科学出版社,1997
    胡霭琴,韦刚健,江博明,等.天山0.9Ga新元古代花岗岩SHRIMP锆石U-b年龄及其构造意义.地球化学,2010,(03):197~212
    胡霭琴,韦刚健,张积斌,等.天山东段天湖东片麻状花岗岩的锆石SHRIMPU-Pb年龄和构造演化意义.岩石学报,2007,(08):1795~1802
    胡剑华.从胶东东部金青顶矿床论金的叠加成矿作用.山东地质,1995,(01):41~48
    黄河,张招崇,张舒,等.新疆西南天山霍什布拉克碱长花岗岩体岩石学及地球化学特征—岩石成因及其构造与成矿意义.岩石矿物学杂志,2010,(06):707~718
    黄清涛.论罗河铁矿床地质特征及矿床成因.矿床地质,1984,3(4):9~19
    姜常义,穆艳梅,白开寅,等.南天山花岗岩类的年代学、岩石学、地球化学及其构造环境.岩石学报,1999(02):139~149
    姜常义,穆艳梅,赵晓宁,等.塔里木板块北缘活动陆缘型侵入岩带的岩石学与地球化学.中国区域地质,2001,02:158~163
    姜常义,吴文奎,张学仁,等.从岛弧向裂谷的变迁-来自阿吾拉勒地区火山岩的证据.岩石矿物学杂志,1995,14(4):289~300
    姜常义,吴文奎,张学仁,等.西天山阿吾拉勒地区岩浆活动与构造演化.西安地质学院学报,1996,18(2):18~24
    蒋少涌,孙岩,孙明志,等.长江中下游成矿带九瑞矿集区叠合断裂系统和叠加成矿作用.岩石学报,2010(09):2751~2767
    解广轰,王俊文,BasuAR,等.长白山地区新生代火山岩的岩石化学及Sr-Nd-Pb同位素地球化学研究.岩石学报,1988,4(4):1~13
    李秉伦,谢奕汉.宁芜地区宁芜型铁矿的成因、分类和成矿模式.中国科学(B辑),1984,(01):80~86
    李春辉,刘显凡,赵甫峰,等.金顶超大型铅锌矿床中的地幔流体现实踪迹与壳幔混染叠加成矿机制.地学前缘,2011,(01):194~206
    李凤鸣,彭湘萍,石福品,等.西天山石炭纪火山-沉积盆地铁锰矿成矿规律浅析.新疆地质,2011,29(1):55-60
    李华芹,陈富文,路远发,等.东天山三岔口铜矿区矿化岩体SHRIMPU-Pb年代学及锶同位素地球化学特征研究.地球学报,2004,25(2):191~195
    李惠,王支农,张文华,等.山东招远灵山沟金矿床的叠加成矿成晕模式.桂林工学院学报,1998,(02):28~30
    李楠,杨立强,张闯,等.西秦岭阳山金矿带硫同位素特征:成矿环境与物质来源约束.岩石学报,2012,28(5):1577~1587
    李平.中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约.长安大学,2011
    李舢,王涛,童英.中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境.岩石矿物学杂志,2010,(06):642~662
    李天伶.福建下西坑铁矿及与之相关的矿浆实验研究.现代地质,1991,(01):58~68
    李卫东,涂其军,高永峰,等.新疆哈密市路白山一带片麻状花岗岩锆石SHRIMPU-Pb定年及其地质意义.中国地质,2010,(05):1273~1283
    李文铅,夏斌,王克卓,等.新疆东天山彩中花岗岩体锆石SHRIMP年龄及地球化学特征.地质学报,2006,(01):43~52
    李旭平,张立飞,艾永亮.新疆西天山长阿吾子蛇绿混杂岩中与榴辉岩伴生的异剥钙榴岩的发现及其地质意义.自然科学进展,2003,(07):84~90
    梁祥济,曲国林.福建马坑铁矿床形成温度和压力实验的初步研究.中国地质科学院院报,1982,4:83~94
    梁一鸿,张宏颖,秦亚,等.内蒙古十八倾壕金矿床的叠加成矿作用—来自黄铁矿组分特征的证据.吉林大学学报(地球科学版),2012,(01):77~81
    林锦富,喻亨祥,余心起,等.新疆东准噶尔萨北富碱花岗岩SHRIMP锆石U-Pb测年及其地质意义.岩石学报,2007,(08):1876~1884
