用户名: 密码: 验证码:
新疆东天山觉罗塔格地区成岩成矿作用及地球动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆东天山觉罗塔格地区是指位于中天山地块和吐哈盆地之间、出露石炭系火山-沉积岩为其特征地层的构造条带,地理位置上处于东经89000'-96000'、北纬41040'-42040'之间。觉罗塔格地区在构造位置上隶属于西伯利亚板块和塔里木板块的聚合部位,由北向南可进一步分为小热泉子-镜儿泉火山岩带(北带)、康古尔-黄山韧性剪切带(中带)和阿奇山-雅满苏火山岩带(南带)三个次级构造单元;由东西向展布的区域性深大断裂控制。觉罗塔格地区是新疆北部重要的贵金属、有色金属矿产分布区之一,其成矿作用与构造-岩浆活动密切相关。在综合前人成果基础上,本文对觉罗塔格地区的成岩成矿作用进行了地质和地球化学分析,辨析了东天山觉罗塔格地区晚古生代球动力学演化过程,并评价了区域成矿潜力。取得成果如下:
     觉罗塔格地区十里坡自然铜矿化玄武岩带形成于晚石炭世末期,玄武岩浆源自90~100千米之间的亏损岩石圈地幔,该地幔源区以石榴子石橄榄岩相为主,并受到了早期岛弧俯冲的改造作用。玄武岩浆上升过程中发生了橄榄石和单斜辉石的分离结晶作用,但地壳混染作用较弱。玄武岩是后碰撞拉张构造背景下加厚岩石圈拆沉作用的产物,与岛弧、地幔柱成因的玄武岩差异显著。玄武岩有关自然铜矿化是成岩后热液作用的产物,Cu主要来自于玄武岩层,成矿流体是由盆地卤水、大气降水和有机质共同组成,具有中低温、低盐度和还原性质等特征,其中有机质是流体中Cu的迁移和沉淀的重要控制因素。自然铜成矿作用与岩浆型矿床无成因联系。
     觉罗塔格地区内分布的中酸性侵入体从早到晚可分为:晚泥盆世镜儿泉花岗岩带、早石炭世土屋-延东中酸性岩带、早石炭世长条山-百灵山中酸性岩带、早二叠世康古尔剪切带相关中酸性岩带、晚二叠世-中三叠世土墩-双岔沟花岗岩带5个中酸性岩带。晚泥盆世镜儿泉中酸性岩带位于北带,花岗岩浆源于亏损的交代地幔,形成于俯冲岛弧体系;早石炭世土屋-延东中酸性岩带位于北带,岩浆起源于埃达克质岩的亏损地幔源区,形成于靠近洋壳一侧的岛弧-弧后盆地系统;早石炭世长条山-百灵山中酸性岩带位于南带,岩浆起源于壳幔混合源区,形成于靠近陆壳一侧的弧后盆地系统;早二叠世康古尔剪切带中酸性岩带位于中带及其两侧部位,岩浆起源于壳幔混合源区,形成于后碰撞拉张环境;晚二叠世-中三叠世土墩-双岔沟花岗岩带位于中带,岩浆起源于新生地壳源区,岩浆形成于后碰撞-板内过渡环境。
     觉罗塔格地区与中酸性侵入岩有关的金属矿床有早石炭世斑岩型Cu矿床、早石炭世花岗岩相关的Fe矿床、早石炭世与中酸性浅层侵入体有关VMS型Cu多金属矿床、早二叠世浅层侵入体相关Cu多金属矿床、早二叠世韧性剪切带型Au矿床和中三叠世斑岩型Mo矿床。矿床有北带Cu、南带Fe、中带Au-Ni-Cu-Mo的空间分布特征,总体具有沿着中带对称分布的特点。觉罗塔格地区与中酸性相关成矿作用可划分为早石炭世岛弧体制下火山岩-侵入岩成矿系统,晚石炭世-早二叠世伸展体制下构造-岩浆成矿系统和中三叠世挤压体制下构造-岩浆成矿系统,其中斑岩型矿床在三个成矿系统中均有发育。
     觉罗塔格地区晚古生代经历了北部的卡拉麦里大洋向南部的中天山地块俯冲的“增生造山”过程。依照晚泥盆世-中三叠世不同阶段的地球动力学背景可分为晚泥盆世岛弧形成阶段、早石炭世弧后盆地演化阶段、晚石炭世早期主碰撞阶段、晚石炭世末期后碰撞岩石圈拆沉阶段、早二叠世后碰撞挤压变形与地幔柱联合作用阶段、晚二叠世-早三叠世后碰撞挤压变形阶段和中三叠世板内阶段。晚泥盆世岛弧形成阶段岩浆作用集中于北带,无明显矿化作用;早石炭世弧后盆地演化阶段,在北带形成了岛弧俯冲相关的埃达克质花岗斑岩及Cu矿床、在南带形成了弧后盆地软流圈上涌的中酸性岩体及Fe矿床,在南带和北带都形成了弧后盆地拉张背景的火山岩-浅层侵入体及Cu-Pb-Zn多金属矿床;晚石炭世早期主碰撞阶段尚未有成岩成矿作用报道;晚石炭世末期后碰撞岩石圈拆沉阶段形成了玄武岩浆作用及其相关Cu矿床;早二叠世后碰撞挤压变形与地幔柱联合作用阶段,在中带形成了基性岩及其相关Cu-Ni矿床、花岗岩及其相关的金矿床,在靠近中带的南北两带形成了浅层中酸性侵入体及其相关的Cu多金属矿床;在晚二叠世-早三叠世后碰撞挤压变形晚阶段岩浆作用集中于中带,并形成了剪切带活动相关的Au矿床;中三叠世板内阶段受到特提斯俯冲的远程挤压影响,在中带形成了花岗岩及其相关Mo矿床。
     本文研究工作较为清晰的勾勒出了觉罗塔格地区晚泥盆世-中三叠世的地球动力学演化过程,建立了觉罗塔格地区晚泥盆世-中三叠世的地球动力学和成岩成矿作用的耦合模式。提出早石炭世觉罗塔格地区处于弧后盆地背景;康古尔韧性剪切带(中带)是该弧后盆地背景下由北带和南带的结合部位逐步拉张的产物。提出早二叠世晚期觉罗塔格地区受到塔里木地幔柱“平流”作用影响,使得该区不仅发生了沿着岩石圈薄弱带发生了强烈的成岩成矿作用,同时延缓了后碰撞挤压变形阶段的演化过程。研究结果对觉罗塔格地区成岩成矿作用的研究和找矿勘探工作提供了较为重要的依据,也对“后碰撞”和“地幔柱”等地学热点问题的研究提供了范例和佐证。
The Jueluotage area is geographically located in the south part of Hami City, which is within the district of the89°00'-96°00' in east longitude and41°40'-42°40' north latitude. This area is about560km from east to west and110km from north to south, with about62000km2in covering district. The Jueluotage area is geologically defined as the volcano-sediment exposure belt between the Tu-Ha-(Turpan-Hami) Basin (north) and Middle Tianshan terrene (south), which is within the aggregate places of Siberia and Tarim plates tectonically. The Jueluotage area can be geologically subdivided into3subunits from north to south, including:Xiaorequanzi-Jingerquan volcanic belt (North belt), Kangguer-Huangshan ductile shear belt (Middle belt) and Aqishan-Yamansu volcanic belt (South belt). There intensive late Paleozoic magmatism with multi-types mineralized deposits widely distribute in Jueluotage area, which has been regarded as a key metallogenic belt in North Xinjiang Uygur Autonomous Region.
     After comprehended and summarized the previous petrogenesis and matallogenesis researches on the geological objects in Jueluotage area, the author firstly systematically introduced the regional geological characters in Jueluotage area, and then detailed illustrated:(1) the petrogenesis of the native copper mineralized basalt(NCMB),(2) the petrogenesis of the late Paleozoic granitoid intrusions,(3) the matallogenesis of native copper mineralization in basaltic strata,(4) the matallogenesis of the multi-type mineralization related with the granitoid intrusions according to their geological and geochemical characters. Moreover, based on the above4research points, petrogenesis and matallogenesis comparative analysis between the NCMB and Cu-Ni mineralized mafic intrusion, and comprehensive analysis of the strata, structure, and geophysical characters in Jueluotage area, the author further identified the late Paleozoic geodynamic process, established the tectonic-magmatism-mineralization coupled evolution model, and predicted regional metallogenic target of multi-type mineralization in study area. The detailed research can be described as follows:
     The native copper mineralized basalt (NCMB) was erupted in the end of Carboniferous (~310-303Ma). The basaltic magma was derived from depleted lithosphere mantle without distinct crust contamination during its emplacement. Its magmatic source was characterized as90-100km in depth, garnet peridotite face, and crust contaminated by early subduction through their elements and isotopes geochemistry. The NCMB is formed by delamination of thickening lithosphere within post-collisional stage and distinctly different from magmatism in island-arc and mantle plume systems. The NCMB is unrelated with the early Permian Tarim mantle plume, whereas it shared similar magmatic source with the late Carboniferous-early Permian mafic-ultramafic intrusions in Jueluotage area.
     The native copper mineralization occurred within basaltic strata was formed by hydrotbermal alteration, which is younger than basaltic magma eruption. During metallogenic process, the Cu is probably from the basaltic strata, and its ore-forming fluids was mainly mixed by basin brine, atmospheric water and organic fluid, which is characterized as lower temperature (<250℃), low salty and strong reduction. The participation of the organic matter was probably controlled the migration and deposition of Cu as native copper state in the ore-forming fluids. The metallogenesis of NCMB was similar with hydrothermal alternated deposits, rather than the magmatic Cu-Ni sulfide mineralization in Jueluotage area. The industrial native copper mineralized bodies are probably explored within the thick basalt layer with intensive structure positions, whereas there is little possibility to explore copper-nickel deposits in the NCMB distribution area.
     The late Paleozoic granitoid intrusions in Jueluotage area can be subdivided into5granitoid belts, including:Late Devonian Jingerquan granitoid belt, Early Carboniferous Tuwu-Yandon granitoid belt, Early Carboniferous Changtiaoshan-Bailingshan granitoid belt, Early Permian Kangguer shear zone granitoid belt and Late Permian-Middle Triassic Tundun-Shuangchagou granitoid belt. These5granitoid belts exhibit spatial and temporal distribution as:North belt (Late Devonian Jingerquan granitoid belt), North belt (Early Carboniferous Tuwu-Yandon granitoid belt), South belt (Early Carboniferous Changtiaoshan-Bailingshan granitoid belt), Middle belt with its both sides (Early Permian Kangguer shear zone granitoid belt), Middle belt (Late Permian-Middle Triassic Tundun-Shuangchagou granitoid belt). The magmatic sources of late Paleozoic granitoid intrusions were indicated as:Metasomatised depleted lithosphere mantle (Late Devonian Jingerquan granitoid belt), Metasomatised depleted lithosphere mantle with adakitic feature (Early Carboniferous Tuwu-Yandon granitoid belt), crust-mantle mixing source with increasing lithosphere mantle proportion (Early Carboniferous Changtiaoshan-Bailingshan granitoid belt), Crust-mantle mixing source(Early Permian Kangguer shear zone granitoid belt), Juvenile crust source(Late Permian-Middle Triassic Tundun-Shuangchagou granitoid belt). The petrogenetic background of the late Paleozoic granitoid intrusions can be analyzed as:subduction island-arc environment (Late Devonian Jingerquan granitoid belt), back-arc basin environment with subduction side (Early Carboniferous Tuwu-Yandon granitoid belt), back-arc basin environment with passive continent (Early Carboniferous Changtiaoshan-Bailingshan granitoid belt), post-collisional environment (Early Permian Kangguer shear zone granitoid belt), post collisional-intraplate transitional environment (Late Permian-Middle Triassic Tundun-Shuangchagou granitoid belt).
