用户名: 密码: 验证码:
松嫩—张广才岭地块东缘“元古界”的岩石组合与形成时代:对区域构造演化的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以松嫩-张广才岭地块东缘原定“元古界”的东风山群、张广才岭群和塔东群作为研究对象。在详细的野外地质调查基础上,利用碎屑锆石LA-ICP-MS U-Pb年代学方法,结合不同地质体之间的覆盖与穿切关系及其锆石U-Pb年代学研究,确定了这些地层的沉积时限,并讨论了它们的构造属性。此外,通过对“元古界”中火成岩锆石LA-ICP-MS/SIMS U-Pb年代学和主量、痕量元素以及锆石Hf同位素研究,确定了这些火成岩的形成时代以及不同时代火成岩形成的构造背景。结合区域地质资料,最终建立了研究区古生代-早中生代的构造演化历史。
     详细的野外地质调查和室内岩相学研究表明东风山群、张广才岭群和塔东群均由一系列变质的沉积-火山岩组成,不同层位岩石之间的接触关系以及碎屑锆石U-Pb测年结果暗示它们并不是连续的沉积地层,而是由一系列不同时代地质体(新元古代——早中生代)所组成的构造混杂岩。基于最年轻火山岩夹层的锆石U-Pb年代学结果,结合相邻黑龙江杂岩的构造就位时间——早-中侏罗世,将“东风山群”、“张广才岭群”和“塔东群”的构造混杂时限限定在晚三叠世至早侏罗世之间。
     对“东风山群”、“张广才岭群”和“塔东群”构造混杂岩中火成岩的锆石U-Pb定年结果显示,这些所谓“地层”中的火成岩主要形成于早古生代、晚石炭世、早二叠世和晚三叠世。中寒武世英云闪长岩的的形成可能与早期俯冲的大洋板片部分熔融有关。早古生代加里东期钙碱性火成岩组合揭示松嫩-张广才岭地块与佳木斯之间洋壳俯冲于松嫩-张广才岭地块之下以及两个地块的碰撞-拼合过程;晚石炭世A型流纹岩的形成,表明该区处于伸展环境;早二叠世花岗闪长岩,结合滨东地区同时期双峰式火山作用的存在,暗示研究区处于古亚洲洋俯冲于松嫩-张广才岭-佳木斯联合地块之下引发的伸展环境;晚二叠世双峰式火成岩组合揭示陆内伸展环境;晚三叠世松嫩-张广才岭地块东缘双峰式火成岩组合的出现暗示该区处于古亚洲洋最终闭合碰撞造山后的伸展构造环境。
The Dongfengshan, Zhangguangcailing, and Tadong groups, previously believed asProterozoic, are selected as the research objects in present study. The depositional agesand tectonic nature of these strata are determined according to the detrital zirconLA-ICP-MS U-Pb dating and contact relationships between different terranes based on thedetailed field geological research. Besides, the formation ages and tectonic settings ofthese igneous rocks from so-called Proterozoic strata are determined according to thezircon LA-ICP-MS/SIMS U-Pb geochronology and major-and trace-element as well aszircon Hf isotope. These geochronological and geochemical data, together with regionaltectonic analysis, provide constraints on the Paleozoic-Early Mesozoic tectonic evolutionin the region.
     1. Depositional ages of the Dongfengshan, Zhangguangcailing and Tadong groups
     Detrital zircon dating results show that the Dongfengshan Group have differentdepositional ages. The sedimentary process of the Liangzihe Formation near theDongfengshan iron ore-deposit could take place during821~752Ma. Whereas, thesedimentary processes of the Liangzihe Formation biotite quartz schist and metamorphicsiltstone near Liangzihe iron ore-deposit could take place during425~386Ma and288~271Ma, respectively. The sedimentary process of two-mica quartz schist collectedfrom Hualigou Formation, as the middle part of the Dongfengshan Group, could takeplace during425~386Ma. The Hongli Formation, in the top part of the DongfengshanGroup, mainly crops out in the northern Yichun and is composed mainly ofcarbon-bearing silty slate and granitic gneiss. According to the present study, thesedimentary process of the Honglin Formation should take palce in275~271Ma. Detailed field geological research, combined the detrital zircons dating results, suggest that threedetrital zircon samples from Zhenggou Formation, as the bottom part of theZhangguangcailing Group, deposited during226~211Ma,228~211Ma, and311~226Ma,respectively. Three detrital zircon samples from Hongguang Formation, as the middle partof the Zhangguangcailing Group, deposited during450~426Ma,426~262Ma, and262~219Ma, respectively. And the sedimentary process of biotite quartz schist collectedfrom Xinxing Formation, as the top part of the Zhangguangcailing Group, could take placeduring284~262Ma. The dating results also indicate that the Lalagou Formation of theTadong Group was deposited between450and426Ma, and the Zhudundian Formation ofthe Tadong Group was deposited551~450Ma and750~516Ma.
     2. Tectonic nature of the Dongfengshan, Zhangguangcailing and Tadong groups
     Detailed field geological and petrological research suggest that the Dongfengshan,Zhangguangcailing and Tadong groups are consist of sedimentary and metamorphic rocks.The contact relationships among the different rocks, combined with the deitrital zirconU-Pb dating results, suggest that these so-called strata are not continous stratigraphicsequence of strata, but are actually a suite of tectonic mélanges that are made up of adiverse assortment of meta-sedimentary and volcanic rocks with ages that range fromNeoproterozoic to Early Mesozoic. Based on the youngest age for volcanic rocks withinthe tectonic mélange, and the age of deformation (174–184Ma) of the HeilongjiangComplex, we propose that the tectonic mélange formed during the Late Triassic–EarlyJurassic. A suite of Neoproterozoic terranes is present along the eastern margin of theSongnen–Zhangguangcai Range Massif (~821–752,~752–560, and~750–516Ma).Detrital zircons with ages of0.75–0.95Ga provided a large proportion of the clasticmaterial in the ‘Dongfengshan’,‘Zhangguangcailing’ and ‘Tadong’ groups, implying thata Neoproterozoic magmatic event occurred within or on the eastern margin of theSongnen-Zhangguangcai Range Massif. Paleo-Meso Proterozoic detrital zircons indicatethat several Paleoproterozoic rock masses may have existed at or close to the surface alongthe eastern margin of the Songnen–Zhangguangcai Range Massif.
