用户名: 密码: 验证码:
新疆阿吾拉勒成矿带西段铜矿成矿环境与成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆阿吾拉勒山西段为晚石炭世—二叠纪的陆相火山岩区,区内分布众多与陆相火山作用有关的铜矿床(点)。本论文对该区二叠纪火山岩、次火山岩和侵入岩进行了详细的岩石学和岩石地球化学研究,并对花岗岩类侵入岩开展了LA-ICP-MS锆石U-Pb测年分析。同时,对区内5个典型铜矿床(点)进行了详细的矿床地质特征对比研究、流体包裹体和碳、氧、硫、铅稳定同位素分析。在此基础上,对该区铜矿类型进行了重新划分,讨论了不同类型铜矿床的成矿机理和成矿环境,总结了区域铜矿成矿规律,建立了成矿模式,并指出了下一步找矿方向。论文取得的主要成果和认识如下:
     1.阿吾拉勒山西段下二叠统陆相双峰式火山岩、次火山岩和浅成-超浅成侵入岩以碱性和偏碱性系列为主,整体高Na2O、高Al2O3、低TiO2、富碱,亏损Nb、Ta。三类岩石具有明显不同的成因和岩浆来源,其中,下二叠统玄武岩以碱性玄武岩为主,来源于弱亏损地幔,并受到了少量下地壳物质的混染;次火山岩来源于前寒武纪基底物质(老地壳)的重熔,流纹斑岩兼具S型和A型花岗岩的特征;中—酸性侵入岩可能来源于玄武质下地壳的熔融,但有较多石炭纪岛弧火成岩(新地壳)的加入,花岗岩类为I型花岗岩。
     2.该区晚古生代晚期的4个花岗岩类岩体锆石U-Pb年龄结果介于278.2±0.8Ma~312.9±1.3Ma之间,与区域火山活动主要发生在晚石炭世—早二叠世一致。但是,这些岩石中含有较多的继承锆石,其年龄值主要分布在早石炭世—晚石炭世之间,可能代表了源岩中加入了石炭纪火成岩的物质。
     3.群吉萨依辉绿玢岩中含有大量继承变质锆石,其年龄值较一致,介于1781.2±7.7Ma~1807.1±5.1Ma之间,平均为1794.8±4.7Ma,这是西天山地区目前获得的最老的锆石年龄。109矿区流纹斑岩中的继承变质锆石年龄结果也存在750Ma~1254Ma(6个)和1739Ma~1961Ma(4个)两组年龄。尽管这些锆石均为继承变质锆石,但与前人获得的西天山前寒武纪变质岩Nd模式年龄、岩浆锆石年龄和变质事件时代较为一致,说明该区不仅存在早元古代晚期的结晶基底,而且早二叠世次火山岩的形成还与这些前寒武纪基底岩石密切相关。
     4.重新对阿吾拉勒山西段的铜矿类型进行了划分,将其简化为次火山岩型和热液脉型两种类型。次火山岩型铜矿床(点)产出于中、南部地区,赋矿地层为下二叠统底部或上部火山岩地层,受火山机构中的次火山岩体和断裂破碎带控制,成矿流体规模较小,形成于较“干”的地质环境,成矿物质以地幔或深部岩浆源为主;热液脉型铜矿床(点)产出于北部地区,赋矿地层为下二叠统顶部火山岩地层与中二叠统沉积地层接触面附近,成矿流体为一种中-低温、中-低盐度流体,由火山热液和大气降水混合形成,规模较大,成矿物质来源具有多源性,但以地幔源为主。
     5.该区晚古生代晚期的裂谷演化持续时间可能较短,早二叠世是其主要阶段,早二叠世末期曾形成很小范围的海盆环境。但中二叠世以后,构造环境由拉伸转为挤压,裂谷演化终止。因此,该区的裂谷为一规模较小的不成熟裂谷。区域成矿与裂谷演化具有空间一致性。裂谷演化导致的陆相火山活动为铜矿的形成提供了矿源层。矿源层的差异、控矿构造的不同以及火山活动的强弱决定了在裂谷带南北不同部位形成两种不同类型的铜矿床。
     6.由于裂谷拉张规模较小,导致岩浆分异演化较弱,期次少,埋深浅,流体来源和规模均有限,成矿物源缺乏持续供给,因此,该区很难形成规模较大的铜矿床。相较而言,热液脉型比次火山岩型具有更好的成矿条件和复杂的控矿因素,是该区今后铜矿勘查的重点。受成矿环境的制约,区内铜矿形成深度较浅,深部找矿潜力不大,但个别矿床深部仍具一定的找矿前景,如奴拉赛铜矿和克孜布拉克铜矿。
Including huge thick strata of continental volcanic rocks of upper CarboniferousSeries-Permian, the Western Awulale Mountain have many copper deposits which are relatedto continental volcanism. Based on the petrology, geochemistry and geochronology researchof Permian volcanic rocks, subvolcanic rocks and intrusive rocks, this thesis completed fluidinclusion and stable isotope research for five typical copper deposits in this district. Accordingto these research works, the copper deposits types are reclassified, metallogenic mechanismand environment are analyzed. Moreover, this thesis summarizes the the metallogenicregularities of these copper deposits, and discusses the mineralization of this district. Themain innovation and new viewpoints are summarized as following:
     1. The typical bimodal volcanic rocks(basalts-rhyolite), subvolcanic and hypabyssalintrusive rocks of lower Permian in western Awulale Mountain are alkali and meta-alkaliseries which are generally characterized with higher Na2O and Al2O3contents, lower TiO2content and alkali-rich. Different rock types have different geochemical features which reflectthat they have diverse origin and magma sources. The basaltic magma is derived fromweak-depleted mantle. The subvolcanic rocks possess the characteristcs of S and A-typegranite which are production resulted from remelting of Precambrian basement rocks(oldcrust). Intermediate-acid intrusive rocks are I-type granite and related to the partial melting ofbasaltic lower crust, but many Carboniferous island-arc igneous rocks(new crust) are addedinto its magma.