     There are6types granitoid genetically related metal deposits in Jueluotage area, including: Early Carboniferous porphyry Cu deposits, Early Carboniferous granitoid related Fe deposits, Early Carboniferous granite porphyry related VMS type Cu (Pb-Zn) deposits, Early Permian porphyry (skarn) Cu polymetallic deposits, Early Permian granite related Au deposits and Middle Triassic porphyry Mo deposits. The spatial and temporal distribution of granitoid genetically related metal deposits in Jueluotage area can be summarized as both in North belt and South belt (340-320Ma), Middle belt to both North and South belts (290-270Ma), within Middle belts (240-220Ma), which symmetrically distribute along the Middle belt. Their metallogenic favorites are characterized as Cu in North belt, Fe in South belt and Au-Ni-Cu-Mo in Middle belt, and their ore-forming fluids mainly composed by magmatic water. The granitoid genetically related metal deposits in Jueluotage area can be attributed to3metallogenic systems, including:Early Carboniferous tectonic-granitoid metallogenic system in island arc background, Early Permian tectonic-granitoid metallogenic system in extensional background, and Middle Triassic structure-magmatic metallogenic system in compressive background, and the porphyry types mineralization occurred in each metallogenic system.
     The Jueluotage area experienced the "Hyperplasia type" orogen evolution process, which was formed by the subduction of the Kalamaili oceanic plates (north) into the middle Tianshan block (south). The late Paleozoic geodynamic evolution of Jueluotage area can be subdivided into5stages, including:Juvenile island arc stage (390-360Ma), ack-arc basin stage (360-320Ma), Collisional stage (320-310Ma), Lithosphere delamination stage in post-collisional background (310-300Ma), Shearing and deformation stage in post-collisional background with mantle plume obstruction (300to270Ma), Shearing and deformation stage in post-collisional background (270-240Ma), Intraplate stage with Tethys remote impaction (240-220Ma). In Early Carboniferous (360-320Ma), The Jueluotage area was a back-arc basin, and the suture zone of North belt and South belt was gradually spreading into the Middle belt, where the lithosphere mantle is gradually thinner form both north and south sides toward centre in this system. In early Permian (290-270Ma), the Jueluotage was in the shearing and deformation stage of post-collisional environment, nevertheless, there intensive magmatism and mineralization distributed along the weak lithosphere zone (Middle belt) due to the "Lateral flow" of Tarim mantle plume, which probably delayed the evolution of hearing and deformation stage in Jueluotage area.
     The late Paleozoic evolution between geodynamic and magmatism-mineralization in the Jueluotage area can be coupled summarized as follows:Late Devonian granitoid magmatism without distinct mineralization in juvenile island-arc stage (Jingerquan granitoid belt), Early Carboniferous adakitic granite magmatism with copper mineralization close with the subduction side of back-arc basin with (Tuwu-Yandon Porphyry Cu deposits); Early Carboniferous granitoid magmatism with iron mineralization close with passive continent of back-arc basin (Changtiaoshan-Bailingshan granitoid related Fe deposits), Early Carboniferous volcano- granitoid magmatism with copper polymetallic mineralization in back-arc extensional background (VMS type Cu-Pb-Zn deposits), Late Carboniferous mafic magmatism with copper-iron mineralization in early post-collisional background (hydrothermal alternation Cu-Fe deposits), Early Permian mafic to felsic magmatism with multi-type metal mineralization distributing along the Kangguer ductile shear zone in post-collisional stage affected with lateral flow activity of Tarim mantle plume (magmatic Cu-Ni deposits; granite related with Au mineralization, porphyry-skarn type Cu-Ag deposits), Late Permian-Middle Triassic granitoid magmatism with gold and molybdenum mineralization within the Middle belt in post collision-intraplate transitional stage with Tethys remote extrusion (ductile shearing related Au mineralization, Porphyry Mo deposits).
     Jueluotage area is a high potential mining targeting area and widely distributes late Paleozoic multi-type metal deposits, which are significantly controlled by5key regional metallogenic factors, as:geodynamic setting, magmatism, tectonism, base sediments and late Paleozoic volcano-sedimentary strata. The exploration targets of different types metal deposits can be predicted as follow:the extension area of west-east direction of Tuwu-Yandon granitoid belt (Early Carboniferous Porphyry Cu exploration targets), within and around Carboniferous granitoid intrusions in South belt (Early Carboniferous granitoid related Fe exploration targets), the intensively extensional and structural margin positions in both South and North belts(Early Carboniferous granite porphyry related VMS Cu polymetallic exploration targets), the margin places of Carboniferous volcano-sediment strata along the Aqikuduke fault in South belt (Late Carboniferous hydrothermal alteration Cu-Fe exploration targets), the granitoid porphyry intruded along the Kangguer and Yamansu faults in both South belt and North belt(Early Permian porphyry-skarn Cu polymetallic exploration targets), the mafic intrusion distributes along the Kangguer, Yamansu and Aqikekuduke deep faults (Early Permian magmatic Cu-Ni exploration targets), granites intruded along the Kangguer ductile shear zone and strongly deformed by shearing activities (Early Permian-Middle Triassic Au exploration targets), granites intruded along the Kangguer ductile shear zone (Middle Triassic Mo exploration targets).
     After all the above research work on the late Paleozoic magmatism and mineralization with their related geodynamic evolution in Jueluotage area, it suggests that the Jueluotage experienced integrated orogenic activities in this duration (380-230Ma). The Jueluotage area can be regarded as a good case to research some forefront theories, such as "Hyperplasia-type orogenic evolution","post-collisional background" and "lateral flow of Mantle Plume".
引文
[1]Andersen T and Griffin W L.2004. Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland intrusive complex, SW Norway:Implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos, (73):271-288
    [2]Ao S J, Xiao W J, Han C M, Mao Q G, Zhang J E.2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China:Implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research doi:10.1016/j.gr.2010.01.004
    [3]Amdt N T, Jenner G A.1986. Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chemical Geology,56:229-255
    [4]Arndt N T.2008. Komatiite. Cambridge University Press, Cambridge
    [5]Barbarin B.1999. A review of the relationships between granitoid types, their origins and their geodynamic environment. Lithos,46:605-626
    [6]Barley M E, Kerrich R, Reudavy I, Xie Q.2000. Late Archean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. Australian Journal of Earth Sciencess, 47:873-883
    [71 Bartley J M.1986. Evaluation of REE mobility in low grade metabasalt using mass-balance calculations. Norsk Geo, Tidssk 66:145-152
    [8]Barton M D, Johnson D A.1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology,24(3):259-262
    [9]Begg G C, Hronsky J, Arndt N T, Griffin W L, O'Reilly S Y and Hayward N.2010. Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits. Economic Geology, v105:1057-1070
    [10]Belousova E A, Griffin W L and O'Reilly S Y.2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contrib Mineral Petrol,143:602-622
    [11]Bird P.1979. Continental delamination and the Colorado Plateau. J. Geophys. Res.,84:7561-7571
    [121 Bonin B.2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos,78(1-2):1-24
    [131 Boudreau A E.1999. PELE-a version of the MELTS software program for the PC platform. Computer and Geoscience,25(2):201-203
    [14]Bowen N L.1928. The Evolution of the Igneous Rocks. Princeton University Press,332
    [15]Boynton W V.1984. Cosmochemistry of the rare earth elements; meteorite studies. In:Rare earth element geochemistry. Henderson, P. (Editor), Reviews in Mineralogy and Geochemistry 21 (1), Elsevier Science Publication Company, Amsterdam,63-114
    [16]Brandon A D, Hooper P R, Goles G G, Lamber R St.J.1993. Evaluating crustal contamination in continental basalts:the isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group. Contributions to Mineralogy and Petrology,114:452-464
    [17]Brown A.2009. A process-based approach to estimating the copper derived from red beds in the sediment-hosted stratiform copper deposit model. Economic Geology, v.104, pp.857-868
    [181 BrUgmann G E, Naldrett A J, Asif M, Lightfoot P C, Gorbachev N S and Fedorenko V A.1993. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia. Geochimica et Cosmochimica Acta, (57):2001-2018
    [191 Campbell I H.2001. Identification of ancient mantle plumes. In Ernst R.E., Buchan K.L. (eds.) Mantle Plumes:Their Identification Through Time:Boulder. Colorado. Geological Society of America Special Paper, 352:5-21
    [201 Campbell I H, Griffiths R W.1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters,99:79-93
    [21]Cannon W F and Suzanne W N.1999. Geology and mineral deposits of the Keweenaw Peninsula, Michigan. U.S. Geological Survey Open-File Report,99-149
    [22]Cannon W F, Green A G, Hutchinson D R, Myung L, Milkereit B, Behrent J C, Halls H C, Green J C, Dickas A B, Morey G B, Sutcliffe R H, and Spencer C.1989. The North American midcontinent rift beneath Lake Superior from GLIMPCE seismic reflection profiling:Tectonics, v.8, p.305-332
    [23]Carpenter S J, Clohmann K, Holden P, Walter L M, Huston T J, Halliday A N.1991.δ180 values,87Sr/86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite:Implications for the composition of ancient seawater. Geochimica et Cosmochimica Acta,55:1991-2010
    [24]Chang Z and Large R R and Maslennikov.2008. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source. Geology,36 (12). pp.971-974. ISSN 0091-7613
    [25]Chappell B W and White A J R.2001. Two contrasting granite types:25 years later. Australian Journal of Earth Sciences,48:489-499
    [261 Chen B, Jahn B M and Tian W.2009. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic rations and whole-rock Nd-Sr isotope compositions of subduction and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, (34):245-257
    [27]Chen C H, Lee C Y, Lu H Y and Hsieh P S.2008. Generation of Late Cretaceous silicic rocks in SE China: Age, major element and numerical simulation constraints. Journal of Asian Earth Sciences,31:479-498
    [28]Chen H Y, Chen Y J and Baker M J.2011. Evolution of ore-forming fluids in the Sawayaerdun gold depositin the Southwestern Chinese Tianshan metallogenic belt, Northwest China [J]. Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2011.05.011
    [29]Cheng Y B, Mao J W.2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos,120:258-276
    [30]Chen Y J, Pirajno F, Wu G, Qi J P and Xiong X L.2011. Epithermal deposits in North Xinjiang, NW China [J]. Int J Earth Sci., DOI 10.1007/s00531-011-0689-4
    [31]Christensen J N, Halliday A N, Lee D C, et al.1995. In suit Sr isotopic analysis by laser ablation[J]. Earth Planet Sci Lett,136(1-2):79-85
    [32]Chung S L, Jahn B M.1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology,23:889-892
    [33]Clarke B, Uken R and Reinhardt J.2009. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos,111:21-36
    [34]Class and Goldstein S L.1997. Plume-lithosphere interactions in the ocean basins; constraints from the source mineralogy. Earth Plant. Sc. Lett.,150:245-260
    [351 Cocherine A.1986. Systematic use of trace element distribution patterns in log-log diagram for plutonic suites. Geochimica et Cosmochimica Acta.,50:2517-2522
    [36]Collins W J, Beams S D, and White A J K.1982. Nature and origin of A type granites with particular reference to southeastern Australia. Contrb. Mineral. Petrol.80:189-200
    [37]Condie K C.2001. Mantle Plumes and Their Record in Earth History. Oxford, UK:Cambridge University Press
    [38]Cooke D R, Wilson A J, House M J, Wolfe R C, Walshe J L, Lickfold V, and Crawford A J.2007. AIkalic porphyry Au-Cu and associated mineral deposits of the Ordovician to Early Silurian Macquarie Arc, New South Wales:Australian Journal of Earth Sciences, v.54, p.445-463
    [39]Cooke D R, Deyell C L, E Waters P J, Gonzales R I, and Zaw K.2011. vidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines: Economic Geology, v.106, No 8, p.1399-1424
    [40]Cox K G, Bell J D, Pankhurst J.1979. The interpretation of igneous rocks. London:Allen and Unwin,450
    [41]Defant M J and Drummond M S.1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,347-662
    [42]DePaolo D J.1981. A Neodymium and Stronium isotopic study of Mesozoic calc-alkaline granitic batholiths of Sierra Nevada and Peninsular Ranges, California. J. Geophys. Res.,86:10470-10488
    [43]DePaolo D J.1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters,53:189-202
    [44]Duuring P, Hagemann S G, Groves D I.1999. The syenite-hosted Jupiter gold deposit in Western Australia: part of a crustal continuum of Archaean lode-gold deposits or a new class of intrusion-related gold deposits? GAC-MAC Abstract Volume 24:34.