     3. Temporal Features of the igneous rocks from Dongfengshan, Zhangguangcailingand Tadong groups
     Zircon U-Pb dating for igneous rocks from ‘Dongfengshan Group’, ‘Zhangguangcailing Group’ and ‘Tadong Group’ tectonic mélanges indicate that theseigneious rocks can be divided into eight stages, i.e., the Early Cambrian(~516Ma), theEarly Ordovician(~485Ma), Late Ordovician(~450Ma), Middle Silurian (~425Ma), LateCarboniferous (~317Ma), Early Permian (~282Ma), Late Permian (~256Ma), and LateTriassic (~217Ma).
     4. Tectonic settings of the igneous rocks in the ‘Proterozoic strata’
     The formation of the middle Cambrian tonalite is related to the partial melting of thesubducted oceanic plate in the early stage. The early-late Ordovician calc-alkaline igneousrocks suggest an active-continental margin on the eastern margin of theSongnen-Zhangguangcailing Range Massif, implying the westward subduction of anoceanic plate beneath the Zhangguangcai Range Massif. And the existence of the MiddleSilurian monzogranite implies that the collision and amalgamation of theSongnen-Zhangguangcai Range and Jiamusi massifs could take place in the middleSilurian. Late Carboniferous A-type rhyolite suggests a post-collisional extensionalenvironment in the region. The Early Permian granodiorite, combined with the coevalbimodal volcanic rocks from the eastern Harbin City, suggests an extensional environmentin the Songnen-Zhangguangcai Range Massif. The Late Permian igneous rocks arecomposed mainly of gabbrodiorite and monzogranite, implying a typical bimodal igneousassociation fromed in an extensional tectonic setting related to the amalgamation of theSongnen-Zhangguangcai Range-Jiamusi and the Khanka massifs. The Late Triassicbimodal volcanic rocks in the Zhangguangcai Range imply an extensional environmentrelated to the final closure of Paleo-Asian Ocean.
引文
[1] Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,2002,192(1-2):59-79.
    [2] Ballard JR, Palin JM, Williams IS, et al. Two-ages of prophyry intrusion resolved forthe super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS andSHRIMP[J]. Geology,2001,29:383-386.
    [3] Barbarin B. A review of the relationships between granitoid types, their origins andtheir geodynamics environments[J]. Lithos,1999,(46):605-626.
    [4] Belousova EA, Griffin WL, O’Reilly SY, et al. Igneous zircon: trace elementcomposition as an indicator of source rock type[J]. Contributions to Mineralogy andPetrology,2002,143:602-622.
    [5] Black LP, Kamo SL, Allen CM, et al. Improved206Pb/238U microprobegeochronology by the monitoring of a trace-element-related matrix effect: SHRIMP,ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zirconstandards[J]. Chemical Geology,2004,205:115-140.
    [6] Boynton WV. Geochemistry of the rare earth elements: meteorite studies[J]. In:Henderson P.(ed.), Rare earth element geochemistry, Elservier,1984:63-114.
    [7] Bruguier O, Lancelet JR. U-Pb dating on single detrital zircon grains from the TriassicSongpan-Ganze flysch (central China): provenance and tectonic correlations[J]. Earthand Planetary Science Letters,1997,152:217-231.
    [8] Carter A, Steve JM. Combined detrital-zircon fission-track and U-Pb dating: a newapproach to understanding hinterland evolution[J]. Geology,1999,27:235-238.
    [9] Chang CP, Angelier J, Huang CY. Origin and evolution of a mélange: the active plateboundary and suture zone of the Longitudinal Valley, Taiwan[J]. Tectonophysics,2000,325:43-62.
    [10]Chen B, Jahn BM, Tian W. Evolution of the Solonker suture zone: Constraints fromzircon U-Pb ages, Hf isotopic ratios and whole-rock Sr-Nd isotope compositions ofsubduction-and collision-related magmas and forearc sediments[J]. Journal of AsianEarth Sciences,2009,34:245-257.
    [11]Chen B, Jahn BM. Wilde, S. A, et al. Two contrasting Paleozoic magmatic belts innorthern Inner Mongolia, China: petrogenesis and tectonic implications[J].Tectonophysics,2000,328:157-182.
    [12]Cherniak DJ. Watson, E. B. Pb diffusion in zircon[J]. Chemical Geology,2000,172:5-24.
    [13]Chu NC, Taylor RN, Chavagnac V, et al. Hf isotope ratio analysis usingmulti-collector inductively coupled plasma mass spectrometry: An evaluation ofisobaric interference corrections[J]. Contributions to Mineralogy and Petrology,2002,17:1567-1574.
    [14]Corfu F, Hanchar JM, Hoskin PWO, et al. Atlas of zircon textures[J]. Reviews inMineralogy and Geochemistry,2003,53:469-500.
    [15]Cox KG. A Model for flood basalt volcanism[J]. Journal of Petrology,1980,21:629-650.
    [16]Deering CD, Vogel TA, Patino LC, et al. Origin of distinct silicic magma types fromthe Guachipelín Caldera, NW Costa Rica: Evidence for magma mixing and protractedsubvolcanic residence[J]. Journal of Volcanology and Geothermal Research,2007,165:103-126.
    [17]Defant MJ, Drummond MS. Derivation of some modern arc magma by melting ofyoung subducted lithosphere[J]. Nature,1990,34:662-665.
    [18]Eiler JM, Grawford AJ, Elliott TR, et al. Oxygen isotope geochemistry of oceanic arclavas[J]. Journal of Petrology,2000,41:229-256.
    [19]Elliott T, Plank T, Zindler A. Element transport from slab to volcanic front at theMariana arc[J]. Journal of Geophysical Research,1997,102:14991-15019.
    [20]Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within theTonga–Kermadec–Lauarc–back-arc systems; the role of varying mantle wedgecomposition in space and time[J]. Journal of Petrology,1998,39:331-368.
    [21]Fedo CM, Sircombe KN, Rainbird RH. Detrial zircon analysis of the sedimentaryrecord[J]. Review of Mineral Geochemistry,2003,53:277-303.
    [22]Fretzdorff S, Livermore RA, Devey CW, et al. Petrogenesis of the back-arc east scotiaridge, south Atlantic ocean[J]. Journal of Petrology,2002,43:1435-1467.
    [23]Frey FA, Prinz M. Ultramafic inclusions from San Carlos, Arizona: petrologic andgeochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters,1978,38:129-176.
    [24]Frost CD, Frost BR, Chamberlain KR, et al. Petrogenesis of the1.43Ga Shermanbatholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite[J]. Journalof Petrology,1999,40:1771-1802.