     2. LA-ICP-MS U-Pb dating of magmatic zircons from the four granitic rocks in westernAwulale Mountain yield weighted average206Pb/238U ages from278.2±0.8Ma to312.9±1.3Ma, which reveal that the intrusion of magma in late Paleozoic occure from lateCarboniferous to early Permian. Some residual zircon cores have several groups ofCarboniferous age, indicating that the source of the granitic rocks likely containsCarboniferous island arc magmatic rocks.
     3. U-Pb dating of metamorphogenic zircons from the diabase yield207Pb/206Pb ages from1781.2±7.7Ma to1807.1±5.1Ma and weighted average age of1794.8±4.7Ma which is theoldest age of zircons in western Tianshan Mountain. Similarly, the age results of rhyolite in109ore district include two groups of ages from1739Ma to1961Ma and750Ma to1254Ma.These age results of metamorphogenic zircons are consistent with the Nd model ages,magmatic zircon ages and metamorphic ages of Precambrian metamorphic rocks in western Tianshan Mountain, which indicate that the crystalline basement has been formed in latePaleoproterozoic and the origin of subvolcanic rocks are related to these Precambrianbasement rocks.
     4. The copper deposits are reclassified to subvolcanic rock-type(SVR) and hydrothermalvein-type copper deposits(HTV). The SVR copper deposits occur in bottom and top strata oflower Permian Series; the orebodies are closely controlled by subvocanic rocks and faults;metal and vein minerals are less; the wall-rock alteration are generally weak; the metallogenicfluid are small size and single source which originate from a dry environment; theore-forming minerals are from deep magma. The HTV copper deposits occur near theinterface of top strata of lower Permian Series and bottom strata of intermediate PermianSeries; the metallogenic fluid are middle-lower temperature and salinity which is mixture ofvolcanic hydrothermal and circulated meteoric water; the ore-forming minerals source iscomplexity which include crustal and mantle source.
     5. The duration of the late Paleozoic rift evolution perhaps is short and the early Permianis its main stage in western Awulale Mountain. At the end stage of early Permian, sea basinhas been formed shortly in small scale. The rift evolution has ended because the tectonicsetting is changed from extension to compression after middle Permian. So, the rift is smallscale and immature. The regional mineralization is spatially consistent with the rift evolution.The continental volcanic generate numourous volcanic rocks and sedimentary strata whichconstitute the ore-source bed. The formation of different Cu deposit-types in different positonare controlled by the different mineral sources, structure and strength of continental volcanismcaused by the Permian rifting.
     6. The rift system has a small stretching extent in western Awulale Mountain whichcause the differentiation and evolution of magma activities are weak, accordingly, the igneousrocks are lack of multi-phase and hypabyssal or super-hypabyssal. In this environment, thesource and size of ore-forming fluids are finite, which makes against the formation of largercopper deposits. Comparatively, the hydrothermal vein-type copper deposits are moreimportant than subvolcanic rock-type copper deposits for exploration. Constrained bymetallogenic settings, the forming depth of copper deposits is shallow, thus, the prospect ofdeep exploration is generally not good. But, one or two deposits perhaps have relatively goodprospect for deep exploration, especially for Nulasai and Kezibulake copper deposits.
引文
①《新疆尼勒克县-奴拉赛等地铜、铁矿初步评价、矿点检查及路线踏勘地质报告》,新疆冶金地质勘探公司703队,1982.
    ①区域地质调查报告(1:20万)巩留幅(K-44-Ⅴ).新疆维吾尔自治区地质局,1979
    ①新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993:6-48.
    ②江西省地质矿产勘查开发局.新疆维吾尔自治区1:5万区域地质矿产调查区域地质调查报告[R].2005:1-160.
    ①新疆有色地质勘查局703地质队.新疆尼勒克县群吉-克牙克特铜矿普查报告,2007
    ①新疆地质调查院.1∶10万新疆西天山地区巴斯台一带斑岩铜矿集中区地球化学普查报告(水系沉积物测量),2001
    ①新疆尼勒克奴拉赛-克孜克藏地段1:5000地质填图简报.新疆冶金地质勘探公司703队,1981
    ①《新疆尼勒克县-奴拉赛等地铜、铁矿初步评价、矿点检查及路线踏勘地质报告》,新疆冶金地质勘探公司703队,1982.
    ①新疆尼勒克县阿吾拉勒山区铜矿地质调查报告.新疆地质局科研所,1981
    ①新疆有色地质勘查局703地质队.新疆尼勒克县群吉-克牙克特铜矿普查报告,2007
    ①新疆有色地质勘查局703地质队.新疆尼勒克县群吉-克牙克特铜矿普查报告,2007
    ①《新疆维吾尔自治区尼勒克县109铜矿点钻探验证报告》.1990.新疆维吾尔自治区国家305项目办公室.
    ①新疆尼勒克县109铜矿点钻探验证报告.国家305项目专题《加速查明新疆矿产资源的地质地球物理地球化学综合研究》,1990
    ①新疆尼勒克县克孜克藏-奴拉赛矿区深部构造找矿钻孔地质简报.1985.新疆有色地质勘探公司703大队.