    [45]Dong Y, Zhang G, Neubauer F, Liu X, Hauzenberger C, Zhou D, Li W.2011. Synand post-collisional granitoids in the Central Tianshan orogen:geochemistry, geochronology and implications for tectonic evolution. Gondwana Research,20:568-581.
    [46]Dubd B, Gosselin P, Mercier-Langevin P, Hannington M and Galley A.2007. Gold-rich volcanogenic massive sulphide deposits, in Goodfellow, W.D.,ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and ExplorationMethods: Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, p.75-94
    [47]Eby G N.1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculation on their petrogenesis. Lithos,26:115-134
    [48]Eby G N.1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20:641-644
    [49]Eileen S H and Jeffrey L M.1996. Relationship between organic matter and copper mineralization in the Proterozoic Nonesuch Formation, northern Michigan. Ore Geology Reviews,11:71-88
    [50]Eric A K.Middlmost.1994. Naming materials in the magma/igneous rock system. Earth Science Review,37: 215-224
    [51]Ewart A.1982. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks with special reference to the andesitic-basaltic compositional range. In:R S Thorpe (Editor), Andesites. Wiley, Chichester, 25-87
    [52]Fleet M E, Crocket J H, Stone W E.1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochim Cosmochim Acta,60:2397-2412
    [53]Forster HJ.1997. An evanllation of the Rb Vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40:261-293
    [54]Frey F A.1984. Rare earth element abundance in upper mantle rocks.Henderson P. Rare Earth Element Geochemistry. Amsterdam:Elsevier,153-204
    [55]Frost B R and Frost C D.2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology,49:1955-1969
    [56]Frost B R and Frost C D.2010. On Ferroan (A-type) Granitoids:their Compositional Variability and Modes of Origin. Journal of Petrology,25:1-15
    [57]Galer S J.1989. Limits on chemical and convective isolation in the Earth's interior. Chem. Geol.,75:257-290
    [58]Galley A G, Hannington M D, and Jonasson I R.2007. Volcanogenic massive sulphide deposits, in Goodfellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods:Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, p.141-161
    [59]Gaetani G A, Grove T L, Bryan W B.1993. The influence of water on the petrogenesis of subduction-related igneous rocks. Nature,365:332-334
    [60]Griffin W L, Pearson N J, Belousova E A, Jackson S R, van Achterbergh E, O'Reilly S Y, Shee S R.2000. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,64:133-147
    [61]Groves D I, Goldfarb R J, Gebre-Mariam H, Hagemann S G and Robert, F.1998. Orogenic gold deposits-a proposed classification in the context of their crustal distribution and relationship to other gold deposit type [J]. Ore Geology Reviews,13:7-27
    [62]Groves D I, Goldfarb R J, Knox-Robinson C M, Ojala J, Gardoll S, Yun G and Holyland P.2000. Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn block, Western Australia [J]. Ore Geology Reviews,17:1-38
    [63]Gu L X, Zhang Z Z, Wu C Z, Gou X Q, Liao J J, Yang H.2011. A topaz-and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China and its zoning. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2010.12.010
    [64]Han B F, Ji J Q, Song B, Chen L H, Li Z H.2004. SHRIMP zircon U-Pb ages of Kalatongke No.l and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin,49:2424-2429
    [65]Han C M, Xiao W J, Zhao G C, Mao J W, Yang J M, Wang Z L, Yan Z, Mao Q Q.2006. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia. Ore Geological Review,29:77-94
    [66]Han C M, Xiao W J, Zhao G C, Mao J W, Yang J M, Wang Z L, Yan Z, Mao Q Q.2006. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia. Ore Geological Review,29:77-94
    [67]Hannington M D, Poulsen K H, Thompson J F H, and Sillitoe R H.1999. Volcanogenic gold in the massive sulfide environment, in Barrie, C.T., and Hannington, M.D., eds., Volcanic-Associated Massive Sulfide Deposits:Processes and Examples in Modern and Ancient Settings:Reviews in Economic Geology, Vol.8, p. 325-356
    [68]Hansen H, Nielsen T F D.1999. Crustal contamination in Palaeogene East Greenland flood basalts:plumbing system evolution during continental rifting. Chemical Geology,157:89-118
    [69]Hanski E, Huhma H, Rastas P, Kamenetsky V S.2001. The Palaeoproterozoic komatiite-picrite association of Finnish Lapland. Journal of Petrology,42:855-876
    [70]He B, Xu Y G, Chung S L, Xiao L, Wang Y M.2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters,213: 391-405
    [71]Helmy H M, El Mahallawi M M.2003. Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt:a late Precambrian analogue of Alaskan-type Complexes. Mineralogy and Petrology,77:85-108
    [72]Henderson P, Wood R J.1984. Reaction relationship of chrome-spinel in igneous rocks-further evidence from the layered intrusions of Rhum and Mull, Inner Hebrides, Scotland. Contributions to Mineralogy and Petrology,78:225-229
    [73]Hirschmann M M, Stolper E M.1996. A possible role for garnet pyroxenite in the origin of the garnet signature in MORB[J]. Contributions to Mineralogy and Petrology,124:185-208
    [74]Hoffman A W.1997. Mantle geochemistry:the message from oceanic volcanism. Nature,385:219-230
    [75]Hou Z Q, Zeng P S, Gao Y F, Du A D, Fu D M.2006. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone:constraints from Re-Os dating of molybdenite Mineralium Deposits,41, pp.33-45
    [76]Huang H Q, Li X H, Li W X, and Li Z X.2011. Formation of high δ180 fayalite-bearing A-type granite by hightemperature melting of granulitic metasedimentary rocks,southem China. Geology, v.39; no.10; p. 903-906; doi:10.1130/G32080.1
    [77]Huppert H E, Sparks R S J.1985. Komatiites Ⅰ:eruption and flow. J Petrol,26:694-725
    [78]Irvine T N.1974. Petrology of the Duke Island ultramafic complex southern Alaska. Geological Society of America Memoir,138:240
    [79]Isley A E, Abbott D H.2002. Implications of the temporal distribution of high-Mg magmas for mantle plume volcanism through time. The Journal of Geology,110:141-158
    [80]Jensen L S.1976. A new cation plot for classifying subalkalic volcanic rocks:Ontario Division of Mines, Miscellaneous Paper 66,22 p
    [81]Jahn B M, Wu F Y, Chen B.2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes,23:82-92
    [82]Johan Z.2002. Alaskan-type complexes and their platinum-group element mineralizaiton. In:Cabri L.J. (Ed.), Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements. Canadian Institute of Mining, Metallurgy and Petroleum,669-719
    [83]Jourdan F, Bertrand H, Feraud G, Le Gall B, Watkeys M K.2009. Lithospheric mantle evolution monitored by overlapping large igneous provinces:case study in southern Africa. Lithos,107:257-268
    [84]Keays R R, Lightfoot P C.2007. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Mineral Deposita,42:319-336
    [85]Keays R R, Lightfoot P C.2010. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits:evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Miner Deposita,45(3):241-257
    [86]Kerrich R, Polat A, Wyman D, Hollings P.1999. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province:implications for Archean mantle reservoirs and greenstone belt genesis. Lithos,46:163-187
    [87]Large R R, Maslennikow V V, Robert F, et al.2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena gold Province, Russia. Economic Geology,102:1233-1267
    [88]Lassiter J C., DePaolo D J.1997.Plumes/lithosphere interaction in the generation of continental and oceanic flood basalts:Chemical and isotope constraints, In:Maboney J(ed.). Large Igneous Provinces:Continental, Oceanic,and Planetary Flood Volcanism. Geophysical Monagraphy 100, American Geophysical Union, 335-355
    [89]Lei R X, Wu C Z, Gu L X, Zhang Z Z, Chi G X, Jiang Y H.2011. Zircon U-Pb chronology and Hf isotope of the Xingxingxia granodiorite from the Central Tianshan zone (NW China):Implications for the tectonic evolution of the southern Altaids. Gondwana Research,20:582-593
    [90]Li C S, Maier W D, Waal S A.2001. Magmatic Ni-Cu versus PGE deposits:contrasting genetic controls and exploration implications. South African Journal of Geology,104:309-318
    [91]Li C S, Ripley E M, Naldrett A J.2003. Compositional variations of olivine and sulfur isotopes in the Noril'sk and Talnakh intrusions, Siberia:implications for ore forming processes in dynamic magma conduits. Economic Geology,98:69-86
    [92]Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R.2009. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochemistry Geophysics Geosystems 10, Q04010, doi:10.1029/2009GC002400
    [93]Lu M H, Hofmann A W, Mazzucchelli M, Rivalenti G.1997. The mafic-ultramafic complex near Finero (Ivrea-Verbano Zone), I. chemistry of MORB-like magmas. Chemical Geology,140:207-222
    [94]Liegeois L P.1998. Preface-some words on the post-collisional mag-matism. Lithos,45:15-17
    [95]Loisell M C and Wones D K.1979. Characteristics and origin of anorogenic granite. Geol. Am. Abstract Program,11:468
    [96]Lu Y J, Kerrich R, Cawood P A, McCuaig T C, Hart C J R, Li Z X, Hou Z Q and Bagas L.2012. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China:Constraints on the relationship of magmatism to the Jinsha suture, Gondwana Research, in presss doi:10.1016/j.gr.2011.11.016
    [97]Ludwig K R.2001. Users manual for Isoplot/Ex rev.2.49. Berkeley Geochronology Centre Special Publication. No.1a,56
    [98]Macdonald R, Rogers N W, Fitton J G, et al.2001. Plume-lithosphere interaction in the generation of the basalts of the Kenya tift, east Africa. J. Petral.,42:877-900
    [99]Mackenzie A S, Patience R L, Maxwell J R, Vandenbroucke M, Durand B.1980. Molecular parameters of maturation in the configuration of acyclic isoprenoid alkanes,steranes,and triterpanes.Geochimica et Cosmochimica Acta,44:1709-1721
    [100]Mahoney J J, Jones W B, Frey F A, Salters V J M, Pyle D G, Davies H L.1995. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau:Cretaceous plateau volcanism in the southeast Indian Ocean. Chemical Geology,120:315-345
    [101]Maniar P D and Piccoli P M.1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin,101:615-643
    [102]Mao J W, Richard J, Goldfarb, Wang Y T, Hart C J, Wang Z L and Yang J M.2005. Late Paleozoic base and precious metal deposits. East Tianshan, Xinjiang, China:Characteristics and geodynamic setting [J]. Episodes,28(1):1-14
    [103]Mao J W, Pirajno F, Zhang Z H, Chai F M, Wu H, Chen S P, Cheng S L, Yang J M, Zhang C Q.2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China):Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences,32: 184-203.