    [25]Gamble JA, Wright IC, Woodhead JD, et al. Arc and back-arc geochemistry in thesouthern Kermadec arc-Ngatoro Basin and offshore Taupo Volcanic Zone, SW Pacific.In: Smellie J L. ed. Volcanism Associated with Extension at Consuming PlateMargins[M]. Geological Society of Special Publication, London.1995:193-212.
    [26]Gao FH, Xu WL, Yang DB, et al. LA-ICP-MS zircon U-Pb dating from granitoids insouthern basement of Songliao basin: Constraints on ages of the basin basement[J].Science in China Series D: Earth Sciences,2007,50:995-1004.
    [27]Geist D, Howard KA, Larson P. The generation of oceanic rhyolites by crystalfractionation: the basalt-rhyolite association at Volcano Alcedo, GalapagosArchipelago[J]. Journal of Petrology,1995,36:965-982.
    [28]Gill JB. Orogenic Andesites and Plate Tectonics[M]. Springer Verlag, New York,1981,385.
    [29]Griffin WL, Belousova EA, Shee SR, et al. Archean crustal evolution in the northernYilgarn Craton; U-Pb and Hf-isotope evidence from detrital zircons[J]. PrecambrianResearch,2004,131(3-4):231-282.
    [30]Grove TL, Kinzler RJ. Petrogenesis of andesites. Annu. Rev[J]. Earth and PlanetaryScience Letters,1986,14:417-454.
    [31]Grove TL, Elkins, Tanton LT, et al. Fractional crystallization and mantle meltingcontrols on calk-alkaline differentiation trends[J]. Contributions to Mineralogy andPetrology,2003,145(5):515-533.
    [32]Han BF, Wang SG, Jahn BM, et al. Depleted-mantle magma source for the UlungurRiver A-type granites from north Xinjiang, China: geochemistry and Nd-Sr isotopicevidence, and implication for Phanerozoic crustral growth[J]. Chemical Geology,1997,138:135-139.
    [33]Han GQ, Liu YJ, Neubauer F, et al. Origin of terranes in the eastern Central AsianOrogenic Belt, NE China: U-Pb ages of detrital zircons from Ordovician–Devoniansandstones, North Da Xing’an Mts[J]. Tectonophysics,2011,511:109-124.
    [34]Harris RA, Sawyer RK, Audley-Charles MG. Collisional melange development:Geologic associations of active melange-forming processes with exhumed melangefacies in the western Banda Orogen, Indonesia[J]. Tectonics,1998,17:458-479.
    [35]Harris RA, Vorkink NW, Prasetyadi C. Transition from subduction to arc-continentcollision: geological and neotectonic evolution of Sawu Island, Indonesia[J].Geosphere,2009,5:152-171.
    [36]Henderson P. Rare Earth Element Geochemistr [J]. Amsterdam: Elsevier,1984,467-499.
    [37]Hofmann AW. Chemical differentiation of the Earth: the relationship between mantle,continental crust, and oceanic crust[J]. Earth and Planetary Science Letters,1988,90:297-314.
    [38]Hsu KJ. Melanges and their distinction from olistostromes[J]. In Dott RH, and ShaverRJ, eds., Modern and ancient geosynclinal sedimentations. Society of EconomicPaleontologists and Mineralogists Special Publication,1974,19:321-333.
    [39]Hsu KJ, Wang QC, Li JL, et al. Geological evolution of the Neimonides: a workinghypothesis[J]. Ecolgae Geologicae Helvetiae,1991,84:1-31.
    [40]Hu ZC, Gao S, Liu YS, et al. Signal enhancement in laser ablation ICP-MS byaddition of nitrogen in the central channel gas[J]. Journal of Analytical AtomicSpectrometry,2008,23:1093-1101.
    [41]Hu ZC, Liu YS, Gao S, et al. Improved in situ Hf isotope ratio analysis of zirconusing newly designed X skimmer cone and Jet sample cone in combination with theaddition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal ofAnalytical Atomic Spectrometry,2012,27:1391-1399.
    [42]Huang CY, Wu WY, Chang CP, et al. Tectoinics evolution of accretionary prism in thearc-continental collision terrane of Taiwan[J]. Tectonophysics,1997,281:31-51.
    [43]Huang CY, Yuan PB, Lin CW, et al. Geodynamic processes of Taiwan arc-continentalcollision and composition with analogs in Timor, Papua New Guinea, Urals andCorsica[J]. Tectonophysics,2000,325:1-21.
    [44]Ikeda Y, Yuasa M. Volcanism in nascent backarc basins behind the Schichito Ridgeand adjacent areas in the Izu-Ogasawara arc, NW Pacific; evidence for mixingbetween E-type MORB and island arc magmas at the initiation of back-arc rifing[J].Contributions to Mineralogy and Petrology,1989,101:377-393.
    [45]Ikesawa Eisei, Kimura Gaku, Sato Katsushi, et al. Tectonic incorporation of the upperpart of oceanic crust to overriding plate of a convergent margin: An example from theCretaceous-early Tertiary Mugi Mélange, the Shimanto Belt, Japan[J]. Tectonophysics,2005,401:217-230.
    [46]Ireland TR, Williams IS. Considerations in zircon geochronology by SIMS[J].Reviews in Mineralogy and Geochemistry,2003,53:215-241.
    [47]Irvine TH, Baragar W. A guide to the chemical classification of the common volcanicrocks. Canad[J]. Canadian Journal of Earth Sciences,1971,8:523-548.
    [48]Jackson SE, Pearson NJ, Griffin WL, et al. The application of laserablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in-situ U-Pbzircon geochronology[J]. Chemical Geology,2004,211:331-335.
    [49]Jahn BM, Wu FY, Chen B. Massive granitoid generation in central Asia: Nd isotopicevidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000,23:82-92.
    [50]Jahn B, Capdevila R, Liu D, et al. Sources of Phanerozoic granitoids in the transectBayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence andimplications for Phanerozoic crustal growth[J]. Journal of Asian Earth Sciences,2004,23:629-653.
    [51]Jia DC, Hu RZ, Lu Y, et al. Collision belt between the Khanka block and the NorthChina block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences,2004,23:211-219.
    [52]Jian P, Kr ner, Windley BF, et al. Zircon ages of the Bayankhongor ophiolite mélangeand associated rocks: Time constraints on Neoproterozoic to Cambrian accretionaryand collisional orogenesis in Central Mongolia[J]. Precambrian Research,2010,177:162-180.
    [53]Khain EV, Bibokova EV, Kroner A, et al. The most ancient ophiolites of the CentralAsian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhegur complex. EasternSayan siberia, and geodynamic implications[J]. Earth and Planetary Science Letters,2002,199:211-325.