    刘石年.多阶段叠加成矿的矿化强度计算方法及其意义.地质与勘探,1984,(04):28~33
    刘文浩,张均,李婉婷.次火山岩型铁矿成矿深度研究的内容、方法和存在的问题.矿床地质,2010,(S1):93~94
    龙灵利,高俊,钱青,等.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境.岩石学报,2008,24(4):699~710
    龙灵利,高俊,熊贤明,等.新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究.岩石学报,2007,(04):719~732
    卢冰,胡受奚,蔺雨时,等.宁芜型铁矿床成因和成矿模式的探讨.矿床地质,1990,(1):13~25
    卢宗柳,莫江平.新疆阿吾拉勒富铁矿地质特征和矿床成因.地质与勘探,2006,(05):8~11
    吕增,张立飞,曲军锋,等.新疆西南天山哈布腾苏一带榴辉岩的岩石学特征及变质作用P-T轨迹.岩石学报,2007,(07):1617~1626
    吕增,张立飞.西南天山阿坦塔义一带片岩和榴辉岩中的柯石英.科学通报,2012,(09):683~688
    马乐天,张招崇,董书云,等.南天山英买来花岗岩的地质、地球化学特征及其地质意义.地球科学(中国地质大学学报),2010,(06):908~920
    马旭,陈斌,牛晓露.冀东晚古生代东湾子岩体的岩石成因研究.岩石学报,2009,(08):1975~1988
    马振东.论铅同位素的地质指示作用.地球科学,1986,(04):437~443
    毛景文,段超,刘佳林,等.陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型—以长江中下游为例.岩石学报,2012,(01):1~14
    毛景文,余金杰,袁顺达,等.铁氧化物-铜-金(IOCG)型矿床:基本特征、研究现状与找矿勘查.矿床地质,2008,27(3):267~278
    莫运东,孙明祥,王国洪,等.景洪南林—大勐龙地区铁多金属矿资源潜力.云南地质,2009,(03):250~253
    聂凤军,江思宏,白大明.中天山及邻区金属矿床成矿规律和找矿方向.地质出版社,2005
    牛贺才,单强,罗勇,等.西天山玉希莫勒盖达坂石英闪长岩的微量元素地球化学及同位素年代学研究.岩石学报,2010,26(10):2935–2945
    帕拉提,黄建华.新疆北准噶尔萨勒布尔山地质研究新进展.新疆第三届天山地质矿产学术会论文集,1995
    彭润民,翟裕生,韩雪峰,等.内蒙古东升庙矿床岩浆热液叠加成矿作用——来自地质与矿物包裹体测温的证据.岩石学报,2007,(01):145~152
    钱青,高俊,熊贤明,等.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境.岩石学报,2006,22(5):1307~1323
    秦克章,王之田.内蒙古乌奴格吐山铜-钼矿床稀土元素的行为及意义.地质学报,1993,(04):323~335
    邱瑞龙.贵池铜山铜矿矽卡岩稀土元素地球化学特征.地质学报,1987,1:91~100
    任云生,粟登逵,张金树.西藏甲马铜多金属矿床金的叠加成矿.吉林大学学报(地球科学版),2002,(03):225~228
    沈其韩,宋会侠,赵子然.山东韩旺新太古代条带状铁矿的稀土和微量元素特征.地球学报,2009,30(6):693~699
    沈远仁.大红山式铁、铜矿床的形成机理—海底火山成矿模式.地质科技情报,1982(S1):66~68
    苏良赫.液相不混溶在岩石学及矿床学中的重要性.地球科学,1984,(1):1~12
    孙林华,彭头平,王岳军.新疆特克斯东南大哈拉军山组玄武安山岩地球化学特征:岩石成因和构造背景探讨.大地构造与成矿学,2007,31(3):372~379