    [104]Mao J W, Pirajno F, Zhang Z H, Chai F M, Yang J M, Wu H, Chen S P, Cheng S L, Zhang C Q.2006. Late Variscan post-collisional Cu-Ni sulfide deposits in east Tianshan and Altay in China:principal characteristics and possible relationship with mantle plume. Acta Geologica Sinica,80:925-942
    [105]Mossakovsky A A, Ruzhentsev S V, Samygin S G, Kheraskova T N.1993. Central Asian fold belt: geodynamic evolution and history of formation. Geotektonika,6:3-33
    [106]Marks M, Vennemann T, Siebel W and Markl G.2003. Quantification of magmatic and hydrothermal processes in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology,44:1247-1280
    [107]Marcos Z, Franciseo M, Milton C G.1997. Hydrocarbon in volvemem in the genesis of deposits:an example in Cretaceous Stratabound (Manto-Type) Copper Deposits of Central Chile. International Geology Review,39: 1-21
    [108]Mckenzie D, O'Nions K.1991. Partial melt distributions from inversion of rare earth element concentrations. J.Petrol.,32:1021-1091
    [109]Mengel K and Green D H.1989. Stability of amphibole and phlogopite in metasomatised peridotite under water-saturated and water-undersaturated conditions. In:Ross J, ed. Fourth International Kimerlite Conference. Australian Journal of Earth Sciences Special Pubication,14:571-581
    [110]Meschede M.1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology,56:207-218
    [111]Miller C F, McDowell S M and Mapes RW.2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology,31:529-532
    [112]Moldowan J M, Seifert W K, Gallegos E J.1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69:1255-1268
    [113]Morgan J W, Wandless G A, Petrie R K, Irving A J.1971. Composition of the Earth's upper mantle:I. Siderophile trace elements in upper mantle nodules. Tectonophysics,75:47-67
    [114]Naldrett A J, Lightfoot P C, Fedorenko V, Doherty W, Gorbachev N S.1992. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores. Economic Geology,87:975-1004
    [115]Neilsen R L.1992. BigD-FOR:a Fortran program to calculate trace-element partition coefficients for natural mafic and intermediate composition magmas. Computer and Geosciences,18:773-788
    [116]Nicholson S W.1992. Geochemistry, petrography and volcanology of rhyolites of the Portage Lake Volcanics, Keweenaw Peninsula, Michigan. U.S. Geological Survey Bulletin,1970-B:B1-B57
    [117]Qjakangas R W, Morey G B, Green J C.2001. The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA. Sedimentary Geology,141-142,421-442
    [118]Pearce J A, Harris N B W and Tindle A G.1984. Trace element discriminiation diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956-983
    [119]Pearce J A, Cann J R.1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters,19(2):290-300
    [120]Pearce J A, Peate D W.1995. Tectonic implications of the composition of volcanic arc lavas. Annual Review of Earth and Planetary Sciences,23:251-285
    [121]Pearce J A, Norry M J.1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol,69(1):33-47
    [122]Peters K E, Moldowan J M.1995. The biomarker guide:interpreting molecular fossils in petroleum and ancient sediments[M].Englewood Cliffs:Prentice Hall,1-363
    [123]Pettigrew N T, Hattori K H.2006. The Quetico Intrusions of Western Superior Province:Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions. Precambrian Research,149:21-42
    [124]Pirajno F, Mao J W, Zhang Z C, Zhang Z H, Chai F M.2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tianshan and Altay orogens, NW China:implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences,32:165-183
    [125]Piraijno F.2009. Hydrothermal Processes and Mineral System. Springer,1-1250
    [126]Pirajno F.2010. Intracontinental strike-slip faults, associated magmatism, mineral systems andmantle dynamics:examples from NW china and Altay-Sayan (siberia). Journal of Geodynamics,50:325-346
    [127]Puchtel I S and Humayun M.2000. Platinum group elements in Kostomuksha komatiites and basalts: Implications for oceanic crust recycling and core-mantle interaction. Geochimica et Cosmochimica Acta, (64): 4227-4242
    [128]Puschner U.2001. Very low-grade metamorphism in the Portage Lake volcanics on Keweenaw Peninsula Michigan, USA. Metamorphic Petrography Basel:University of Basel,1-75
    [129]Qin K Z, Sun H, San J Z, Xu X W, Tang D M, Ding K S, Xiao Q H, Su B X.2009. Tectonic setting, geological features and evaluation of ore-bearing property for magmatic Cu-Ni deposits in eastern Tianshan, NW China. Northwestern Geology,42:95-99
    [130]Qin K Z, Sun S, Li J L, Fang T H, Wang S L, Liu W.2002. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China:epochs, features, tectonic linkage and exploration significance. Resource Geology,52:291-300
    [131]Ripley E M.2009. Magmatic sulfide mineralization in Alaskan-type complexes. In:Li C.S., Ripley E.M. (Eds.), New Developments in Magmatic Ni-Cu and PGE Deposits,219-228
    [132]Ripley E M, Li C S.2009. Ni-Cu-PGE mineralization associated with the Proterozoic midcontinent. In:Li C.S., Ripley E.M. (Eds.), New Developments in Magmatic Ni-Cu and PGE Deposits,180-191
    [133]Robb L J.2005. Introduction to ore-forming processes.1-386
    [134]Rogers N, Macdonald R, Fitton J G, George R, Smith M, Barreiro B.2000. Two mantle plumes beneath the East African rift system:Sr, Nd and Pb isotope evidence from Kenya Rift basalts. Earth and Planetary Science Letters,176:387-400
    [135]Rollison H.1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longman, Singapore, 352
    [136]Rublee V J.1994. Chemical petrology, mineralogy and structure of the Tulameen Complex, Princeton area, British Colombia. Unpublished M.Sc. thesis. University of Ottawa, Canada,179
    [137]Rudnick R L, Gao S.2003. Composition of the continental crust[C]. In:Rudnick RL, (eds), The crust. Vol.3 of Holland H D, and Turekian KK (eds), Treatise on geochemistry. Oxford, Elsevier-Pergamon,1-64
    [138]Said N, Kerrich R.2009. Geochemistry of coexisting depleted and enriched Paringa Basalts, in the 2.7 Ga Kalgoorlie Terrane, Yilgam Craton, Western Australia:Evidence for a heterogeneous mantle plume event. Precambrian Research,174:287-309
    [139]Said N, Kerrich R.2010. Elemental and Nd-isotope systematics of the Upper Basalt Unit,2.7 Ga Kambalda Sequence:Quantitative modeling of progressive crustal contamination of plume asthenosphere[J], Chemical Geology, doi:10.1016/j.chemgeo.2010.02.022
    [140]Saunders A D, Tamey J, Kerr A C, Kent R W.1996. The formation and fate of Large Igneous Provinces. Lithos,37:81-95
    [141]Saunders A D, England R W, Reichow M K, White R V.2005. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia. Lithos,79:407-424
    [142]Saunders A D, Storey M, Kent R W, Norry M J.1992. Consequences of plume-lithosphere interactions. In: Storey B.C., et al. (Eds.), Magmatism and the Causes of Continental Break-up. Geological Society of London Special Publication,42:313-345
    [143]Scheppard S M F.1986. Characterization and isotope variation in natural waters. In:Valley J W, Taylor H P Jr, O Neil J R (eds.). Stable Isotopes in High Temperature Geological Processes [J]. Reviews in Mineralogy. Mineralogical Society of America,16:165-184
    [144]Seifert W K, Moldowan J M.1980. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth,12:229-237
    [145]Sengor A M C, Natal'in B A, Burtman V S.1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Asia. Nature,364:299-307
    [146]Shaw J E, Baker J A, Kent A J R, Ibrahi K M and Menzies M A.2007. The Geochemistry of the Arabian Lithospheric Mantle:a Source for Intraplate Volcanism? Journal Of Petrology,48(8):1495-1512; doi: 10.1093/Petrology/egm027
    [147]Shimizu K, Nakamura E, Maruyama S, Kabayashi K.2004. Discovery of Archean continental and mantle fragments inferred from xenocrysts in komatiites, the Belingwe greenstone belts, Zimbabwe. Geology,32: 285-288.