    [54]Khain EV, Bibokova EV, Salnikova EE. The Palaeo-Asian ocean in the Proterozoicand early Palaeozoic: new geochronologic data and palaeotectonic reconstructions[J].Precambrian Research,2003,122:329-358.
    [55]Kimura G, Yamaguchi A, Hojo M, et al. Tectonic mélanges as fault rock of subductionplate boundary[J]. Tectonophysics,2012,568-569:25-38.
    [56]Kitamura Y, Kimura G. Dynamic role of tectonic mélange during interseismic processof plate boundary mega earthquakes[J]. Tectonophysics,2012,568-569:39-52.
    [57]Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J].Microscopy,1993,171:223-232.
    [58]Kosler J, Sylvester P. Present trends and the future of zircon in geochronology: laserablation ICPMS[J]. In: Hanchar, J. M. Hoskin, P. M. O.(Eds.), Zircon, Review ofMineral Geochemistry,2003,53:243-275.
    [59]Kovalenko VI, Yarmolyuk VV, Bogatikov O. Magmatism, Geodynamics, andMetallogeny of Central Asia[M]. Moscow: Miko Commercial Herald Publishers,1995.
    [60]Kovalenko VI, Yarmolyuk VV, Kovach VP, et al. Isotope provinces, mechanisms ofgeneration and sources of the continental crust in the Central Asian mobile belt:geological and isotopic evidence[J]. Journal of Asian Earth Sciences,2004,23:605-627.
    [61]Lanyon R, Black RP, Seitz HM. U-Pb zircon dating of mafic dykes and its applicationto the Proterozoic geological history of the Vestford Hills, East Antarctica[J].Contributions to Mineralogy and Petrology,1993,115:84-203.
    [62]Le Bas MJ, LeMaitre RW,Streckeisen AL, et al.A chemical classification ofvolcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology,1986,27(3):745-750.
    [63]Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature Zircon[J]. Nature,1997,390:159-162.
    [64]Li JY. Permian geodynamic setting of Northeast China and adjacent regions: closureof the Paleo-Asian ocean and subduction of the Paleo-pacific plate[J]. Journal ofAsian Earth Sciences,2006,26(3-4):207-224.
    [65]Li XH, Liang XR, Sun M, et al. Precise206Pb-238U age determination on zircons bylaser ablation microprobe-inductively coupled plasma-mass spectrometry usingcontinues linear ablation[J]. Chemical Geology,2001,175:209-219.
    [66]Li XH, Liu Y, Li QL, et al. Precise determination of Phanerozoic zircon Pb/Pb age bymulti-collector SIMS without external standardization[J]. Geochemistry GeophysicsGeosystems,2009a,10: Q04010, doi:10.1029/2009GC002400.
    [67]Li XH, Li WX, Wang XC, et al. Role of mantle-derived magma in genesis of earlyYanshannian granites in the Nanling Range, South China: in situ zircon Hf-O isotopicconstraints[J]. Science in China SeriesD: Earth Sciences,2009b,52:1262-1275.
    [68]Liu S, Hu RZ, Gao S, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry ofPermian granodiorite and associated gabbro in the Songliao Block, NE China andimplications for growth of juvenile crust[J]. Lithos,2010,114:423–436.
    [69]Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements ofanhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257:34-43.
    [70]Liu YS, Gao S, Hu ZC, et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hfisotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology,2010a,51:537-571.
    [71]Liu YS, Hu ZC, Zong KQ, et al. Reappraisement and refinement of zircon U-Pbisotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin,2010b,55:1535-1546.
    [72]Ludwig KR. Users manual for Isoplot/Ex (rev.2.49): a geochronological toolkit forMicrosoft Excel. Berkeley Geochronology Center, Special Publication,2001, No.1,55.
    [73]Maniar PD, Piccoli PM. Tectonic discrimination of granitoids[J]. Bulletin of theGeological Society of America,1989,101(5):635-643.
    [74]Marlina AE, John F. Geochemical response to varying tectonic settings: an examplefrom southern Sulawesi (Indonesia)[J]. Geochimica et Cosmochimica Acta,1999,63:1155-1172.
    [75]Meng E, Xu WL, Pei FP, et al. Chronology of Late Paleozoic volcanism in eastern andsoutheastern margin of Jiamusi Massif and its tectonic implications[J]. ChineseSciences Bulletin,2008,53:1231-1245.
    [76]Meng E, Xu WL, Pei FP, et al. Detrital-zircon geochronology of Late Paleozoicsedimentary rocks in eastern Heilongjiang Province, NE China: Implications for thetectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J].Tectonophysics,2010,485:42-51.
    [77]Meng E, Xu WL, Pei FP, et al. Permian bimodal volcanism in the ZhangguangcaiRange of eastern Heilongjiang Province, NE China: Zircon U-Pb-Hf isotopes andgeochemical evidence[J]. Journal of Asian Earth Sciences,2011,41:119-132.
    [78]Miao LC, Liu DY, Zhang FQ, et al. Zircon SHRIMP U-Pb ages of the“Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group”in Inner Mongolia, Da Hinggan Mountais[J]. Chinese Science Bulletin,2007,52:1112-1134.
    [79]Muller JF, Rogers JJW, Jin YG, et al. Late Carboniferous to Permian sedimentation inInner Mongolia, China, and tectonic relationships between North China and Siberia[J].Journal of Geology,1991,99:251-263.
    [80]Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implication for thetectonic evolution of northern China[J]. Earth and Planetary Science Letters,2002,202:89-104.
    [81]Pearce JA. Role of the sub-continental lithosphere in magma genesis at activecontinental margins. In: Hawkesworth C. J. and Norry M. J.(eds). Continental basaltsand mantle xenoliths[J]. Nantwich: Shiva,1983:230-249.
    [82]Pearce JA. Ernewein M. Bloomer, S. H. Geochemistry of Lau Basin volcanic rocks.In: Smellie J. ed. Volcanism Associated with Extension at Consuming PlateMargins[M]. Geological Society of Special Publication, London,1995:53-75.
    [83]Pearce JA. Kempton, P. D. Nowell, G. M, et al. Hf-Nd element an isotope perspectiveon the nature and provenance of mantle and subduction components in WesternPacific arc-basin systems[J]. Journal of Petrology40,1999:1579-1611.
    [84]Pearce JA. Trace element characteristics of lavas from destructive plate boundaries[J].United Kingdom (GBR): John Wiley&Sons, Chichester,1982:525-548.