    [1]车自成,刘良,刘洪福,等.论伊犁古裂谷[J].岩石学报,1996,12(8):478-490
    [2]陈根文,刘群,夏换,等.新疆阿吾拉勒成矿带斑岩铜矿地质特征及成矿远景评价[J].矿物学报.2011,增刊:747-748
    [3]陈衍景,鲍景新,张增杰,等.西天山艾肯达坂组火山岩系的元素地球化学特征和构造环境[J].矿物岩石,2004,24(3):36-45
    [4]陈义兵,胡霭琴,张国新,等.西天山前寒武纪天窗片麻岩的锆石U-Pb年龄及Nd-Sr同位素特征[J].地球化学,1999,28(6):515-520
    [5]陈义兵,胡霭琴,张国新,等.西南天山前寒武纪基底时代和特征:锆石U-Pb年龄和Nd-Sr同位素组成[J].岩石学报,2000,16(1):91-98
    [6]陈毓川,刘德权,唐延龄,等.中国天山矿产及成矿体系[M].北京:地质出版社,2008:338-347
    [7]储雪蕾,霍卫国,张巽.内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源[J].岩石学报,2002,18(4):66-74
    [8]邓晋福,罗照华,苏尚国等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004:1-376
    [9]董连慧,冯京,庄道泽,等.新疆富铁矿成矿特征及主攻类型成矿模式探讨[J].新疆地质,2011,29(4):416-422
    [10]杜佩轩.新疆北部岩石、岩屑、水系沉积物背景丰度值[J].物探与化探,1996,20(1):76-77
    [11]冯金星,石福品,汪帮耀,等.西天山阿吾拉勒成矿带火山岩型铁矿[M].北京:地质出版社,2010:1-132
    [12]高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816
    [13]顾连兴,于春水,胡受奚,等.东天山博格达造山带石炭纪火山岩及其形成地质环境[J].岩石学报,2000,16(3):305-316
    [14]郭新成,张建收,余元军,等.新疆和静县备战铁矿地质特征及找矿标志[J].新疆地质,2009,27(4):341-345
    [15]韩宝福,何国琦,王式洸,等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论评,1998,44(4):396-404
    [16]贺日政,高锐,李秋生,等.新疆天山(独山子)-西昆仑(泉水沟)地学断面地震与重力联合反演地壳构造特征[J].地球学报,2001,22(6):553-558
    [17]洪大卫,王式洸,谢锡林,等.兴蒙造山带ε(Nd)t值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456
    [18]洪为,张作衡,蒋宗胜,等.新疆西天山查岗诺尔铁矿床磁铁矿和石榴子石微量元素特征对矿床成因的制约[J].岩石学报,2012,28(7):2089-2102
    [19]侯可军,李延河,田有荣.LA-MS-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492
    [20]胡霭琴,王中刚,涂光炽,等.新疆北部地质演化及其成岩成矿规律[M].北京:科学出版社,1997,9-105
    [21]胡霭琴,张国新,张前锋,等.天山造山带基底时代和地壳增生的Nd同位素制约[J].中国科学(D辑),1999,29(3):104-112
    [22]胡霭琴,张国新,陈义兵,等.新疆大陆基底分区模式和主要地质事件的划分[J].新疆地质,2001,19(1):12-19.
    [23]胡书敏,张荣华,张雪彤,等.庐枞火山盆地玄武岩与流体相互作用[J].岩石学报,2010,26(9):2681-2693
    [24]华仁民.东川式层状铜矿的沉积-改造成因[J].矿床地质,1989,8(2):3-13.
    [25]华仁民.成矿过程中由流体混合而导致金属沉淀的研究[J].地球科学进展,1994,9(4):15-22.
    [26]姜常义,吴文奎,谢广成,等.阿吾拉勒山西段二叠纪火山岩组合与构造环境分析[J].西安地质学院学报,1992,14(4):1-8
    [27]姜常义,吴文奎,张学仁,等.从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据[J].岩石矿物学杂志,1995,14(4):289-300
    [28]姜常义,吴文奎,张学仁,等.西天山阿吾拉勒地区岩浆活动与构造演化[J].西安地质学院学报,1996,18(2):18-24
    [29]蒋宗胜,张作衡,侯可军,等.西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].岩石学报,2012,28(7):2074-2088
    [30]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992:77-93.
    [31]李大鹏,杜杨松,庞振山等.西天山阿吾拉勒石炭纪火山岩年代学和地球化学研究[J].地球学报,2013,34(2):176-192
    [32]李华芹,谢才富,常海亮.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998:195-201
    [33]李继磊,苏文,张喜,等.西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J].地质通报,2009,28(12):1852-1862
    [34]李锦轶,王克卓,李亚萍,等.天山山脉地貌特征、地壳组成与地质演化[J].地质通报,2006,25(8):895-909
    [35]李秋生,卢德源,高锐,等.新疆地学断面(泉水沟-独山子)深地震测深成果综合研究[J].地球学报,2001,22(6):534-540
    [36]李永军,李注苍,周继兵,等.西天山阿吾拉勒一带石炭系岩石地层单位厘定[J].岩石学报,2009,25(6):1332-1340
    [37]李永军,李注苍,佟丽莉,等.论天山古洋盆关闭的地质时限[J].岩石学报,2010,26(10):2905-2912
    [38]李昱,刘启元,陈九辉,等.天山地壳上地幔的S波速度结构[J].中国科学(D辑),2007,37(3):344-352
    [39]梁婷,郭新成,高景刚,等.博格达山东段石炭纪火山岩地球化学及构造属性[J].新疆地质,2011,29(3):289-295
    [40]凌联海,楼法生,肖晓林,等.新疆阿吾拉勒山地区晚石炭世科古琴山组的确认[J].资源调查与环境,2004,25(4):242-247
    [41]刘斌,沈昆.流体包裹休热力学[M].北京:地质出版社,1999:84-91
    [42]刘荻.新疆穷布拉克铜矿地质特征及远景分析[J].新疆有色金属,2005,1:2-4
    [43]刘凤鸣.阿吾拉勒山主要矿产分布规律[J].新疆有色金属,2007,增刊:7-9
    [44]刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,2004,23(1):1-10
    [45]刘新,钱青,苏文,等.西天山阿吾拉勒西段木汗巴斯陶侵入岩体的地球化学特征、时代及地质意义[J].岩石学报,2012,28(8):2401-2413
    [46]龙灵利,高俊,钱青等.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J].岩石学报,2008,24(4):699-710
    [47]路凤香,桑龙康.岩石学[M].北京:地质出版社,2002:50~78
    [48]卢焕章.成矿流体[M].北京:北京科学技术出版社,1997:1-210
    [49]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004:201-211
    [50]路远发.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464
    [51]卢作祥,范永香,刘辅臣.成矿规律和成矿预测学[M].武汉:中国地质大学出版社,1989,1-245
    [52]罗勇,廖思平,杨武斌,等.阿吾拉勒山琼布拉克铜矿床流体包裹体及碳氧同位素研究[J].矿床地质,2011,30(3):547-556
    [53]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2):121-128.