    [148]Sillitoe R H.2003. Iron oxide-copper-gold deposits:an Andean view. Mineralium Deposita,38(7):787-812
    [149]Smith M P, Henderson P, Jeffries T E R, Long J and Williams C T.2004. The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK:constraints on processes in a dynamic hydrothermal system. J. Petrol,45:457-484
    [150]Song X Y, Xie W, Deng Y F, Crawford A J, Zheng Q, Zhou G F, Deng G, Cheng S L, Li J.2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos,127:128-143
    [151]Song X Y, Keays R R, Zhou M F, et al.2009. Siderophile and Chalcophile Elemental Constraints on the Origin of the Jinchuan Ni-Cu-(PGE) Sulfide Deposit, NW China[J]. Geochim Cosmochim Acta,73:404-424
    [152]Su B X, Qin K Z, Sakyi P A,Li X H, Yang Y H, Sun H, Tang D M, Liu P P,Xiao Q H,Malaviarachchi S P K. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian Orogenic Belt:tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research doi:10.1016/j.gr.2010.11.015
    [1531 Su B X, Qin K Z, Sakyi P A, Li X H, Yang Y H, Sun H, Tang D M, Liu P P, Xiao Q H, Malaviarachchi S P K. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research,20:516-531
    [154]Sun M, Yuan C, Xiao W J, Long X P, Xia X P, Zhao G C, Lin S F, Wu F Y, Kroner A.2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:progressive accretionary history in the early to middle Palaeozoic. Chemical Geology,247:352-383
    [155]Sun S S, McDonough W F.1989. Chemical and isotopic systematic of oceanic basalts:implications for mantle composition and processes. In:Saunders A.D., Norry M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society Special Publication,313-345
    [156]Sun W D, Hu Y H, Kamenetsky V S, Eggins S M, Chen M, Arculus R J.2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta,72:3542-3549
    [157]Tang D M, Qin K Z, Sun H, et al.2009. Lithological, chronological and geochemical characteristics of Tianyu Cu-Ni deposit:Constraints on source and genesis of mafic-uitrumafic intrusions in eastern Xinjiang[J]. Acta Petrologica Snica,25(4):817-83
    [158]Tang Y J, Zhang H F, Ying J F.2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology,233:309-327
    [159]Tang Y J, Zhang H F, Ying J F, et al.2007. Refertilization of ancient lithospheric mantle beneath the central North China Craton:Evidence from petrology and geochemistry of peridotite xenoliths. Lithos,
    [160]Taylor B, Haves D E.1983. Origin and history of the south China Sea basin. Haves D E. The Tectonic and Geological Evolution of Southeast Asian Seas and Islands (Part 2) Washington D C:AGL,23-56
    [161]Taylor S R, McLennan S M.1985. The Continental Crust:ItsComposition and Evolution:An Examination of the Geochem-ical Record Preserved in Sedimentary Rocks[M]. Oxford,United Kingdom:Blackwell Scientific, 1-312
    [162]Taylor H P.1967. The zoned ultramafic complexes of southeastern Alaska. In:Wyllie P.J. (Ed.), Ultramafic and Related Rocks. Wiley, New York,97-121
    [163]Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology,69:843-883
    [164]Thakurta J, Ripley E M, Li C S.2008. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska. Geochemistry Geophysics Geosystems, doi:10.1029/ 2008GC001982
    [1651 Tian W, Campbell I H, Allen C M, Guan P, Pan W Q, Chen M M, Yu H J, Zhu W P.2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology doi: 10.1007/s00410-009-0485-3
    [1661 Valley J W, Kinny P D, Schulze D J, Spicuzza M J.1998. Zircon megacrysts from kimberlite:oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology,133:1-11
    [167]Wang B, Shu L S, Cluzel D, Faure M, Charvet J.2007. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China):implication for the tectonic evolution of Western Tianshan. Journal of Asian Earth Sciences,29:148-159
    [168]Wang T, Hong D W, Jahn B M, Tong Y, Wang Y B, Han B F, Wang X X.2006. Timing, petrogenesis, and setting of Palaeozoic synorogenic intrusions from the Altai Mountains, northwest China:implications for the tectonic evolution of an accretionary orogen. Journal of Geology,114:735-751
    [169]Wang T, Jahn B M, Kovach V P, Tong Y, Hong D W, Han B F.2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos,110:359-372
    [170]White R S and McKenzie D P.1989. Magmatism at rift zones:the generation of volcanic contonental margins and flood basalts. J.Geophys.Res,94:7685-7729
    [171]White R S, Mckenzie D P.1995. Mantle plume and flood basalt. Journal of Petrology (Review),100:543-585
    [172]White D E.1981. Active geothermal systems and hydrothermal ore deposite.Econ Geol,75th Anniv,1: 392-432
    [173]Winchester J A and Floyd P A.1976. Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters,28(3):459-469
    [174]Wu F Y, Lin J Q, Wilde S A, et al.2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters,233:103-119
    [175]Xia L Q, Xu X Y, Xia Z C, Li X M, Ma Z P, Wang L S.2004. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China. Geological Society of America,116:419-433
    [176]Xia L Q, Xia Z C, Xu X Y, Li X M, Ma Z P.2008. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China. Journal of Asian Earth Sciences,31:357-378
    [177]Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L, Sun S.2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China:implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences,32:102-117
    [178]Xiao W J, Kroner A, Windley B F.2009. Geodynamic Evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences doi:10.1007/s00531-009-0418-4
    [179]Xiao W J, Windley B F, Hao J, Zhai M G.2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China; termination of the central Asian orogenic belt. Tectonics,22:1069
    [180]Xiao W J, Zhang L C, Qin K Z, Sun S, Li J L.2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):implications for the continental growth of central Asia. American Journal of Science,304:370-395
    [181]Xiao W J, Huang B C, Han C M, Sun S, Li J L.2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens. Gondwana Research,18:253-273
    [182]Xiao W J, Windley F, Allen B, Han C.2012. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage, Gondwana Research, doi:10.1016/j.gr.2012.01.012
    [183]Xu Y G, Chung S L, Jahn B M, Wu G Y.2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China, Lithos,58:145-168
    [184]Xu Y G, Menzies M A, Thirlwall M F, et al.2003. "reactice" harzburgites from Huinan, NE China:products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta, 67(3):487-505
    [185]Xu Y G, He B, Chung SI, Menzine M A, Frey F A.2004.Geologic,geochemical,and geophisical consequences of plume invovement in the Emeishan flood-basalt province. Geology,32:917-920
    [186]Yang S F, Li Z L, Chen H L, Santosh M, Dong C W, Yu X.2007. Permian bimodal dyke of Tarim Basin, NW China:geochemical characteristics and tectonic implications. Gondwana Research,12:113-120
    [187]Yang S F, Li Z L, Chen H L, Chen W, Yu X.2006.40Ar-39Ar dating of basalts from Tarim Basin, NW China and its implication to a Permian thermal tectonic event. Journal of Zhejiang University-Science A,7: 320-324