    [85]Pei FP, Xu WL, Yang DB, et al. Zircon U-Pb geochronology of basementmetamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin,2007,52:942-948.
    [86]Pei FP, Xu WL, Yang DB, et al. Geochronology and geochemistry of Mesozoicmafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces,NE China: Constraints on the spatial extent of destruction of the North ChinaCraton[J]. ournal of Asian Earth Sciences,2011,40:636-650.
    [87]Pupin JP. Zircon and granite petrology[J]. Contributions to Mineralogy and Petrology,1980,73:207–220.
    [88]Rapp RP, Watson EB. Dehydration melting of metabasalt at8-32kbar: implicationsfor continental growth and crust-mantle recycling[J]. Journal of Petrology,1995,36:891-931.
    [89]Robinson RT, Zhou MF, Hu XF, et al. Geochemical constraints on the origin of theHegenshan ophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences,1999,17:423-442.
    [90]Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IONMicroprobe: Some examples from the western Alps[M]. Germany:Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg.
    [91]Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the linkbetween U-Pb ages and metamorphism[J]. Chemical Geology,2002,84:123-138.
    [92]Rudnick RL, Gao S, Ling WL, et al. Petrology and geochemistry of spinel peridotitexenoliths from Hannuoba and Qixia, North China Craton[J]. Lithos,2004,77:609-637.
    [93]Salnikova EB, Sergeev SA, Kotov AB, et al. U-Pb zircon dating of granulitemetamorphism in the Sludyanskiy Complex, eastern Siberia[J]. Gondwana Research,1998,2:195-205.
    [94]Salnikova EB, Kozakov IK, Kotov A, et al. Age of Palaeozoic granites andmetamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt:loss of a Precambrian microcontinent[J]. Precambrian Research,2001,110:143-164.
    [95]Seng r AMC, Natal’in BA, Burtman VS. Evolution of the Altaid tectonic collage andPalaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    [96]Seng r AMC, Natal’in BA. Paleotectonics of Asia: fragments of a synthesis[M]. In:Yin A, Harrison T M (Eds.). The Tectonic Evolution of Asia. Cambrige UniversityPress, Cambridge,1996:486-641.
    [97]Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at theOkinawa Trough, an incipient back-arc basin[J]. Lithos,2000,54:117-137.
    [98]Sorokin AA, Kudryashov NM, Li JY. Early Paleozoic granitoids in the eastern marginof the Arguna’ terrane, Amur area: first geochemical and geochronologic data[J].Journal of Petrology,2004,12:367-376.
    [99]Stacey JS, Kramers JD. Approximation of terrestrial lead isotope evolution by atwo-stage model[J]. Earth and Planetary Science Letters,1975,26:207-221.
    [100] Stampfli GM, Borel GD. A plate tectonic model for the Paleozoic and Mesozoicconstrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J].Earth and Planetary Science Letters,2002,196:17-33.
    [101] Stern, R. J. Subduction zones. Review of Geophysics,2002,40:1012.
    [102] Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: Saundern A D, Norry M J(eds.). Magmatism in the ocean basins[J]. Geological Society Special Publication,1989,42:313-345.
    [103] Sun GR, Li YC, Zhang Y. The basement tectonics of Erguna Massif[J]. Geology andResources,2002,11(3):129-139.
    [104] Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]. In: Saunders AD, Norry et al.Magmatism in the Ocean Basins. Geological Society Special Publication,42:313-345.
    [105] Taylor SR and McLennan S. The geochemical composition of the continentalcrust[J]. Reviews of Geophysics,1995,33:241-265.
    [106] Tang J, Xu WL, Wang F, et al. Geochronology and geochemistry of Neoproterozoicmagmatism in the Erguna Massif, NE China: Petrogenesis and implications for thebreakup of the Rodinia supercontinent[J]. Precambrian Research,2013,224:597-611.
    [107] Wang F, Xu WL, Meng E, et al. Late Triassic bimodal magmatism in the LesserXing’an-Zhangguangcai Range, NE China: Constraints on the timing oftransformation of Paleo-Asian ocean into circum-Pacific ocean tectonic systems[J].Mineralogical Magazine,2011,75:2116.
    [108] Wang F, Xu WL, Meng E, et al. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the CentralAsian Orogenic Belt: Geochronological and geochemical evidence from granitoidsand rhyolites[J]. Journal of Asian Earth Sciences,2012a,49,234-248.
    [109] Wang F, Xu WL, Hao WL, et al. Geochronology and tectonic nature of‘Precambrian’ basement in eastern Heilongjiang province, NE China: constraintsfrom zircon U-Pb dating [J]. Mineralogical Magazine,2012b,76,2511.
    [110] Wang F, Xu WL, Gao FH, et al. Tectonic history of the Zhangguangcailing Group ineastern Heilongjiang Province, NE China: Constraints from U-Pb geochronology ofdetrital and magmatic zircons [J]. Tectonophysics,2012c,566-567:105-122.
    [111] Wang F, Xu WL, Gao FH, et al. Precambrian terrane within theSongnen–Zhangguangcai Range Massif, NE China: Evidence from U–Pb ages ofdetrital zircons from the Dongfengshan and Tadong groups[J]. Gondwana Research,2013, In press.
    [112] Whalen JB, Currie KL, Chappell BW. A-type granites: geochemical characteristics,discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407-419.
    [113] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb,Lu-Hf, trace-element and REE analyses[J]. Geostandards Newsletter,1995,19:1-23.
    [114] Wilde SA, Dorsett-Bain HL, Liu JL. The identification of a Late Pan-Africangranulite facies event in Northeast China: SHRIMP U-Pb zircon dating of theMashan Group at Liu Mao, Heilongjiang Province, China[J]. In: Proceedings of the30th IGC: Precambrian Geol. Metamorphic Petrol. VSP International SciencePublishers, Amsterdam,1997,443:59-74.
    [115] Wilde SA, Zhang XZ, Wu FY. Extension of a newly idenfied500Ma metamorphicterrane in North East China: further U-Pb SHRIMP dating of the Mashan Complex,Heilongjiang Province, China[J]. Tectonophysics,2000,328:115-130.
    [116] Wilde SA, Wu FY, Zhang XZ.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30:35-50.
    [117] Wilde SA, Wu FY, Zhang XZ. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J].Precambrian Research,2003,122:311-327.
    [118] Williams IS. Some observations on the use of zircon U-Pb geochronology on thestudy of granitic rocks[J]. Transactions of the Royal Society of Edinburge: EarthSciences,1992,83:447-458.