    唐功建,陈海红,王强,等.西天山达巴特A型花岗岩的形成时代与构造背景.岩石学报,2008,(05):947~958
    唐俊华,顾连兴,张遵忠,等.东天山黄山—镜儿泉过铝花岗岩矿物学、地球化学及年代学研究.岩石学报,2008,(05):921~946
    唐俊华,顾连兴,张遵忠,等.东天山咸水泉片麻状花岗岩特征、年龄及成因.岩石学报,2007,(08):1803~1820
    田竞亚,胡秀蓉.攀枝花(式)铁矿成矿机理与生成环境初探.地球科学,1986,6:638~644
    田敬全,胡敬涛,易习正,等.西天山查岗诺尔-备战一带铁矿成矿条件及找矿分析.西部探矿工程,2009,(08):88~92
    童英,王涛,洪大卫,等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义.岩石矿物学杂志,2010,(06):619~641
    汪帮耀,胡秀军,王江涛,等.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究.矿床地质,2011,(03):385~402
    王碧香,李兆鼐,赵光赞,等.新疆北天山东段花岗岩类地球化学特征.地质学报,1989,(03):236~245
    王博,舒良树,CluzelD,等.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义.中国地质,2006,33(3):498–508
    王超,刘良,罗金海,等.西南天山晚古生代后碰撞岩浆作用:以阔克萨彦岭地区巴雷公花岗岩为例.岩石学报,2007,(08):1830~1840
    王春龙.新疆西天山松湖铁矿床地质地球化学特征与成因研究.中国地质科学院硕士学位论文,2012
    王殿惠.论双井子铁矿成因.地质找矿丛论,1987,2(2):72~83
    王方成,蔡晓菊.新疆博格达山晚古生代花岗岩地球化学特征及构造意义.兰州大学学报(自然科学版),2010,(05):1~6
    王健,张均,江满容,等.次火山岩型铁矿成矿物理化学条件研究中的几个问题.矿床地质,2010(S1):409~410
    王金珠,顾连兴,杨浩,等.东疆星星峡地区白石头泉高铷氟花岗岩的特征和成因.岩石学报,1994,(01):41~53
    王居里,王守敬,柳小明.新疆天格尔地区碱长花岗岩的地球化学、年代学及其地质意义.岩石学报,2009,(04):925~933
    王可南,姚培慧.中国铁矿床综论.北京:冶金工业出版社,1992,46~269
    王立强,顾雪祥,程文斌,等.西藏蒙亚啊铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪.现代地质,2010,(01):52~58
    王星,肖荣阁,杨立朋,等.青海谢坑铜金矿床石榴石矽卡岩成因研究.现代地质,2008,22(5):733~742
    王行军,王根厚,专少鹏,等.中天山晚奥陶世碰撞造山:来自变质花岗岩地球化学及年代学证据.岩石学报,2011,(07):2203~2212
    王玉往,王京彬,王莉娟.内蒙古大乃林沟角闪石岩岩石学特征.地质论评,2000,(03):301~306
    王志良,毛景文,杨建民,等.新疆巴音布鲁克乔霍特铜矿区钾长花岗岩中钾长石的40Ar/39Ar年龄及其地质意义.岩石矿物学杂志,2004,(01):12~18
    吴昌志,张遵忠,ZawKhin,等.东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义.岩石学报,2006,(05):1121~1134
    夏林圻,夏祖春,徐学义,等.天山石炭纪大火成岩省与地幔柱.地质通报,2004,21(2):55~62
    夏林圻,夏祖盛,徐学义等.天山岩浆作用.中国大地出版社,2007:1~350
    夏林圻,张国伟,夏祖春,等.天山古生代洋盆开启、闭合时限的岩石学约束—来自震旦纪、石炭纪火山岩的证据.地质通报,2002