    [54]毛景文,李晓峰,王义天,等.深部流体成矿系统[M].北京:中国大地出版社,2005:1-365
    [55]莫江平,黄明扬,覃龙芳,等.新疆阿吾拉勒陆相火山岩型铜矿成矿研究[J].矿产与地质,1996,10(54):26-31
    [56]莫江平,蔡宏渊.新疆穷布拉克铜矿床成矿模式[J].矿产与地质,1997,11(1):26-31
    [57]彭雨春,马铁球,李英奇,等.湘北花容地区桃花山花岗岩体年代学及地球化学特征[J].中国地质,2011,38(2):271-281
    [58]秦克章.新疆北部中亚型造山与成矿作用[R].中国科学院地质与地球物理研究所博士后研究工作报告,2000:97-99
    [59]单强,张兵,罗勇,等.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学[J].岩石学报,2009,25(6):1456-1464
    [60]尚浚,卢静文,彭晓蕾,等.矿相学[M].北京:地质出版社,2007:134-136
    [61]邵学钟,张家茹,范会吉,等.天山造山带的结构和构造—乌鲁木齐-库尔勒地震转换波测深[J].地球物理学报,1996,39(2):336-346
    [62]舒良树,朱文斌,王博,等.新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J].岩石学报,2005,21(1):25-36
    [63]宋志瑞,肖晓林,罗春林,等.新疆伊宁盆地尼勒克地区二叠纪地层研究新进展[J].新疆地质,2005,23(4):334-338
    [64]唐功建,陈海红,王强,等.西天山达巴特型花岗岩的形成时代与构造背景[J].岩石学报,2008,24(5):947-958
    [65]田薇.新疆伊犁晚古生代裂谷陆相火山岩型铜(银)矿的成矿规律及其找矿前景—以阿吾拉勒地区为例[J].矿产与地质,2006,20(3):237-242
    [66]汪帮耀,胡秀军,王江涛,等.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究[J].矿床地质,2011,30(3):385-402
    [67]王博,舒良树,Cluzel D,等.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义[J],中国地质,2006,33(3):498-508
    [68]王士明.穷布拉克铜银矿床的发现与主要研究成果[J].新疆矿产地质,1989,1:16-27
    [69]王士明.穷布拉克铜(银)矿化探二次开发找矿效果[J].矿产与地质,1994,8(5):363-368
    [70]王焰,钱青,刘良,等.不同构造环境中双峰式火山岩的主要特征[J].岩石学报,2000,16(2):169-173
    [71]王银喜,顾连兴,张遵忠,等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J].岩石学报,2006,22(5):1215-1224
    [72]汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报,2001,17(3):413-421
    [73]王志华,张作衡,蒋宗胜,等.西天山智博铁矿床磁铁矿成分特征及其矿床成因意义[J].矿床地质,2012,31(5):983-998
    [74]魏素花,薛光琦,钱辉,等.新疆库车-克拉玛依地震层析成像[J].地球物理学进展,2000,15(4):46-54
    [75]魏在强.新疆穷布拉克铜矿地质特征[J].新疆矿产地质,1993,1:75-84
    [76]吴明仁,楼法生,宋志瑞,等.西天山塔尔得套地区乌郎组地球化学特征和构造环境[J].东华理工学院学报,2006,29(3):217-224
    [77]夏林圻,张国伟,夏祖春,等.天山古生代洋盆开启、闭合时限的岩石学约束[J].地质通报,2002,21(2):55-62
    [78]夏林圻,夏祖春,徐学义,等.天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J].西北地质,2008,41(4):1-68
    [79]肖晓林,楼法生,吴新华.新疆西天山尼勒克地区铜金属成矿条件及找矿远景分析[J].新疆地质,2008,26(2):142-146
    [80]谢昕,徐夕生,邢光福,等.浙东早白垩世火山岩组合的地球化学及其成因研究[J].岩石学报,2003,19(3):385-398
    [81]新疆维吾尔自治区地质矿产局新疆维吾尔自治区岩石地层[M],武汉:中国地质大学出版社,1999:236-246
    [82]熊小林,赵振华,白正华,等.西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生[J].科学通报,2001a,46(4):281-287
    [83]熊小林,赵振华,白正华,等.西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制[J].岩石学报,2001b,17(4):514-522
    [84]徐学义,夏林圻,马中平,等.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J].岩石学报,2006,22(1):83-94
    [85]徐祖芳.新疆查岗诺尔铁矿主体矿赋矿岩石的成因探讨[J].新疆地质,1984,2(2):30-47
    [86]薛怀民,陶奎元,沈加林.中国东南沿海中生代酸性火山岩的锶和钕同位素特征与岩浆成因[J].地质学报,1996,70(1):35-46
    [87]闫永红,薛春纪,张招崇,等.西天山阿吾拉勒西段群吉萨依花岗斑岩地球化学特征及其成因[J].岩石矿物学杂志,2013,32(2):139-153
    [88]杨明德,莫江平,蔡宏渊.新疆阿吾拉勒西段穷布拉克铜矿地质特征及控矿条件分析[J].矿产与地质,2009,23(3):230-234
    [89]姚金炎.新疆阿吾拉勒山西段陆相火山岩地区铜矿地质特征[J].有色金属矿产与勘查,1993,2(5):277-283
    [90]姚金炎,耿文辉.次火山岩型和斑岩型矿床地质对比[J].矿产与地质.1999,13(5):264-267
    [91]尹意求,陈维民,莫江平,等.新疆尼勒克县群吉萨依铜矿的含矿隐爆角砾岩筒之发现及其地质找矿意义[J].矿产与地质,2005,109(19):246-252
    [92]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1985:183-194
    [93]张德会.关于成矿流体地球化学研究的几个问题[J].地质地球化学,1997,3:49-57
    [94]张贺,张作衡,赵军,等.新疆阿吾拉勒山奴拉赛铜矿流体包裹体和稳定同位素研究[J].矿床地质,2012,31(5):1087-1100
    [95]张旗,潘国强,李承东,等.花岗岩构造环境问题——关于花岗岩研究的思考之三[J].岩石学报,2007,23:2683-2698
    [96]张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238
    [97]张招崇,董书云,黄河等.西南天山二叠纪中酸性侵入岩的地质学和地球化岩石成因和构造背景[J].地质通报,2009,28(12):1827-1839
    [98]张作衡,王志良,左国朝.新疆西天山地质构造演化及铜金多金属矿床成矿环境
    [M].北京:地质出版社,2008a:1-14
    [99]张作衡,王志良,左国朝等.西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约[J].地质学报,2008b,82(11):1494-1503