    [119] Wilson W. Igneous petrogenesis[M]. Unwin Hyman, London,1989:327-373.
    [120] Windley BF, Allen MB, Zhang C, et al. Paleozoic accretion an Cenozoicre-degormation of the Chinese Tiern Shan range, Central Asia[J]. Geology,1990,18:128-131.
    [121] Windley BF, Alexeiev D, Xiao WJ, et al. Tectonic model for accretion of the CentralAsian Orogenic Belt[J]. Journal of Geological Society, London,2007,164:31-47.
    [122] Woodhead JD, Eggins SM, Gamble JG. High field strength and transition elementsystematics in coupled arc-back arc settings: evidence for multi-phase meltextraction and a depleted mantle wedge[J]. Earth Planetary Science Letters,1993,114:491-504.
    [123] Wu FY, Jahn BM, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sm-Ndisotopic evidence from the granite in northeastern China[J]. Tectonophysics,2000a,328:89-113.
    [124] Wu FY, Sun DY, Li HM, et al. Zircon U-Pb ages of the basement rocks beneath theSongliao Basin, NE China[J]. Chinese Science Bulletin,2000b,45:1514-1518.
    [125] Wu FY, Sun SY, Li HM, et al. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J]. Chemical Geology2002,187:143-173.
    [126] Wu FY, Jahn BM, Wilde S, et al. Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis[J]. Lithos,2003a,66:241-273.
    [127] Wu FY, Jahn BM, Wilde S, et al. Highly fractionated I-type granites in NE China(II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J].Lithos,2003b,67:191-204.
    [128] Wu FY, Wilde SA, Zhang, GL, et al. Geochronology and petrogenesis of thepost-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province,NE China[J]. Journal of Asian Earth Sciences,2004a,23:781-797.
    [129] Wu FY, Yang YH, Xie LW. Hf isotopic compositions of standard zircons andbaddeleyites used in U-Pb geochronology[J]. Chemical Geology,2006,231:105-126.
    [130] Wu FY, Zhao GC, Sun DY, et al. Final Closure of the Paleo-Asian Ocean in NEChina: Evidence from the Hulan Group in central Jilin Province[J]. Journal of AsianEarth Sciences,2007a,30:542-556.
    [131] Wu FY, Yang JH, Lo CH, et al. The Heilongjiang Group: a Jurassic accretionarycomplex in the Jiamusi Massif at the western Pacific margin of northeasternChina[J]. Island Arc,2007b,16:156-172.
    [132] Wu FY, Zhao GC, Sun DY, et al. The Hulan Group: Its role in the evolution of theCentral Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences,2007c,30:542-556.
    [133] Wu FY, Sun DY, Ge WC, et al. Geochronology of the Phanerozoic granitoids innortheastern China[J]. Journal of Asian Earth Sciences,2011,41:1-30.
    [134] Wu G, Chen YC, Zheng QT. Zircon U-Pb ages of the metamorphic supracrustalrocks of the Xinghuadukou Group and granitic complexes in the Argun massif ofthe northern Great Hinggan Range, NE China, and their tectonic implications[J].Journal of Asian Earth Sciences,2012,49:214-233.
    [135] Wu YB, Zheng YF. The study on the zircon genesis mineralogy and its impacts onthe interpretation of U-Pb age restriction[J]. Chinese Science Bulletin,2004,49:1589-1604.
    [136] Xiao WJ, Windley BF, Hao J, et al. Accretion leading to collision and the Solonkersuture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J].Tectonics,2003,22:1069.
    [137] Xiao WJ, Zhang LC, Qin KZ, et al. Paleozoic accretionary and collisional tectonicsof the eastern Tienshan (China): implications for the continental growth of CentralAsia[J]. American Journal of Science,2004,304:370-395.
    [138] Xu MJ, Xu WL, Wang F, et al. Age, association and provenance of the“Neoproterozoic” Fengshuigouhe Group in the northwestern Lesser Xing’an Rang,NE China: Constraints from zircon U-Pb geochronology [J]. Journal of EarthScience,2012,23(6):786-801.
    [139] Xu WL, Ji WQ, Pei FP, et al. Triassic volcanism in eastern Heilongjiang and JilinProvinces, NE China: Chronology, geochemistry, and tectonic implications[J].Journal of Asian Earth Sciences,2009,34:392-402.
    [140] Xu WL, Pei FP, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanicrocks in China: Constraints on tectonic overprinting and transformations betweenmultiple tectonic regimes[J]. Journal of Asian Earth Sciences,2013,http://dx.doi.org/10.1016/j.jseaes.2013.04.003.
    [141] Xu P, Wu FY, Xie LW, et al. Hf isotopic compositions of the standard zircons forU-Pb dating[J]. Chinese Science Bulletin,2004,49:1642-1648.
    [142] Xu YG, Ma JL, Huang XL, et al. Early Cretaceous gabbroic complex from Yinan,Shandong Province: petrogenesis and mantle domains beneath the North ChinaCraton[J]. International Jorunal of Earth Sciences,2004,93:1025-1041.
    [143] Yakubchuk A. The Baik alide-Altaid, Transbaikal-Mongolian and North PacificOrogenic collage: similaritics and diversity of structural pattern and metallogeniczoning[J]. Geological Society, Lonton, Special Publications,2002,204:273-297.
    [144] Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogeniccollage: arevised model[J]. Journal of asian Earth Sciences,2004,23:761-779.
    [145] Yang JH, Wu FY, Shao J, et al. Constraints on the timing of uplift of the YanshanFold and Thrust Belt, North China[J]. Earth and Planetary Science Letters,2006,246:336-245.
    [146] Yu JJ, Wang F, Xu WL, et al. Early Jurassic mafic magmatism in the LesserXing’an–Zhangguangcai Range, NE China, and its tectonic implications: constraintsfrom zircon U–Pb chronology and geochemistry[J]. Lithos,2012,142-143:256-266.
    [147] Yu JJ, Wang F, Xu WL, et al. Late Permian tectonic evolution at the southeasternmargin of the Songnen-Zhangguangcai Range Massif, NE China: Constraints fromgeochronology and geochemistry of granitoids[J]. Gondwana Research,2013,http://dx.doi.org/10.1016/j.gr.2012.11.015.
    [148] Zhang XH, Zhang HF, Tang Y, et al. Geochemistry of Permian bimodal volcanicrocks from central Inner Mongolia, North China: Implication for tectonic settingand Phanerozoic continental growth in Central Asian Orogenic Belt[J]. ChemicalGeology,2008,249:262-281.