    肖庆华,秦克章,唐冬梅,等.新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物——矿相学、锆石U-Pb年代学及岩石地球化学证据.岩石学报,2010,2:503~522
    肖序常,格雷厄姆SA,卡罗尔AR,等.中国西部元古代蓝片岩带—世界上保存最好的前寒武纪蓝片岩.新疆地质,1990,8(1)
    徐俊.五台山区金矿床的多金源多期次多成因多类型叠加成矿特征.地质论评,1992,(01):40~51
    徐仕琪,赵同阳,冯京,等.东天山海相火山岩型铁矿区域成矿规律研究.新疆地质,2011,(02):173~177
    徐学义,马中平,夏祖春,等.天山石炭—二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪.西北地质,2005,(02):1~18
    徐义刚,梅厚钧,许继峰,等.峨眉山大火成岩省中两类岩浆分异趋势及其成因.科学通报,2003,4:383~387
    徐志刚.中国东部中生代陆相火山岩型铁矿成矿背景和火山岩浆性质.矿床地质,1986,(01):13~26
    薛春纪,姬金生,杨前进.新疆磁海铁(钴)矿床次火山热液成矿学.矿床地质,2000,(2):156~164
    杨峰利,张利松.四川省盐源县矿山梁子火山岩型铁矿床成矿地质规律及找矿方向.中华民居,2011,(10):51~52
    杨锋,刘连登,陈国华,等.平度1号脉金矿晚期叠加成矿初探.黄金,2001,(05):1~5
    杨富全,毛景文,徐林刚,等.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示.岩石学报,2007,23(10):2443~2456
    杨猛,王居里,王建其,等.新疆中天山北缘望峰地区花岗岩的地球化学、锆石U-Pb年代学及Hf同位素组成研究.岩石学报,2012(07):2121~2131
    杨天南,李锦轶,孙桂华,等.中天山早泥盆世陆弧:来自花岗质糜棱岩地球化学及SHRIMPU/Pb定年的证据.岩石学报,2006,22(1):41~48
    杨喜安.滇西羊拉成矿带叠加成矿作用及找矿模式.中国地质大学(北京),2012
    杨宗锋,程黎鹿,罗照华,等.内蒙古天和永玄武岩成因:岩相学与矿物学分析.岩石学报,2008,(11):2548~2562
    余建华,陈文革,杨海英,等.地面磁测在西天山查岗诺尔—备战一带铁矿勘查中的应用.西部探矿工程,2010,(08):146~148
    余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征.矿床地质,2002,1(21):65~73
    俞建长.福建平芹山透辉石矿床地质特征及成因探讨.福州大学学报,1994,22(1):98~105
    喻学惠.常压高温下方铁矿(FeO)–氟金云母[KMg3(AlSi3O10)F2]–透辉石(CaMgSi2O6)熔融体系相平衡实验及地质意义.地球科学,1984,(1):12~18
    袁家铮,张峰,殷纯嘏,邵宏翔.梅山铁矿矿浆成因的系统探讨.现代地质,1997,11(2):170~176
    曾庆丰.叠加成矿说.地质与勘探,1987,(01):38~43
    翟明国,WindleyBF,SillsJD.鞍本太古代条带状铁建造(BIF)的稀土及微量元素特征.地球化学,1989,3:241~250
    翟裕生,邓军,李晓波.区域成矿学.地质出版社,1999,1~287
    翟裕生,彭润民,向运川,等.区域成矿研究法.北京:大地出版社,2004,1~183
    翟裕生,王建平,彭润民,等.叠加成矿系统与多成因矿床研究.地学前缘,2009,(06):282~290
    张成和,丁天府.试论新疆天山地区石炭纪海相火山岩型铁矿成矿条件.西北地质,1984,(03):10~18
    张红芬,闫纲丽,张景森.榴辉岩变质演化P-T轨迹研究新进展.河北工程大学学报(自然科学版),2011,(01):85~90
    张立飞,EllisDavid J.,艾永亮,等.新疆西天山超高压变质榴辉岩.岩石矿物学杂志,2002,(04):371~386