    [100]张作衡,洪为,蒋宗胜,等.新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境[J].矿床地质,2012,31(5):941-964
    [101]赵振华,白正华,梅厚钧,等.西天山北部晚古生代火山-浅侵位岩浆活动与金、铜、多金属矿床成矿关系的研究[R].国家95攻关项目96-915-03-02专题报告,2000:123-130
    [102]赵振华,熊小林,王强,等.新疆西天山莫斯早特石英钠长斑岩铜矿床——一个与埃达克质岩石有关的铜矿实例[J].岩石学报,2004,20(2):249-258
    [103]赵振华,王强,熊小林,等.新疆北部的两类埃达克岩[J].岩石学报,2006,22(5):1249-1265
    [104]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000:155-208
    [105]郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001,20(1):57-71
    [106]朱炳泉,李献华,戴橦谟.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社,1998:216-230
    [107]朱永峰,何国琦.2004.西南天山大地构造框架与早石炭世火山活动.中国新疆天山地质与矿产论文集[M].北京:地质出版社,29-39
    [108]朱永峰,张立飞,古丽冰,等.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报,2005,50:2004-2014
    [109]朱永峰,周晶,郭璇.西天山石炭纪火山岩岩石学及Sr.Nd同位素地球化学研究[J].岩石学报,2006,22(5):1341-1350
    [110]左国朝,张作衡,王志良,等.新疆西天山地区构造单元划分、地层系统及其构造演化[J].地质论评,2008,54(6):748-767
    [111]Andersen T., Knudsen T. L. Crustal contaminants in the Permian Oslo Rift, SouthNorway: constraints from Precambrian geochemistry[J]. Lithos,2000,53(3-4):247-264
    [112]Anderson B. R., Gemmell J. B. Lead isotope evolution of mineral deposits in theProterozoic Throssell group, western Australia[J]. Economic Geology,2002,97:897-911
    [113]Banks D. A., Russell M. J. Fluid mixing during ore deposition at the Tynagh base-metaldeposit, Ireland[J]. European Journal of Mineralogy,1992,4:921-931
    [114]Bodnar R. J., Reynolds T. J., Kuehn C. A. Fluid-inclusion systematics in epithermalsystems[A].//Berger B R, Bethke P N.Geology and geochemistry of epithermalsystem[C]. Review of Economic Geology,1985,2:73-97
    [115]Bouse R. M., Ruiz J. R., Titley S. R. Lead isotope compositions of late Cretaceous andearly Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sourcesof plutons and metals in porphyry copper deposits[J]. Economic Geology,1999,94:211-244
    [116]Brown A. C. Sediment-hosted stratiform copper deposits: Deposit-type, name andrelated terminology[A]//Boyle R W et al. GAC Special paper[C].1989,36:39-51
    [117]Cannon R. S., Pierce A. P., Antweiler J. C., et al. The data of lead isotope geologyrelated to problems of ore genesis[J]. Economic Geology,1961,56:1-38
    [118]Caron C., Lancelot J., Omenetto P., et al. Roles of the Sardic tectonic phase in themetallogenesis of SW Sardinia (Iglesiente): lead isotope evidence[J]. European Journalof Mineralogy,1997,9:1005-1016
    [119]Chappell B. W., White A. J. R. Source rocks of I and S-type granites in Lochlan FoldBelt, southeastern Australia[J]. Philosophical Transactions Royal Society London,1974:693-707
    [120]Chen C. M., Lu H. F., Jia D, et al. Closing history of the southern Tianshan oceanicbasin, western China: an oblique collisional orogeny[J]. Tectonophysics,1999,302:23-40
    [121]Chiaradia M. Metal sources in mineral deposits and crustal rocks of ecuador (1°N-4°S):A lead isotope synthesis[J]. Economic Geology,2004,99:1085-1106
    [122]Chorowicz J. The East African rift system[J]. Journal of African Earth Sciences,2005,43:379-410
    [123]Coleman R. G. Continental growth of northwest China[J]. Tectonics,1989,8(3):621-635
    [124]Crerar D. A, Barnes H. L. Ore solution chemistry Ⅴ. Solubilities of chalcopyriteandchalcocite assemblages in hydrothermal solution at200℃to350℃[J]. EconomicGeology,1976,71:772-794
    [125]Doe B. R., Steven T. A., Delevaux M. H., et al. Genesis of ore deposits in the San Juanvolcanic field, southwestern Colorado—lead isotope evidence[J]. Economic Geology,1979,74:1-26.