    [188]Yang J H, Wu F Y, Chung S L, et al.2000. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 222:200-231
    [189]Yu X, Yang S F, Chen H L, Chen Z Q, Li Z L, Batt G E, Li Y Q.2011. Permian flood basalts from the Tarim basin, northwest China:Shrimp zircon U-Pb dating and geochemical characteristics. Gondwana Research, in press, available in website, doi:10.1016/j.gr.2010.11.009
    [190]Yuan F, Zhou T F, Zhang D Y, Fan Y, Jowitt S J, Keays R R, Liu S, Fan Y.2011. Siderophile and chalcophile metal variations in basalts:Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental. Ore Geology. Review, doi:10.1016/j.oregeorev.2011.04.003
    [191]Yuan H L, Gao S, Dai M N and Liu XM.2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol,247:100-117
    [192]Zhang H F, Sun M, Zhou X H, et al.2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos,81:297-317
    [193]Zhang C L, Li Z X, Li X H, Xu Y G, Zhou G and Ye H M.2010. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China:Results of a ca.275 Ma mantle plume? GSA Bulletin; November/December 2010; v.122; no.11/12; p.2020-2040; doi:10.1130/B30007.1
    [194]Zhang C L, Xu Y G, Li Z X, Wang H Y, Ye H M.2010. Diverse Permian magmatism in the Tarim Block, NW China:Genetically linked to the Permian Tarim mantle plume? LITHOS,119 (2010):537-552. 10.1016/j.lithos.2010.08.007
    [195]Zhang L C, Qin K Z, Xiao W J.2008. Multiple mineralization events in the eastern Tianshan district, NW China:isotopic geochronology and geological significance. Journal of Asian Earth Sciences,32:236-246
    [196]Zhang Q, Wang C Y, Liu D Y, Jian P, Qian Q, Zhou G Q, Robinson P T.2008. A brief review of ophiolites in China. Journal of Asian Earth Sciences,32:308-324
    [197]Zhang Y T, Liu J Q, Guo Z F.2010. Permian basaltic rocks in the Tarim basin, NW China:implications for plume-Iithosphere interaction. Gondwana Research doi:10.1016/j.gr.2010.03.006
    [198]Zhang Z C, Mao J W, Chai F M, Yan S H, Chen B L, Pirajno F.2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, northwest China:implications for the genesis of magmatic Ni-Cu sulfide deposits. Economic Geology,104:185-203
    [199]Zhou M F, Amdt N T, Malpas J, Wang C Y, Kennedy A K.2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos,103:352-368
    [200]Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M.2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology,209:233-257
    [201]Zhou M F, Zhao J H, Jiang C Y, Gao J F, Wang W, Yang S H.2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China:implications for a possible Permian large igneous province. Lithos doi:10.1016/j.lithos.2009.06.027
    [202]Zhou T F, Yuan F, Fan Y, Zhang D Y, Cooke D, Zhao G C.2008. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China:Geochronological and geochemical characteristics and their geodynamic significance. Lithos,106:191-206
    [203]Zhou T F, Fan Y and Yuan F.2008. Progress on petrogensis and metallogeny study of the mineralization belt of the middle and lower reaches of the Yangtze River area. Acta Petrologica Sinica.24(8):1665-1678
    [2041 Zhou T F, Fan Y, Yuan F, Lu S M, Shang S G, David Cooke, Sebastien Meffre and Guochun Zhao.2008. Geochronology of the volcanic rocks in the Lu-Zong(Lujiang-Zongyang)basin and its significance. Science in China (D),51(10):1470-1482
    [205]Zhu B Q.2003. Continental flood basalts and copper deposits of the Keweenawan type. Geology-Geochemistry,31(2):1-8
    [206]Zhu Y F, Sun S H, Gu L B, Ogasawara Y, Jiang N and Honma H.2001. Permian volcanism in the Mongolian orogenic zone, northeast China:geochemistry, magma sources and petrologenesis. Geological Magazine, 138(2):101-115
    [207]Zindler A, Hart S R.1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493-571
    [208]蔡仲举.1998.康古尔韧性剪切带金矿床成矿特征及成因[J].新疆地质,16(2):163-178
    [209]曹洁,邱斌,晁会霞,马立成,杨兴科,孙继东.2010.新疆红石金矿床原生晕特征与隐伏矿预测[J].地球学报,31(1):83-89
    [210]曾乔松,陈广浩,王核.2006.中国自然铜矿床类型特征分布及形成条件.地质科技情报,25(6):41-46
    [211]柴凤梅.2006.新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化学特征对比研究.中国地质大学博士学位论文,154
    [212]车自成.1989.新疆巴伦台多金属成矿带地物化综合研究及找矿靶区优选.新疆人民政府国家305项目办公室,52-61
    [213]陈富文,李华芹,陈毓川,王登红,王金良,刘德权,唐延龄,周汝洪.2005.东天山土屋-延东斑岩铜矿田成岩时代精确测定及其地质意义.地质学报,79(2):256-261
    [214]陈汉林,杨树峰,董传万,贾承造,魏国齐,汪振国.1997.塔里木盆地二叠纪基性岩带的确定及其大地构造意义.地球化学,26(6):77-87
    [215]陈汉林,杨树锋,贾承造,董传万,魏国齐.1998.塔里木盆地北部二叠纪中酸性火成岩带的厘定及其对塔北构造演化的新认识.矿物学报,18:370-376
    [216]陈江峰,郭新生,汤加富,周泰禧.1999.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学版),35(6):650-659
    [217]陈江峰,满发胜,倪守斌.1995.西天山菁布拉克岩带基性-超基性岩的Nd、Sr同位素地球化学.地球化学,24(2):121-127
    [218]陈立辉.2001.陆壳的垂向增生[J].矿物岩石地球化学通报,20(1):26-29
    [219]陈列锰,宋谢炎,Danyushevsky L V,肖加飞,李士彬,官建祥.2009.金川Ⅰ号岩体撖榄石Ni-MgO相互关系及其地质意义.岩石学报,25:3369-3378
    [220]陈世平,王登红,屈文俊等.2005.新疆葫芦铜镍硫化物矿床的地质特征与成矿时代[J].新疆地质,23(3):230-233
    [221]陈文,孙枢,张彦,肖文交,王义天,王清利,姜立丰,杨俊涛.2005.新疆东天山秋格明塔什-黄山韧性剪切带40Ar/39Ar年代学研究[J].地质学报,79(6):790-804
    [222]陈文,张彦,秦克章,王清利,王义天,刘新宇.2007.新疆东天山剪切带型金矿床时代研究.岩石学报,23(8):2007-2016
    [223]陈文,张彦,张岳桥,金贵善,王清利.2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报,22(4):867-872
    [224]陈文明,曲晓明.2002.论东天山土屋-延东(斑岩)铜矿的容矿岩.矿床地质,21(4):331-340
    [225]陈文明.1999.新疆小热泉子铜(锌)矿床同位素研究.地球学报,20(4):349-356
    [226]陈衍景,倪培,范宏瑞,F.Pirojno,赖勇,苏文超,张辉.2007.不同类型热液金矿系统的流体包裹体特征.岩石学报,23(9):2085-2108
    [227]陈衍景.2000.中国西北地区中亚型造山-成矿作用的研究意义和进展[J].高校地质学报,6(1):17-22
    [228]陈毓川,刘德权,应立娟,王登红,唐延龄.2009.新疆觉罗塔格成矿带与南阿尔泰成矿带的对比研究.矿床地质,28(01):1-14
    [229]陈毓川,刘德权,唐延龄等.2008.中国天山矿产及成矿体系.北京:地质出版社,
    [230]陈哲夫,成守德,梁云海,徐新.1997.新疆开合构造与成矿.乌鲁木齐:新疆科技卫生出版社,394
    [231]陈正乐,万景林,刘健,李胜祥,郑恩玖,韩效忠,李细根,宫红良.2006.西天山山脉多期次隆升-剥露的裂变径迹证据.地球学报,27(2):97-106
    [232]成守德,李耀增,王元龙.1993.新疆矿产资源成矿特征与分布规律.矿床地质,12(1):1-9
    [233]成守德,王元龙.1998.新疆大地构造演化基本特征[J].新疆地质,16(2):97-107
    [234]程松林,王新昆,吴华,毛启贵,敖松坚,韩春明.2008.新疆北山晚古生代内生金属矿床成矿系列研究.新疆地质,26:43-48
    [235]崔彬,和志军,白光宇,董连慧,刘拓,屈君.2006.东天山自然铜矿带地质特征与成因.第八届全国矿床会议论文集,北京:地质出版社,465-470
    [236]崔彬,和志军,赵磊,董连慧,刘拓,屈君.2008.新疆东天山中段金铜成矿系统研究.地学前缘,15(4):13-17
    [237]邓刚,吴华,卢全敏.2004.东天山白山斑岩型钼矿床的地质特征及找矿标志.地质通报,11:1132-1138
    [238]邓刚,杨再峰,卢鸿飞,代育才,赵献丽.2003.东天山发现并探明白山大型燕山期石英网脉-斑岩型钼矿床.矿床地质,03:317-317
    [239]邓宇峰,宋谢炎,颉炜等.2011.新疆北天山黄山东含铜镍矿镁铁-超镁铁岩体的岩石成因:主量元素、微量元素和Sr-Nd同位素证据[J].地质学报,85(9):1435-1451
    [240]第五春荣,孙勇,袁洪林,王洪亮,钟兴平,柳小明.2008.河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义.科学通报,53(16):1923-1934
    [241]丁建华.2007.新疆东天山铜、镍、金矿资源潜力评价[D].博士学位论文.北京:中国地质科学院
    [242]董连慧,崔彬,屈迅,和志军,刘拓,桑少杰,王卫江,韩春明,白光宇,郭红霞.2005.东天山中段铜矿找矿靶区评价及大型矿床定位预测.报告书,1-268
    [243]董连慧,胡建卫,刘拓.2003.新疆东天山地区首次发现自然铜矿化带.矿床地质,22(2):封三
    [244]董连慧,赵树铭,粟永新.2006.新疆天山地区石炭纪碰撞造山期地质构造特征与成矿特点.第八届全国矿床会议论文集,北京:地质出版社,475-478
    [245]杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247-252
    [246]方国庆.1991.新疆东部大地构造特点及演化.西北地质,12:6-12
    [247]丰成友,姬金生,薛春纪等.1999.东天山西滩浅成低温热液金矿床地质及其成因分析.新疆地质,17(1):1-7
    [248]冯益民,朱宝清,杨军录,张开春.2002.东天山大地构造及演化[J].新疆地质,20(4):309-314
    [249]高俊,龙灵利,钱青,黄德志,苏文,ReinerK.2006.南天山:晚古生代还是三叠纪碰撞造山带?岩石学报,22:1049-1061
    [250]高山,金振民.1997.拆沉作用(delamination)及其壳-幔演化动力学意义[J].地质科技情报,16:1-9
    [251]弓小平,杨兴科,陈强,李佐臣.2004.东天山觉罗塔格金矿带构造变形与成矿预测.地球科学与环境学报,26(2):6-10
    [252]顾连兴,张遵忠,吴昌志等.2006.关于东天山花岗岩与陆壳垂向增生的若干认识[J].岩石学报,22(5):1103-1120
    [253]郭召杰,张志诚,廖国辉,方世虎.2002.天山东段隆升过程的裂变径迹年龄证据及其构造意义.新疆地质,20(04):331-334