    [149] Zhang YB, Wu FY, Wilde SA, et al. Zircon U-Pb ages and tectonic implications of‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China[J]. TheIsland Arc,2004,13:484-505.
    [150] Zhou JB, Wilde SA, Zhang XZ, et al. The onset of Pacific margin accretion in NEChina: Evidence from the Heilongjiang high-pressure metamorphic belt[J].Tectonophysics,2009a,478:230-246.
    [151] Zhou JB, Wilde SA, Zhao GC, et al. New SHRIMP U-Pb zircon ages from theHeilongjiang complex in NE China: constraints on the Mesozoic evolution of NEChina[J]. American Journal of Science,2009b,310:1024-1053.
    [152] Zhou JB, Wilde SA, Zhang XZ, et al. Early Paleozoic metamorphic rocks of theErguna block in the Great Xing’an Range, NE China: Evidence for the timing ofmagmatic and metamorphic events and their tectonic implications[J].Tectonophysics,2011,499:105-177.
    [153] Zhou MF, Zhang HF, Robinson PT. Comments on “Petrology of the Hegenshanophioliteand its implication for the tectonic evolution of northern China”by T.Liu[Earth and Planetary Science Letters202(2002)89-104][J]. Earth and PlanetaryScience Letters2003,217:207-210.
    [154]表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18(1):28-33.
    [155]曹生儒.对内蒙古板块构造轮廓的新认识[J].中国区域地质,1993,3:211-215.
    [156]曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版,1992.
    [157]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述―兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.
    [158]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳-幔成矿系统[J].地学前缘.1999,6(2):259-270.
    [159]邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境:讨论[J].高校地质学报,2007,13(3):392-402.
    [160]第五春荣,孙勇,袁洪林,等.河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J].科学通报,2008,53(16):1923-1934.
    [161]方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992.
    [162]冯光英,刘燊,钟宏,等.吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因[J].地球化学,2010,39(5):427-438.
    [163]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005a,50(12):1239-1246.
    [164]葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005b,21(3):749-762.
    [165]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].2007,52(20):2407-2417.
    [166]葛荣峰,张庆龙,王良书,等.松辽盆地构造演化与中国东部构造体制转换[J].地质论评,2010,56(2):180-195.
    [167]何政军,李锦轶,牛宝贵,等.燕山-阴山地区晚侏罗世强烈推覆-隆升事件及沉积响应[J].地质论评,1998,44(4):407-418.
    [168]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [169]黑龙江省地质局.1:20万区域地质调查报告(大罗密图幅、桦林镇图幅),1976.
    [170]洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    [171]洪大卫,王式洸,谢锡林,等.从中亚正εNd(t)值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报,2003b,77(2):203-209.
    [172]洪大卫,王式洸,谢锡林,等.试析地幔来源物质成矿域-以中亚造山带为例[J].矿床地质,2003a,22(1):41-55.
    [173]洪大卫,王式洸,谢锡林,等.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456.
    [174]黄宝春,周烑秀,朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘,2008,15(3):348-359.
    [175]黄宝春,朱日祥, Otofuji Y,等.华北等中国主要地块早古生代古地理位置探讨[J].科学通报[J],2000,45(4):337-345.
    [176]黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    [177]侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20(2):239-248.
    [178]黄映聪,任东辉,张兴洲,等.黑龙江省东部桦南隆起美作花岗岩的锆石U-Pb定年及其地质意义[J].吉林大学学报(地球科学版),2008,38(4):631-638.
    [179]黄映聪,张兴洲,张宏宾,等.黑龙江东部马家街群的岩石地球化学特征及其沉积时代[J].地质学报,2009,83(2):295-303.
    [180]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    [181]吉林省地质矿产局.吉林省岩石地层[M].武汉:中国地质大学出版社,1997.
    [182]颉颃强,张福勤,苗来成,等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb及其地质意义[J].岩石学报,2008a,24(6):1237-1250.
    [183]颉颃强,苗来成,陈福坤,等.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约[J].地质通报,2008b,27:2127-2137.
    [184]李春昱,汤耀庆.亚洲古板块划分以及有关问题[J].地质学报,1983,1:1-10.
    [185]李锦轶,牛宝贵,宋彪.黑龙江省东部中太古代碎屑岩浆锆石的发现及其地质意义[J].地球学报,1995,3:331-333.
    [186]李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    [187]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999.
    [188]李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3):565-582.
    [189]刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27:534-544.
    [190]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[M].西北大学博士学位论文,2004.
    [191]吕志成,段国正,郝立波,等.大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨[J].矿物岩石,2001,21(1):77-85.
    [192]吕志成,段国正,郝立波,等.满洲里-额尔古纳地区岩浆作用及其大地构造意义[J].吉林大学学报(地学版),2002,32(2):111-115.
    [193]罗毅等.灵泉大青山火山盆地铀成矿环境分析及及找矿靶区优选[M].核工业北京地质研究院.1997.
    [194]罗照华,柯珊,谌宏伟.埃达克岩的特征、成因及构造意义[J].地质通报,2002,21(7):436-440.
    [195]孟恩,许文良,裴福萍,等.黑龙江省东部中泥盆世火山作用及其构造意义:来自岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素的制约[J].岩石矿物学杂志,2011,30(5):883-900.
    [196]孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报,2011a,27(4),1209-1226.
    [197]苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2003,48(22):2315-2323.
    [198]苗来成,刘敦一,张福勤,等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,2007,52(5):591-601.
    [199]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    [200]裴福萍,叶轶凡,王枫,等.吉林通化地区中元古代辉绿岩墙的发现及其地质意义[J].吉林大学学报(地球科学版),2013,43(1):110-118.
    [201]裴福萍,许文良,孟恩,等.古太平洋俯冲作用的开始:来自吉黑东部早-中侏罗世火山岩的年代学及地球化学证据[J].矿物岩石地球化学通报,2008,27(增刊):268.
    [202]彭玉鲸,陈跃军.吉黑造山带与华北地台开原—山城镇段构造边界位置[J].世界地质,2007,26(1):1-6.
    [203]齐成栋,纪春华,韩江,等.吉林敦化地区晚三叠世碱性—亚碱性侵入杂岩体的地质特征及构造背景分析[J].吉林地质,2003,22(3):12-18.
    [204]任纪舜.中国东部及邻区大地构造演化的新见解[J].中国区域地质,1989,4:289-300.
    [205]任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990.
    [206]邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995,171-179.