    [126]Dong Y. P., Zhang G. W., Neubauer F, et al. Syn-and post-collisional granitoids in theCentral Tianshan orogen: Geochemistry, geochronology and implications for tectonicevolution[J]. Gondwana Research,2011,20:568-581
    [127]Dubessy J., Derome D., Sausse J. Numerical modelling of fluid mixings in theH2O-NaCl system application to the North Caramal U prospect (Australia)[J]. ChemicalGeology,2003,194:25-39
    [128]Ellis A. J. Chemical equilibrium in magmatic gases[J]. American Journal of Science,1957,255(6):416-431
    [129]Faure G. Principles of isotope geology[M]. New York: John Wiley and Sons,1977,1-475
    [130]Faure G., Mensing T. M. Isotopes: Principles and applications (the third edition)[M].NewYork: John Wiley&Sons.2005:256-283
    [131]Fyfe W. S., Price N. J., Thompson A. B. Fluids in the earth’s Crust[M]. Amsterdam:Elsterdam,1978,1-383
    [132]Gao J., Long L. L., Klemd R., et al. Tectonic evolution of the South Tianshan orogenand adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J].International Journal of Earth Science,2009,98(6):1221-1238
    [133]Gasparon M., Innocenti F., Manetti P., et al. Genesis of the Pliocene to Recent bimodalmafic-felsic volcanism in the Debre Zeyt area, central Ethiopia: volcanological andgeochemical constraints[J]. Journal of African Earth Sciences,1993,17(2):145-165
    [134]Hall D.L., Sterner M., Bodnar R.J. Freezing point depression of NaCl-KCI-H20solutions[J]. Economic Geology,1988,83:197-202
    [135]Han B.F., He G.Q., Wang X.C., et al. Late Carboniferous collision between the Tarimand Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen,Central Asia, and implications for the Northern Xinjiang, western China[J] EarthScience Reviews,2011,109:74-93
    [136]Harkins S. A., Appold M. S. Lead isotope constraints on the origin of nonsulfide zincand sulfide zinc-lead deposits in the flinders ranges, south Australia[J]. EconomicGeology,2008,103:353-364.
    [137]Haynes D. W., Cross K. C., Bills R. T., et al. Olympic Dam ore genesis: a fluid-mixingmodel[J]. Economic Geology,1995,90:281-307
    [138]Hoefs J.2009. Stable isotope geochemistry[M]. Springer,48-53.
    [139]Hofstra A. H., Leventhal J. S., Northrop H. R. Genesis of sediment-hosteddisseminated-gold deposits by fluid mixing and sulfidization: Chemical-reaction-pathmodeling of ore-depositional processes documented in the Jerritt Canyon district,Nevada[J]. Geology,1991,19:36-40
    [140]Holser W. T., Mordeckai M., Judith W. Chemical and isotopic variations in the worldocean during Phanerozoic time[J]. Lecture Notes in Earth Sciences,1986,8:63-74
    [141]Hu A. Q., Jahn B. M., Zhang G. X., et al.Crustal evolution and Phanerozoic crustalgrowth in northern Xinjiang:Nd isotopic evidence.Part I.Isotopic characterization ofbasement rocks[J].Tectonophysics,2000,328:15-50
    [142]Huppert H. E., Spark R. S. J. The generation of granitc magmas by intrusion of basaltinto continental crust[J]. Journal of Petrology,1988,29(3):559-624
    [143]Irvine T. N., Baragar W. R. A guide to chemical classification of common volcanicrocks[J]. Canadian Journal of Earth Sciences,1971,8(5):523-548
    [144]Ishihara S. The magnetite series and ilmenite series granitic rocks[J].Mining geology,1977,27:293-305
    [145]Jowett E. C. Genesis of Kupferschiefer Cu-Ag deposits by convective flow ofrotliegende brines during Triassic Rifting[J]. Economic Geology,1986,81:1823-1837
    [146]Kamona A. F., Lévêque J., Fridrich G., et al. Lead isotopes of the carbonate-hostedKabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan Africanorogensis in the Damaran-Lufilian Fold Belt of Central Africa[J]. Mineralium Deposita,1999,34:273-283
    [147]Kiselev A. I. Volcanism of the Baikal rift zone[J]. Tectonophysics,1987,143:235-244
    [148]Loiselle M. C., Wones D. R. Characteristics and origin of anorogenic granites[J].Geological Society of America Abstracts with Programs11,1979, no.7,468
    [149]Long L.L., Gao J., Klemd R., et al. Geochemical and geochronological studies ofgranitoid rocks from the Western Tianshan Orogen: Implications for continental growthin the southwestern Central Asian Orogenic Belt[J]. Lithos,2011,126:321-340
    [150]Ludwig K. R. User’s manual for Isoplot3.00: A geochronological toolkit for MicrosoftExcel[J]. Berkeley Geochronology Center, Special Publication,2003,4:70
    [151]Mao J. W., Konopelko D., Seltmann R. Postcollisional age of the Kumtor gold depositand timing of Hercynian events in the Tien Shan, Kyrgyzstan[J]. Economic Geology,2004,99:1771-1780
    [152]Mao J. W., Pirajno F., Cook N. Mesozoic metallogeny in East China and correspondinggeodynamic settings—An introduction to the special issue[J]. Ore Geology Reviews,2011,43:1-7
    [153]Marini L. Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas[J].Reviews in Mineralogy&Geochemistry,2011,73:423-492.