    [254]韩宝福,何国琦,王式洗.1999.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学(D辑),29(1):16-21
    [255]韩宝福,季建清,宋彪,陈立辉,张磊.2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)-后碰撞深成岩浆活动的时限[J]:岩石学报,22(5):1077-1086
    [256]韩春明,毛景文,杨建民等.2002.东天山晚古生代内生金属矿床类型和成矿作用的动力学演化规律.地质学报,76(2):222-234
    [257]韩春明.2002.东天山铜矿区域成矿系列研究.中国地质大学(北京)博士学位论文,
    [258]郝国江.2010.新疆"305”国家办公室年度会议内部资料.天津
    [259]何国琦,李茂松,刘德权等.1994.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,香港:香港文化教育出版社,1-437
    [260]贺静,莫新华,彭明兴,单金忠.2002.白山钼矿地质特征及成因探讨.西部探矿工程,05:163-165
    [261]贺振宇.2010.中国东南部中生代正长岩及相关岩石的成因和地质意义.南京大学博士论文,1-173
    [262]侯广顺,唐红峰,刘丛强,王彦斌.2005.东天山土屋.延东斑岩铜矿围岩的同位素年代和地球化学研究.岩石学报,21(6):1729-1736
    [263]侯增谦,李红阳.1998.试论幔柱构造与成矿系统.矿床地质,17(2):97-113
    [264]侯增谦等.2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.27(2):123-144
    [265]胡瑞忠,陶琰,钟宏,黄智龙,张正伟.2005.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘,12(1):42-54
    [266]胡受奚,郭继春,顾连兴.1990.加里东造山带在天山构造格架中的重要地位及其地质特征.新疆地质科学.北京:地质出版社,32-46
    [267]胡正纲.1998.美国基维诺自然铜矿床成矿环境成矿作用和机制.四川地质学报,18(1):26-30
    [268]姬金生,陶洪祥,曾章仁,杨兴科,张连昌.1994.东天山康古尔塔格金矿带地质与成矿.北京,地质出版社:1-204
    [269]姬金生,张连昌,曾章仁,卢登蓉,杨兴科,杨建国.1996.东天山康古尔塔格金矿带年代学研究.地质科学,31(1):80-89
    [270]贾承造,魏国齐,姚慧君,童晓光.1995.盆地构造演化与区域构造地质.塔里木盆地油气勘探丛书北京:石油工业出版社.
    [271]姜常义,程松林,叶书锋,夏明哲,姜寒冰,代玉财.2006.新疆北山地区中坡北山北镁铁质岩体地球化学与岩石成因.岩石学报,22:115-126
    [272]姜常义,张蓬勃,卢登蓉等.2004.柯坪玄武岩的岩石学、地球化学Nd,Sr,Pb同位素组成与岩石成因.地质论评,50(5):492-500
    [273]姜福芝,秦克章,方同辉等.2002.东天山铁矿床类型、地质特征成矿规律与找矿方向.新疆地质,20(4):379-383
    [274]姜立丰,李凤鸣,姬厚贵等.1994.哈密县885-846高地1:50000区调报告,138-15
    [275]蒋少涌,孙岩,孙明志,边立曾,熊永根,杨水源,罗兰,曹钟清,吴亚民.2010.江西九瑞矿集区叠合断裂系统和叠加成矿作用.岩石学报,26(9):2615-2625
    [276]赖绍聪,秦江锋,李永飞,隆平.2007.青藏高原新生代火车头山碱性及钙碱性两套火山岩的地球化学特征及其物源讨论.岩石学报,23(4):709-718
    [277]黎彤.1976.化学元素的地球丰度;地球化学.03:167-174
    [278]李凤鸣,王宗社,侯文斌.2002.东天山小热泉子铜矿床综合找矿模型的建立.新疆地质,20(1):38-43
    [279]李厚民,毛景文,张冠,徐章宝,高宏光,张长青,王登红,许虹.2006.滇黔交界地区玄武岩铜矿蚀变分带和有机包裹体特征及其地质意义.地质学报,80(7):1026-1034
    [280]李厚民,毛景文,张长青,许虹,闫升好,高兰.2009.滇东北峨眉山玄武岩铜矿研究.1-149
    [281]李华芹,陈富文,李锦轶,屈文俊,王登红,吴华,邓刚,梅玉萍.2006.再论东天山白山铼钼矿区成岩成矿时代.地质通报,08:916-922
    [282]李华芹,陈富文,路远发,杨红梅,郭敬,梅玉萍.2004.东天山三岔口铜矿区矿化岩体SHRIMPU-Pb年代学及锶同位素地球化学特征研究.地球学报,25(2):191-195
    [283]李华芹,陈富文.2004.中国新疆区域成矿作用年代学.北京:地质出版社,1-391
    [284]李华芹,吴华,陈富文,邓刚,杨红梅,杨再峰,梅玉萍,郭敬.2005.东天山白山铼钼矿区燕山期成岩成矿作用同位素年代学证据.地质学报,(02):249-255
    [285]李华芹,谢才富,常海亮等.1998.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1-264
    [286]李金祥,秦克章,徐兴旺,孙赫,程松林,吴华,莫新华.2007.新疆东天山白石泉Cu-Ni硫化物矿床杂岩体的地球化学特征及其对矿床成因和构造背景的制约.矿床地质,26(1):43-57
    [287]李锦轶,何国琦,徐新,李华芹,孙桂华,杨天南,高立明,朱志新.2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报,80(1):148-168
    [288]李锦轶,肖序常.1999.对新疆地壳结构与构造演化几个问题的简要评述[J].地质科学,34(4):405-419
    [289]李锦轶.2004.新疆东部新元古代晚期和古生代构造格局及其演变.地质论评,50(3):304-322
    [290]李锦轶,王克卓,孙桂华,莫申国,李文铅,杨天南,高立明.2006.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录.岩石学报,22(05):1087-1202
    [291]李少贞,任燕,冯新昌,李嵩龄.2006.吐哈盆地南缘克孜尔塔格复式岩体中花岗闪长岩锆石SHRIMPU-Pb测年及岩体侵位时代讨论.地质通报,25:937-940
    [292]]李曙光,黄方,李晖.2001.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报,46(17):1487-1491
    [293]李文明,任秉琛,杨兴科等.2002.东天山中酸性侵入岩浆作用及其地球动力学意义.西北地质,35(4):41-64
    [294]]李文铅,夏斌,王克卓,王茜,王核.2006.新疆东天山彩中花岗岩体锆石SHRIMP年龄及地球化学特征.地质学报,(01):43-52
    [295]李新俊,刘伟.2002.东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约[J].地质学报,18(4):551-558
    [296]李亚萍,孙桂华,李锦轶,王彦斌,徐新,何国琦,贾金典.2006.吐哈盆地东缘泥盆纪花岗岩的确定及其地质意义.地质通报,25:932-936
    [297]李永军,佟丽莉,杜志刚,杨俊泉,司国辉,李新光.2007.东天山库姆塔格垄东岩体岩石地球化学特征及构造意义.地质科技情报,06:25-30
    [298]李勇,苏文,孔屏,钱-雄,张克银,张明利,陈跃,蔡习尧,尤东华.2007.塔里木盆地塔中-巴楚地区早二叠世岩浆岩的LA-ICP-MS锆石U-Pb年龄.岩石学报,23:1097-1107
    [299]]李月臣,赵国春,屈文俊,潘成泽,毛启贵,杜安道.2006.新疆香山铜镍硫化物矿床的Re-Os同位素测定.岩石学报,22(1):245-251
    [300]]厉子龙,杨树锋,陈汉林,C.H.Langmuir,余星,林秀彬,励音骥.2008.塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约.岩石学报,24(05):959-970
    [301]廖静娟,顾连兴,严正富.1993.东天山双岔沟花岗岩岩体特征及成因.岩石学报,9(增刊):114-121
    [302]林克湘,李艺斌,龚文平等.1997.新疆三塘湖盆地晚古生代火山岩地球化学特征及构造环境[J].高校地质学报,3(2):202-211
    [303]刘德权,陈毓川,王登红,唐延龄,周汝洪,王金良,李华芹,陈富文.2003.土屋-延东铜钼矿田与成矿有关问题的讨论.矿床地质,22(4):334-344
    [304]卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京,科学出版社,1-234
    [305]卢欣祥,罗照华,黄凡,谷德敏,祝朝辉,黄丹峰,杨宗峰.2009.秦岭—大别山花岗岩与铝矿的关 系研究.矿物学报(S1)
    [306]路凤香,郑建平,邵济安等.2006.华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄.地学前缘,13(2):86-92
    [307]路魏魏,邓刚,马丽华等.2012.新疆东天山白山钼矿床花岗岩体的发现.地质与勘探,待刊
    [308]罗照华,卢欣祥,刘翠,李德东,杨宗锋,文思博.2011.岩浆热液成矿理论的失败:原因和出路.吉林大学学报(地球科学版)01
    [309]马昌前.1998.莫霍面-下地壳与岩浆作用[J].地学前缘,5(4):201-209
    [310]马瑞士,舒良树,孙家齐.1997.东天山构造演化与成矿.北京:地质出版社
    [311]马瑞士,王赐银,叶尚夫,刘国斌.1993.东天山构造格架和地壳演化.南京:南京大学出版社,1-225
    [312]马天林,孙立倩,徐兴旺.1998.新疆东天山康古尔金矿控矿构造地质特征.地质力学学报,4(2):45-52
    [313]毛景文,FrancoP,张作衡,柴凤梅,杨建民,吴华,陈世平,程松林,张长青.2006.天山-阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床主要特点及可能与地幔柱的关系.地质学报,80(7):925-942
    [314]毛景文,FrancoPIRAJNO,张作衡等.2006.天山—阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系[J].地质学报,80(7):925-942
    [315]毛景文,杨建民,韩春明,王志良.2002.东天山铜金多金属矿床成矿系统和成矿地球动力学模型.地球科学-中国地质大学学报,27(4):413-424
    [316]毛景文,谢桂青,李晓峰,张作衡,王义天,王志良,赵财胜,杨富全,李厚民.2005.大陆动力学演化与成矿研究:历史与现状-兼论华南地区在地质历史演化期间大陆增生与成矿作用.矿床地质,24(3):193-205
    [317]毛景文,谢桂青,张作衡等.2005.中国北方大规模成矿作用的期次及大陆动力学背景,岩石学报,21(1):169-188
    [318]毛启贵.2008.北山及邻区古生代-早中生代增生与碰撞大地构造格局.中国科学院地质与地球物理研究所博士论文
    [319]牟保磊.1999.元素地球化学.北京:北京大学出版社,1-227
    [320]木合塔尔·扎日,吴兆宁,吴昌志,帕拉提·阿布都卡迪尔.2010.东天山板块缝合区(带)的构造演化与多金属矿床成矿的关系.地球科学,35(2):245-343
    [321]潘成泽,肖文交,崔彬,韩春明.2005.东天山中段铜矿床主要类型及地质特征.新疆地质,02:16-23
    [322]潘兆橹,赵爱醒,潘铁红.1994.结晶学及矿物学(下册).北京:北京地址出版社,7-8
    [323]漆亮,周美夫,严再飞,皮道会,胡静.2006.改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量.地球化学,35(6):667-674
    [324]钱壮志,孙涛,汤中立等.2009a.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义.地质论评,55(6):873-884
    [325]秦克章,丁奎首,许英霞,孙赫,徐兴旺,唐冬梅,毛骞.2007.东天山图拉尔根-白石泉铜镍钴矿床钴.镍赋存状态及原岩含矿性研究.矿床地质,26(1):1-14
    [326]秦克章,方同辉,王书来等.2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质,20(4): 302-308
    [327]秦克章.新疆北部中亚型造山与成矿作用.博士后研究工作报告.中国科学院地质与地球物理研究所,2000.194
    [328]邱家骧主编.1985.岩浆岩岩石学教材.1-200
    [329]屈文俊,杜安道.2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄,岩矿测试,22(4):25-257
    [330]冉崇英,张智筠,庄汉平.1998.楚雄盆地铜、膏盐、有机矿床组合地球化学.成都理工学院学报,02
    [331]任秉琛,杨兴科,李文明等.2002.东天山土屋特大型斑岩铜矿成矿地质特征与矿床对比.西北地质,35(3):67-75
    [332]任燕,郭宏,涂其军,冯新昌,李少贞,李嵩龄.2006.吐哈盆地南缘彩霞山东石英闪长岩岩株锆石SHRIMPU-Pb测年.地质通报,25:941-944
    [333]芮宗瑶,刘玉琳,王龙生,王义天.2002.新疆东天山斑岩铜矿带及其大地构造格局.地质学报,76(1):83-94
    [334]芮宗瑶,王福同,李恒海,董连慧,王磊,姜立丰,刘玉琳,王龙生,陈伟十.2001.新疆东天山斑岩铜矿带的新进展.中国地质,28(2):11-16
    [335]芮宗瑶,王龙生,王义天,刘玉琳.2002.东天山土屋和延东斑岩铜矿床时代讨论.矿床地质,21(1):25-33
    [336]三金柱,秦克章,汤中立等.2010.东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J].岩石学报,26(10):3027-3035
    [337]舒良树,卢华复,印栋浩等.2001.新疆北部古生代大陆增生构造[J].新疆地质,19(1):59-63
    [338]宋谢炎,胡瑞忠,陈列锰.2009.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义.地学前缘,16(4):287-303
    [339]苏本勋,秦克章,孙赫,唐冬梅,肖庆华,曹明坚.2009.新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征:对同化混染和结晶分异过程的启示.岩石学报,25(4):873-887
    [340]孙赫.2009.东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究.博士学位论文.北京:中国科学院地质与地球物理研究所,1-262
    [341]孙涛,钱壮志,汤中立等.2010.新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义[J].岩石学报,26(11):3339-3349
    [342]孙涛.2011.新疆东天山黄山岩带岩浆硫化物矿床及成矿作用研究.长安大学博士学位论文,1-126
    [343]谭绿贵,周涛发,袁峰等.2006.新疆萨吾尔地区二叠纪火山岩地球动力学背景[J].合肥工业大学学报(自然科学版),29(7):868-874.