    张起钻.广西大厂超大型锡多金属矿床同位叠加成矿作用.有色金属矿产与勘查,1999,(06):482~485
    张荣华,刘隆隆,陆成庆.长江中下游某些火山岩铁矿微量元素的地球化学.中国地质科学院院报,1979,(00):83~103
    张叔贞,林新多,姚书振.湖北张福山矿浆—热液过渡型矽卡岩铁矿蚀变矿化分带.地球科学,1985,(4):45~51
    张喜,高俊,董连慧,等.新疆中天山乔霍特铜矿区Ⅰ型花岗岩锆石LA-ICP-MSU-Pb年龄及其地质意义.岩石学报,2011,(06):1637~1648
    张修政,董永胜,李才,等.青藏高原羌塘中部不同时代榴辉岩的识别及其意义——来自榴辉岩及其围岩40Ar/39Ar年代学的证据.地质通报,2010,(12):1815~1824
    张渊,刘连登,孙景贵,等.胶东西北部黄埠岭金矿床两期次叠加成矿.吉林大学学报(地球科学版),2008,(01):21~26
    张招崇,闫升好,陈柏林,等.新疆东准噶尔北部俯冲花岗岩的SHRIMPU-Pb锆石定年.科学通报,2006,51(13):1565~1574
    张招崇,周刚,闫升好,等.阿尔泰山南缘晚古生代火山岩的地质地球化学特征及其对构造演化的启示.地质学报,2007,81(3):344~358
    张志欣,杨福全,罗五仓,等.新疆阿尔泰乌吐布拉克铁矿床矽卡岩矿物特征及其地质意义.岩石矿物学杂志,2011,30(2):267~280
    张遵忠,顾连兴,杨浩,等.中天山东段澄江期片麻状花岗岩特征和成因——以天湖东岩体为例.岩石学报,2004,(03):595~608
    张作衡,洪为,蒋宗胜,等.新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境.矿床地质,2012,31(5):941~964
    郑巧荣.由电子探针分析值计算Fe3+和Fe2+.矿物学报,1983,(1):55~62
    郑学正,叶大年.一种过冷却结晶效应——不平衡状态下的假高压效应.中国科学(D辑),4:442~451
    郑永飞,陈江峰.稳定同位素地球化学.科学出版社,2000,1~316
    中国科学院地球化学研究所.宁芜型铁矿形成机理.1987,1~152
    钟宏,徐桂文,朱维光,等.峨眉山大火成岩省太和花岗岩的成因及构造意义.矿物岩石地球化学通报,2009,(02):99~110
    周鼎武,苏犁,简平,等.南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义.科学通报,2004,49(14):1411~1415
    周涛发,袁峰,张达玉,等.新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究.岩石学报,2010,(02):478~502
    周新民,陈图华,刘昌实,等.我国东南沿海碱性玄武质岩石中辉石和角闪石巨晶.矿物学报,1982,(1):13~20
    周珣若,白志明.火山岩熔融、结晶、淬火实验及岩石学意义.岩石矿物学杂志,1996,15(2):97~108
    朱炳泉.地球科学中同位素体系理论与应用.北京:科学出版社,1998:1~235
    朱弟成,潘桂堂,莫宣学,等.特提斯喜马拉雅二叠纪—白垩纪中—基性火山岩研究进展.地质科技情报,2003,22(2):6~12
    朱永峰,张立飞,古丽冰,等.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究.科学通报,2005,50(18):2004~2014
    朱永峰,周晶,郭璇.西天山石炭纪火山岩岩石学及Sr-Nd同位素地球化学研究.岩石学报,2006,(05):1341~1350
    朱元龙,吕士英.河北省—混合岩化矽卡岩型铁矿.地质论评,1966,24(3):223~230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700