    [154]McCulloch M. T., Gamble J. A. Geochemical and geodynamical constraints onsubduction zone magmatism[J]. Earth and Planetary Science Letters,1991,102:358-374
    [155]Mcgowan R. R., Roberts S., Foster R.P., et al. Origin of the copper-cobalt deposits ofthe Zambian Copperbelt: An epigenetic view from Nchanga[J]. Geology,2003,31(6):497-500
    [156]Mendelsoph F. Central/sorthern African ore shale deposits[A]//Boyle R W et al. GACSpecial paper36[C],1989:453-469.
    [157]Mishra B., Pal N., Sarbadhikari A. B. Fluid inclusion characteristics of the Uti golddeposit Hutti-Maski greenstone belt, southern India[J]. Ore Geology Reviews,2005,26:1-16
    [158]Nasdala L., Hofmeister W., Noberg N., et al. Zircon M257-a homogeneous naturalreference material for the Ion microprobe U-Pb analysis of zircon[J]. Geostandards andGeoanalytical Research,2008,32(3):247-265
    [159]Neumann E. R., Tilton G. R., Tuen E. Sr, Nd and Pb isotope geochemistry of the Oslorift igneous province, southeast Norway[J]. Geochimica et Cosmochimica Acta1988,52:1997–2007
    [160]Neumann E. R., Olsen K. H., Baldridge W. S., et al. The Oslo Rift: a review[J].Tectonophysics,1992,208:1-18
    [161]Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology,1972,67:551-578
    [162]Ohmoto, H., Rye R. O., Isotopes of sulfur and carbon, In: Geochemistry of hydrothermalore deposits [M], John Wiley and Sons, New York,1979:509-567
    [163]Oppenheimer C., Scaillet B. and Martin R. S. Sulfur degassing from volcanoes: Sourceconditions, surveillance, plume chemistry and Earth system impacts[J]. Reviews inMineralogy and Geochemistry,2011,73:363-421
    [164]Oreskes N., Einaudi M. T. Origin of hydrothermal fluids at Olympic Dam: Preliminaryresults from fluid inclusions and stable isotopes[J]. Economic Geology,1992,87:64-90
    [165]Pearce J. A., Norry M. J. Petrogenetic implications of Ti, Zr, Y and Nb variations involcanic rocks[J]. Contributions to Mineralogy and Petrology,1979,69(1):33-47
    [166]Pearce J. A.,Harris N. B. W.,Tindle A. G. Trace element discrimination diagrams for thetectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25(4):956-983
    [167]Pearce J. A. Sources and setting of granitic rocks[J]. Episodes,1996,19(4):120-125
    [168]Peccerillo A., Barberio M. R., Yirgu G., et al. Relationships between mafic andperalkaline acid magmatism in continental rift settings: a petrological, geochemical andisotopic study of the Gedemsa volcano, central Ethiopian rift[J]. Journal of Petrology,2003,44:2003-2032
    [169]Peccerillo A., Donati C., Santo A. P., et al. Petrogenesis of silicic peralkaline rocks inthe Ethiopian rift: Geochemical evidence and volcanological implications[J]. Journal ofAfrican Earth Sciences,2007,48:161-173
    [170]Puig A. Geologic and Metallogenic Significance of the Isotopic Composition of Lead inGalenas of the Chilean Andes[J]. Economic Geology,1988,83:843-858
    [171]Robinson R. W., Norman D. I. Mineralogy and fluid inclusion study of the southernAmetheyst vein system, Creede mining district, Colorado[J]. Economic Geology,1984,79:439-447
    [172]Rollinson H. R. Using geochemical data: evaluation, presentation, interpretation[M].London: Longman Scientific&Technical,1993:1-352
    [173]Rudnick R. L. Restites, Eu anomalies, and the lower continental crust[J].Geochimica etCosmochimica Acta,1992,56:963-970
    [174]Rudnick R. L., Gao S. Composition of the continental crust[J]. Treatise OnGeochemistry,2003,3:1-64
    [175]Rye R. O. A review of the stable-isotope geochemistry of sulfate minerals in selectedigneous environments and related hydrothermal systems[J]. Chmical Geology,2005,215:5-36
    [176]Samama J. C. Comparative comment on the genesis of sandstone-hosted Cu-Pbdeposits[A]//Wolf K H. Handbook of strata-bound and stratiform ore deposits, volume6,Cu, Zn, Pb, and Ag deposits[C]. Elsevier Scientific Publishing Company.1976:1-17
    [177]Samson I. M., Russell M. J. Genesis of the silvermines zinc-lead-barite deposit, Ireland:fluid inclusion and stable isotope evidence[J]. Economic Geology,1987,82:371-394
    [178]Seal R. R., Alpers C. N., Rye R. O. Stable isotope systematics of sulfate minerals[J].Reviews in Mineralogy and Geochemistry,2000,40(1):541-602
    [179]Seal R R. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogyand Geochemistry,2006,61:633-677
    [180]Serafimovski T., Jelenkovic R., Lazarov P. Sulphur isotope study in sulphides from somemineral deposits in the Serbo-Macedonian metallogenic province[J]. Proceedings of theXVIIIthcongress of the Carpathian-Balkan Geological Association. Belgrade,2006.547-550
    [181]Shatov V., Seltmann R., Kremenetsky A. Granite-retated ore deposits of cenrtalKazakhstan and adjacent areas[M]. St.Petersburg: Glgaol PublishingHouse,1996:1-396
    [182]Sheppard S. M. F., Nielsen R. L., Taylor H. P. Hydrogen and Oxygen isotope ratios inminerals from porphyry copper deposits[J]. Economic Geology,1971,66:515-542