    [344]唐冬梅,秦克章,刘秉光,李金祥,孙赫.2008.铂族元素矿床的主要类型、富集规律、研究进展与展望.岩石学报,24(3):569-588
    [345]唐冬梅.2009.东天山后碰撞镁铁-超镁铁岩镍铜硫化物矿床PGE地球化学示踪与富集规律研究.中国科学院地质与地球物理研究所博士论文
    [346]唐红峰,赵志琦,黄荣生,韩宇捷,苏玉平.2008.新疆东准噶尔A型花岗岩的锆石Hf同位素初步研究. 矿物学报,28(4):335-342
    [347]唐俊华,顾连兴,张遵忠,吴昌志,三金柱,汪传胜,刘四海,张光辉.2007.东天山咸水泉片麻状花岗岩特征、年龄及成因.岩石学报,(08):1803-1820
    [348]唐俊华,顾连兴,张遵忠,吴昌志,三金柱,汪传胜,刘四海,黎广荣.2008.东天山黄山-镜儿泉过铝花岗岩矿物学、地球化学及年代学研究[J].岩石学报,(05)
    [349]涂光炽.1999.初议中亚成矿域[J].地质科学,34(1):397-404
    [350]王碧香,李兆鼐.1989.新疆北天山东段花岗岩类地球化学特征.地质学报,(3):236-245
    [351]王登红,陈毓川,李红阳等.1998.新疆阿尔泰造山带成矿规律成矿系列研究进展.地质论评,44(1):62
    [352]王登红.1998.地幔柱及其成矿作用[M].北京:地震出版社
    [353]王京彬,王玉往,何志军.2006.东天山大地构造演化的成矿示踪.中国地质,33(3):461-469
    [354]王京彬,王玉往,周涛发.2008.新疆北部后碰撞与幔源岩浆有关的成矿谱系.岩石学报,24(4):743-752
    [355]王京彬,徐新.2006.新疆北部后碰撞构造演化与成矿[J].地质学报,80(1):23-31
    [356]王莉娟,王京彬,王玉往,朱和平.2006.新疆准噶尔-东天山地区产于韧性剪切带中的金矿床成矿流体与碳、硫、铅同位素[J].地质论评,52(4):486-493
    [357]王龙生,李华芹,陈毓川,刘德权.2005a.新疆哈密百灵山铁矿地质特征及成矿时代.矿床地质,24(3):264-269
    [358]王强,赵振华,白正华等.2003.新疆阿拉套山石炭纪埃达克岩、富Nb岛弧玄武质岩:板片熔体与地幔橄榄岩相互作用及地壳增生[J].科学通报,48(12):1342-1349
    [359]王润民,李思楚.1987.新疆哈密黄山东铜镍硫化物矿床成岩成矿物理化学条件.成都地质学院学报,14(3):1-10
    [360]王涛.2000.花岗岩研究与大陆动力学.地学前缘,7(增):137-146
    [361]王兴保.2005.雅满苏铁矿床地质特征及成因浅析.地质找矿论丛,20(增刊):125-128
    [362]王义天,张文智,王磊,毛景文,杨富全,陈文.2007.新疆东天山红石金矿床成矿流体和成矿物质来源示踪[J].岩石学报,23(8):1998-2006
    [363]王银喜,顾连兴,张遵忠,吴昌志,李惠民,杨杰东.2007.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究.岩石学报,23(7):1749-1755
    [364]王瑜,李锦轶,李文铅.2002.东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据.新疆地质,20(4):315-319
    [365]王玉往,王京彬,王莉娟,龙伶俐.2008.新疆尾亚含矿岩体错石U-Pb年龄、Sr-Nd同位素组成及其地质意义.岩石学报,24(4):781-792
    [366]王玉往,王京彬,王莉娟,龙灵利.2009.新疆香山铜镍钛铁矿区两个镁铁-超镁铁岩系列及特征.岩石学报,25:888-900
    [367]王玉往,王京彬,王莉娟,彭晓明,惠卫东,秦全新.2006.岩浆铜镍矿与钒钛磁铁矿的过渡类型—新疆哈密香山西矿床.地质学报,80:61-73
    [368]王志良,毛景文,吴淦国.2004.东天山康古尔金矿成矿晚阶段地幔流体参与成矿作用的碳氢氧同位素 证据[J].地质学报,78(2):195-202
    [369]王作勋,邬继易,吕喜超等.1990.天山多旋回演化与成矿.北京:科学技术出版社,83-130
    [370]魏春生,涂光炽.1996.成矿流体来源占δD-δ180-87Sr/86Sr理论模型研究.中国科学(D辑),26(4):373-377
    [371]吴昌志,张遵忠,KhinZ,FernandoDella-Pasque,唐俊华,郑远川,汪传胜,三金柱.2006.东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义[J].岩石学报,22(5):1121-1134
    [372]吴福元,李献华,郑永飞,高山.2007.Lu-Hf同位素体系及其岩石学应用.岩石学报,23(2):185-220
    [373]吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,15(2):181-189
    [374]吴华,李华芹,莫新华,陈富文,路远发,梅玉萍,邓刚.2005.新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义.地质学报,79:498-502
    [375]吴乃元.1991.新疆的石炭系.见:新疆古生界,下册.乌鲁木齐:新疆人民出版社
    [376]夏林圻,李向民,夏祖春,徐学义,马中平,王立社.2006.天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱.西北地质,39(1):1-49
    [377]夏林圻,夏祖春,徐学义等.2004.天山石炭纪大火成岩省与地幔柱.地质通报,23(9-10):903-910
    [378]夏明哲.2009.新疆东天山黄山岩带镁铁·超镁铁质岩石成因及成矿作用[D1.长安大学博士论文
    [379]肖庆华.2010.新疆东天山香山西铜镍-钛铁复合型矿床成因研究及意义.中国科学院研究生院博士学位论文,1-191
    [380]肖庆辉,邓晋福,马大铨.2002.花岗岩研究思维与方法.北京:地质出版社,1-294
    [381]肖文交,韩春明,袁超,陈汉林,孙敏,林寿发,厉子龙,毛启贵,张继恩,孙枢,李继亮.2006.新疆北部石炭纪-二叠纪独特的构造.成矿作用:对古亚洲洋构造域南部大地构造演化的制约.岩石学报,22:1062-1076
    [382]肖序常,汤耀庆,冯益民等.1992.新疆北部及其邻区大地构造[M].北京:地质出版社,1-169
    [383]新疆地矿局第-地质大队.2003.新疆鄯善地区红石金矿床普查报告[M],1-67
    [384]新疆维吾尔自治区地质矿产局.1993.新疆维吾尔自治区区域地质志.北京:地质出版社,1-841
    [385]徐湘康,桑少杰.1994.秋格明塔什地区3幅1:5万区域地质调查报告
    [386]熊小林,赵振华,白正华等.2001.西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生[J].科学通报,281-287
    [387]徐克勤,涂光炽.1984.花岗岩地质和成矿关系国际学术会议论文集[M].南京:江苏科学出版社
    [388]徐湘康,桑少杰.1994.秋格明塔什地区3幅1:5万区域地质调查报告
    [389]徐学义,何世平,王洪亮,陈隽璐.2009.东天山-北山地区成矿地质背景图.北京:地质出版社
    [390]徐义刚.2006.用玄武岩组成反演化中-新生代华北岩石圈的演化.地学前缘,13(2):93-104
    [391]许志琴,杨经绥,戚学祥,崔军文,李海兵,陈方远.2006.印度/亚洲碰撞—南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论.地质通报,25(1-2):1-14
    [392]杨甲全,张拓夫.1995.镜儿泉北矿、咸水泉幅1:5万区域地质调查报告
    [393]杨兴科,姬金生,张连昌.1998.东天山金矿带区域成矿规律解析.矿床地质,17(增刊):131-134
    [394]杨树锋,陈汉林,冀登武,厉子龙,董传万,贾承造,魏国齐.2005.塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义.高校地质学报,11:504-511
    [395]杨树锋,余星,陈汉林,厉子龙,王清华,罗俊成.2007.塔里木盆地巴楚小海子二叠纪超基性脉岩的地球化学特征及其成因探讨.岩石学报,23:1087-1096
    [396]袁峰,周涛发,范裕,谭绿贵,DavidC,SebastienM,王庆民,王卫江.2007.新疆东天山十里坡自然铜矿化区马头滩组玄武岩锆石LA-ICPMSU-Pb年龄及其意义.岩石学报,23(8):1973-1980
    [397]袁峰,周涛发,范裕,谭绿贵,DavidC, SebastienM,王庆民,王卫江.2007b.东天山自然铜矿化区火山岩的年代学.矿物学报,27(增刊):118-119
    [398]袁峰,周涛发,范裕,谭绿贵,岳书仓.2006.东天山十里坡地区自然铜矿化的地质特征及成因初步分析.矿床地质,25(增刊):289-292
    [399]袁峰,周涛发,范裕,张达玉.2008.东天山地区晚古生代铜、金、多金属成矿规律初步分析.第九届全国矿床会议论文,221-222
    [400]袁峰,周涛发,范裕,张乐骏,唐敏慧,段超,陆三明,钱存超.2008.庐枞盆地中生代火山岩的起源、演化及形成背景岩石学报,24(8):1691-1702
    [401]袁峰,周涛发,谭绿贵等.2006.西准噶尔萨吾尔地区Ⅰ型花岗岩锆石SHRIMP年龄及其意义[J].岩石学报,22(5):1238-1248
    [402]袁峰,周涛发,谭绿贵,范裕,杨文平,何立新,岳书仓.2006.西准噶尔萨吾尔地区Ⅰ型花岗岩同位素精确定年及其意义.岩石学报,22(5):1238-1248
    [403]袁峰,周涛发,杨文平等.2006.新疆萨吾尔地区两类花岗岩Nd、Sr、Pb、O同位素特征[J].地质学报,80(2):264-272.
    [404]袁峰,周涛发,张达玉,范裕,刘帅,彭明兴,张建滇.2010.东天山自然铜矿化带玄武岩的地球化学特征及其意义.岩石学报,26(2);533-546
    [405]袁洪林,柳小明,刘勇胜等.2005.北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究.中国科学(D辑),35(9):821-836
    [406]袁见齐.1985.矿床学[M].地质出版社.
    [407]翟裕生等.1999.区域成矿学.[M]北京:地质出版社
    [408]张达玉,周涛发,袁峰,范裕,刘帅,彭明兴.2010.新疆东天山地区延西铜矿床的地球化学、成矿年代学及其地质意义.岩石学报,26(11):3327-3338
    [409]张德会.2005.关于成矿作用地球化学研究的几个问题.地质通报,24(10-11)
    [410]张刚阳,郑有业,张建芳,张苏坤,樊子晖.2011.西藏沙拉岗锑矿控矿构造及成矿时代约束.岩石学报,27(7):2143-2149
    [411]张理刚.1985.稳定同位素在地质科学中的应用—金属活化热液成矿作用及找矿,西安:陕西科学技术出版社,1-267
    [412]张连昌,秦克章,英基丰,夏斌,舒建生.2004.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报,20(2):259-268
    [413]张连昌.2000.东天山康古尔塔格金铜矿带成矿地质地球化学动力学研究及预测.博士论文,1-76
    [414]张良臣,吴乃元.1985.天山地质构造及演化史.新疆地质,3(3):1-14
    [415]张旗,钱青,王二七等.2001.燕山中晚期的“中国东部高原”:埃达克岩的启示[J].地质科学,36:248-255.
    [416]张旗,王焰,刘红涛等.2003.中国埃达克岩的时空分布及其形成背景:附国内关于埃达克岩的争论.地学前缘,10(4):385-400
    [417]张旗,王焰,钱青,杨进辉,王元龙,赵太平,郭光军.2001.中国东部中生代埃达克岩的特征及其构-造.成矿意义.岩石学报,17(2):236-244
    [418]张旗,王焰,熊小林,李承东.2008.埃达克岩与花岗岩:挑战与机遇.大地出版社
    [419]张乾,王大鹏,范良伍,朱笑青,张正伟.2008.滇—黔相邻地区峨眉山玄武岩型自然铜—辉铜矿床的成矿规律及成矿前景分析.地质与勘探,44(2):8-14
    [420]张招崇,JohnJM,王福生,赵莉,艾羽,杨铁铮.2006.峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学-地幔柱头部熔融的证据.岩石学报,22(6):1538-1552
    [421]张遵忠,顾连兴,吴昌志,翟建平,李伟强,唐俊华.2002.东天山印支早期尾亚石英正长岩成岩作用及成岩意义.岩石学报,22(5):1135-1149
    [422]赵振华,王强,熊小林等.2006.新疆北部的两类埃达克岩[J].岩石学报,22(5):1249-1265
    [423]赵振华,王强,熊小林,张海样,牛贺才,许继峰,白正华,乔玉楼.2006.新疆北部的两类埃达克岩[J].岩石学报,22(5):1249-1265
    [424]郑大中,郑若锋.2002.自然铜铜合金矿物及其矿床形成机理新探索.四川地质学报,22(2):72-81
    [425]郑永飞,徐宝龙,周根陶.2000.矿物稳定同位素地球化学研究.地学前缘(02):298-320
    [426]周济元,茅燕石,黄志勋.1994.东天山古大陆边缘火山地质.成都,成都科技大学出版社:1-280
    [42]周济元,张斌,张朝文.1996.东天山古大陆及其边缘银、铼、钼、金和铜矿地质.特征.北京,北京地质出版社:105-133
    [428]周涛发,袁峰,张达玉,范裕,刘帅,彭明兴,张建滇.2010.新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究.岩石学报,26(02):478-502
    [429]周涛发,岳书仓,袁峰.2005.安徽月山矿田成岩成矿作用.北京:地质出版社,1-148
    [430]朱炳泉.2003.大陆溢流玄武岩成矿体系与基威诺型铜矿床.地质地球化学,31(2):1-8
    [431]朱炳泉,胡耀国,张正伟等.2002.滇黔地球化学边界似基韦诺(Kemeenaw)型铜矿床的发现.中国科学,32(增):50-59
    [432]朱永峰,王涛,徐新.2007.新疆及邻区地质与矿产研究进展岩石学报,23(8):1785-1794
    [433]庄汉平,冉崇英,何明勤,卢家烂,刘金钟.1996.楚雄盆地有机质、膏盐与砂岩铜矿生成关系的有机地球化学证据与机理.沉积学报,14(3):129-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700