    [207]施光海,苗来成,张福勤,等.内蒙古锡林浩特“A”型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    [208]宋彪,李锦轶,牛宝贵.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18(3):306-312.
    [209]苏玉平,唐红峰.“A”型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-251.
    [210]隋振民等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480.
    [211]孙德有,吴福元,李惠民,等.小兴安岭西北部造山后“A”型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45:2217-2222.
    [212]孙德有,吴福元,张延斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2001a,17(2):227-235.
    [213]孙德有,吴福元,林强,等.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001b,17(2):227-235.
    [214]孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004a,25(2):213-218.
    [215]孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004b.34(2):175-183.
    [216]孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    [217]孙广瑞,李迎春,张昱.额尔古纳地块基底地质构造[J].地质与资源,2002,11(3):129-139.
    [218]孙卫东,凌明星,杨晓勇,等.洋脊俯冲于斑岩铜金矿成矿[J].中国科学(D辑),2010,40(2):127-137.
    [219]邰成彬.大庆探区外围中、新生代地层序列与盆地演化[D].长春:吉林大学,2005.
    [220]唐杰,许文良,王枫,等.张广才岭帽儿山组双峰式火山岩成因:年代学与地球化学证据[J].世界地质,2011,30(4):508-520.
    [221]唐克东,邵济安,李景春,等.吉林延边缝合带的性质与东北亚构造[J].地质通报,2004,23(9-10):885-891.
    [222]王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西北大学硕士学位论文,2005.
    [223]王强,许继峰,赵振华.埃达克质岩的构造背景与岩石组合[J].矿物岩石地球化学通报,2008,27(4):344-350.
    [224]王友勤.中国东北区前寒武纪地层[J].吉林地质,1996,15(3-4):1-14.
    [225]王有勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997.
    [226]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999a,18(2):1-13.
    [227]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999b,15(2):181-189.
    [228]吴福元,孙德有,李惠民,等.松辽盆地基底岩石锆石U-Pb年龄[J].科学通报,2000,45:656-660.
    [229]吴福元, Wilde SA,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [230]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [231]吴智平,侯旭波,李伟.华北东部地区中生代盆地格局及演化过程探讨[J].大地构造与成矿学,2007,31(4):385-399.
    [232]武广,孙丰月,赵财胜.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    [233]肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008,26(1):4-8.
    [234]熊小林,赵振华,白正华,等.西天山阿吾拉勒adakitc型钠质中酸性岩及地壳垂向增生[J].科学通报,2001,46(4):281-287.
    [235]熊小林,蔡志勇,牛贺林,等.东天山晚古生代埃达克岩成因及铜金成矿意义[J].岩石学报,2005,21(3):967-976.
    [236]谢鸣谦.拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社,2000.
    [237]许文良,孙德有,周燕,等.满洲里-绥芬河地学断面岩浆作用和地壳结构[M].北京:地质出版社,1994.
    [238]许文良,王枫,孟恩,等.黑龙江省东部古生代—早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据[J].吉林大学学报(地球科学版),2012,42(5):1378-1389.
    [239]许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.
    [240]杨承海,许文良,杨德彬,等.鲁西上峪辉长-闪长岩的成因:年代学与地球化学证据[J],2008,38(1):44-55.
    [241]叶慧文,张兴洲,周裕文,等.牡丹江地区蓝片岩中脉状青铝闪石40Ar-39Ar年龄及其地质意义[J].长春地质学院学报,1994,24(4):369-372.
    [242]叶茂,张世红,吴福元.中国满洲里—绥芬河地学断面域古生代构造单元及其地质演化[J].1994,24(3):241-245.
    [243]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48:1511-1520.
    [244]张梅生,彭向东,孙晓猛.中国东北地区古生代构造古地里格局[J].辽宁地质,1998,2:91-96.
    [245]张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435.
    [246]张旗,王焰,王云龙,等.埃达克岩与构造环境[J].大地构造与成矿学,2003,27(2):101-108.
    [247]张旗,金惟俊,王云龙,等.大陆下地壳拆沉模式初探[J].岩石学报,2006a,22(2):265-276.
    [248]张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006b,22(9):2249-2269.
    [249]张旗,金惟俊,熊小林,等.中国不同时代O型埃达克岩的特征及其意义[J].大地构造与成矿学,2009,33(3):432-447.
    [250]张旗,王焰,李承东,等.花岗岩与地壳厚度的关系探讨[J].大地构造与成矿学,2011,35(2):259-269.
    [251]张兴洲, Sklyarov EV.中国东北及邻区蓝片岩带的构造意义(见:长春地质学院地质研究所论文集)[J].北京:地震出版社,1992:99-106.
    [252]张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22(增):94-101.
    [253]张兴洲.佳木斯地体的早期碰撞史-黑龙江岩系的构造-岩石学证据[D].长春地质学院博士学位论文[D].长春:吉林大学, l992.
    [254]张兴洲,杨宝俊,吴福元,等.中国兴蒙—吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823.
    [255]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].吉林大学博士学位论文,2002.
    [256]张彦龙,葛文春,高妍,等.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010,26(4):1059-1073.
    [257]赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996:1-186.
    [258]赵寒冬.东北地区小兴安岭南段-张广才岭北段古生代火成岩组合与构造演化
    [D].北京:中国地质大学,2009.
    [259]赵越,杨振宇,马醒华.东亚大地构造的重要转折[J].地质科学,1994,29(2):105-119.
    [260]赵振华,王强,熊小林.俯冲带复杂的壳幔相互作用[J].矿物岩石地球化学通报,2004,23(4):277-284.
    [261]赵振华,王强,熊小林,等.新疆北部的两类埃达克岩[J].岩石学报,2006,22(5):1249-1265.
    [262]赵芝,迟效国,潘世语,等.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J].岩石学报,2010,26(8):2452-2464.
    [263]周长勇,吴福元,葛文春,孙德有, Abdel Rahman A A,张吉衡,程瑞玉.大兴安岭北部塔河辉长岩体的形成时代、地球化学特征及成因[J].岩石学报,2005,21(3):763-775.
    [264]周建波,张兴洲, Wilde SA,等.黑龙江杂岩的碎屑锆石年代学及其大地构造意义[J].岩石学报,2009,25(8):1924-1936.
    [265]周建波,张兴洲, Wilde SA,等.中国东北~500Ma泛非期孔兹岩带的确定及其意义[J].岩石学报,2011,27(4):1235-1245.
    [266]朱群,李之彤.吉中地区含金火山岩系岩石地球化学特征[J].贵金属地质,1998,7(2):81-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700