    [183]Shinjo R., Chung S. L., Kato Y., et al. Geochemical and Sr-Nd isotopic characteristics ofvolcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for theevolution of a young, intracontinental back arc basin[J]. Journal of geophysical research,1999,104(B5):10591-10608
    [184]Smitheringale W. G., Jensen M. L. Sulfur isotopic composition of the Triassic igneousrocks of eastern United States[J]. Geochimica et Cosmochimica Acta,1963,27(12):1183-1207
    [185]Staecy J. S. and Kramers J. D. Approximation of terrestrial lead isotope evolution by atwo stage model [J]. Earth and Planet Science Letters,1975,26(2):207-221
    [186]Stacey J. S. and Hedlund D. C. Lead-isotopic compositions of diverse igeous rocks andore deposits from southwestern New Mexico and their implications for early Proterozoiccrustal evolution in the western United States[J]. Geological Society of America Bulletin,1983,94:43-57
    [187]Stewart K., Rogers N. W. Mantle plume and lithosphere contributions to basalts fromsouthern Ethiopia[J]. Earth and Planetary Science Letters,1996,139:195-211
    [188]Sun L.H., Wang Y.J., Fan W.M., et al. Post-collisional potassic magmatism in theSouthern Awulale Mountain,western Tianshan Orogen: Petrogenetic and tectonicimplications[J]. Gondwana Research,2008,14:383-394
    [189]Sun S. S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]. Geological Society, London,Special Publications,1989,42:313-345
    [190]Taylor S. R. Abundance of chemical elements in the continental crust: a new table[J].Geochimica et Cosmochimica Acta,1964,28:1273-1285
    [191]Talor M., Kesler S. E., Cloke P. L., et al. Fluid inclusion evidence for fluid mixing,Mascot-Jefferson City zinc district, Tennessee[J]. Economic Geology,1983,78:1425-1439
    [192]Townley B. K., Godwin C. I. Isotope characterization of lead in galena from ore depositsof the Aysen Region, southern Chile[J]. Minerlium Deposita,2001,36:45-57
    [193]Trua T., Deniel C., Mazzuoli R.. Crustal control in the genesis of Plio-Quaternarybimodal magmatism of the Main Ethiopian Rift (MER): geochemical andisotopic Sr, Nd,Pb evidence[J]. Chemical Geology,1999,155:201-231
    [194]Veizer J., Ala D., Azmy K.87Sr/86Sr, δ13C and δ18O evolution of Phanerozoicseawater[J]. Chemical Geology,1999,161:59-88
    [195]Whalen J. B., Currie K. L., Chappell B. W. A-type granites: geochemical characteristics,discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407-419
    [196]White A. J. R., Sources of granite magmas[J]. Geological Society of America Abstractswith Programs11,1979, no.7,539
    [197]Wilkinson J. J., Eyre S. L. Ore-forming processes in Irish-type Carbonate-hosted Zn-Pbdeposits: evidence from mineralogy, chemistry, and isotopic composition of sulfides atthe Lisheen Mine[J]. Economic Geology,2005,100:63-86
    [198]Wilson M. Igneous petrogenesis: a global tectonic approach[M]. London: Unwin Hyman,1989,1-416
    [199]Xia L.Q., Xu X.Y., Xia Z.C., et al. Petrogenesis of Carboniferous rift-related volcanicrocks in the Tianshan, northwestern China[J]. Geological Society of America Bulletin,2004,116:419-433
    [200]Xia L. Q., Xu X. Y., Li X. M., et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboringareas[J]. Geoscience Frontiers,2012,3(4):445-471
    [201]Yang W.B., Niu H.C., Shan Q., et al. Late Paleozoic calc-alkaline to shoshoniticmagmatism and its geodynamic implications, Yuximolegai area, western Tianshan,Xinjiang[J]. Gondwana Research,2012,22(1):325-340
    [202]Zartman R. E., Doe B. R. Plumbotectonics-the model[J]. Tectonophysics,1981,75:135-162
    [203]Zhang X., Tian J. Q., Gao J., et al. Geochronology and geochemistry of granitoid rocksfrom the Zhibo syngenetic volcanogenic iron ore deposit in the Western TianshanMountains(NW-China): Constraints on the age of mineralization and tectonic setting[J].Gondwana Research,2012,22(2):585-596
    [204]Zhang Z. H., Hong W., Jiang Z. S., et al. Geological characteristics and zircon U-Pbdating of volcanic rocks from the Beizhan iron deposit in western Tianshan Mountains,Xinjiang, NW China[J]. Acta Geologica Sinica(English edition),2012.86(3):737-747
    [205]Zhao J.M., Liu G.D., Lu Z.X., et al., Lithospheric structure and dynamic processes ofthe Tianshan orogenic belt and the Junggar basin[J]. Tectonophysics.2003,376(3-4):199-239
    [206]Zhao Z. H., Xiong X. L., Wang Q., et al. Underplating-related adakites in XinjiangTianshan, China[J]. Lithos,2008,102:374-391
    [207]Zheng J. P., Griffin W. L., O’Reilly S. Y., et al. Granulite xenoliths and their zircons,Tuoyun, NW China: Insights into southwestern Tianshan lower crust[J]. PrecambrianResearch,2006,145:159-181
    [208]Zheng Y. F., Hoefs J. Effects of mineral precipitation on the sulfur isotope compositionof hydrothermal solutions [J]. Chemical Geology,1993,105:259-269
    [209]Zhou X. M., Li W. X. Origin of late Mesozoic igneous rocks in southeastern China:Implication for lithosphere subduction and underplating of mafic magmas[J].Tectonophysics,2000,326:269-287
    [210]Zindler A., Hart S. R. Chemical geodynamics[J]. Annual Review of Earth and PlanetarySciences,1986,14:493-571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700