用户名: 密码: 验证码:
新疆阿尔金山喀腊大湾地区铁矿床地质特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喀腊大湾地区铁矿位于青藏高原北缘的阿尔金山东段红柳沟一拉配泉奥陶纪裂谷带的中部,是本区近年来发现比较大的铁矿床,为该地区的找矿突破做出了重要贡献,但是对于喀腊大湾地区铁矿床的成因研究一直比较薄弱,现在还存在一定的争议。本文通过详细的野外地质调查,系统的样品采集,结合前人的研究资料,对喀腊大湾地区铁矿的矿床地质特征及地球化学特征展开研究,试图探讨矿床成因,进而为区域找矿提供一定科学依据。
     通过近三年来的努力,初步取得如下认识:
     喀腊大湾地区铁矿位于一套火山沉积岩系中,矿区铁矿体.主要分布在下古生界寒武系卓阿布拉克组火山岩与沉积岩界线下侧的火山岩中,个别产在大理岩中,矿体顺层产出,具有明显的层控性。矿石矿物为磁铁矿,其颗粒大小不一,以中细粒磁铁矿为主,部分为粗粒磁铁矿,粗粒磁铁矿可能是由中细粒磁铁矿发生了重结晶作用形成的。在显微结构中,粉砂岩与含磁铁矿颗粒的中基性火山岩构成条带状结构,代表铁矿由火山沉积作用形成。磁铁矿的矿物成分也表现出火山沉积型磁铁矿的特征。
     矿区矽卡岩比较发育,主要矽卡岩矿物为石榴石、绿帘石、阳起石、透辉石、绿泥石等。但是本区矽卡岩的分布不受岩体与碳酸盐岩的接触带控制,且花岗岩体不具有明显的围岩蚀变特征,与普通矽卡岩型铁矿的矽卡岩分布特征不同。镜下显示,磁铁矿与矽卡岩矿物主要为共生关系,电子探针测试分析表明,石榴石以钙铁榴石为主,说明铁矿受到后期矽卡岩叠加改造作用的影响。
     对铁矿所在的火山沉积岩系中的中丛性火山岩进行锆石SHRIMP测年,结果为517Ma,代表了铁矿的成矿年龄。通过对矿区及矿区外围玄武岩的地球化学特征分析,认为喀腊大湾地区铁矿形成于岛弧环境。
     喀腊大湾地区铁矿矽卡岩、矿石、磁铁矿的稀上元素配分曲线都可以分为轻稀上略微富集的平坦型和轻稀土富集的右倾型,表明他们存形成过程中受到不同性质流体的作用。矽卡岩的Y/Ho比值介于28.45-52.87,平均为36.45,矽卡岩的Y/Ho比值介于:29.74-36.79,平均为33.26,矽卡岩与矿石的Y/Ho比值比较相近,表明他们受到相似流体的作用。在Y/Ho-La/Ho, Sm/Nd—LREE/HREE和Sm/Nd-Td/La图解上,花岗岩、矽卡岩、矿石表现出明显的相关性,说明喀腊大湾地区铁矿的矽卡岩叠加改造是由矿区花岗岩体引起的。
     喀腊大湾地区铁矿南侧的三个花岗岩样品的锆石SHRIMP测年所得的年龄分别为:477Ma,479Ma,488Ma,而与铁矿体伴生辉钼矿的等时线年龄为480.2±3.2Ma,在误差范围内,认为他们是近于同时形成的,表明辉钼矿是在铁矿南侧花岗岩岩浆流体作用下形成,同时,480Ma代表了铁矿体矽卡岩化的年龄。
     综上所述,喀腊大湾地区铁矿应属于火山沉积型铁矿,但后期受到矽卡岩化的叠加改造。
Kaladawan area iron deposit is located in the central of Hongliugou-Lapeiquan Ordovician rift zone which lies in the mid-eastern of Altyn Tagh, northern Tibet Plateau. It is one of the largest iron deposits in this area, which has been discovered in the recent years. But the genesis of Kaladawan area iron deposit is still in debate.
     Based on the detailed field geological investigation, the systematic sample collection and the predecessors research work, the characteristics and geochemical features of the deposits has been carried out, the genesis of Kaladawan area iron deposit is clarified in this paper.
     Through three years study, we make some brief achievements as follows:
     Kadawan area iron deposit which belongs to Zhuoabulake Group is developed in the volcanic-sedimentary rocks, in the Upper Cambrian lithology. The orebodies is mainly hosted in the volcanic rock with some being in marble, and it is stratabound property. Most of the magnetites in deposit are mid-fine grained, but some are coarse grained magnetite. Coarse grained magnetite is probable to be the recrystallization from the mid-fine grained magnetite. Siltstone and magnetite-bearing intermediate-basic volcanic rock are imbedded under the microscope. The mineral compositions of magnetite imply the magnetite of the Kaladawan area iron deposit belong to volcanic-sedimentary magnetite. So, the Kaladawan area iron deposit is a type of volcanic-sedimentation-related deposit.
     Skarn in the Kaladawan area iron deposit is fairly developed, and skarn mineral assemblages are composed of garnet, pyroxene, chlorite, epidote. actinolite, tremolite. While, the distribution of skarn in the Kaladawan area iron deposit is different with general skarn deposit. Skarns in the Kaladawan area iron deposit aren't controlled by the contact of acid-intermediate intrusive rock with carbonate rock. Acid-intermediate intrusive rocks in the Kaladawan area iron deposit have no obvious wall rock alteration. Magnetite and the skarn minerals are mainly symbiotic under the microscope and the end member of garnet is mainly andradite, suggesting that the Kaladawan area iron deposit is probably affected by magmic hydrothermal fluid.
     Zircon is collected from the intermediate to basic volcanic rocks in the volcanic-sedimentary rocks in Kladawan area. The result shows the age of zircon SHRIMP U-Pb dating is at517Ma, representing the mineralization ages of iron deposit. By analysizing the geochemical of basalt in and out of iron deposit, suggesting the iron deposit might be formed in an island arc environment.
     The REE distribution patterns of skarn, iron ore and magnetite are obvious divided into two part:one part is slight rich light REE and the other part is rich light REE, this character may imply that skarn, iron ore and magnetite were affected by the different kind of fluid activity.
     The Y/Ho ratio of skarn in Kaladawan area iron deposit, ranges from28.45to 52.87(average36.45). The Y/Ho ratio of iron ore in the Kaladawan area iron deposit ranges from29.74to36.79(average33.26). They have similarly Y/Ho rate, suggesting that they are affected by the similar fluid activity. Acid-intermediate intrusive rock in the south of the Kaladawan area iron deposit, skarn and iron ore show a significant correlation in Y/Ho-La/Ho, Sm/Nd-LREE/HREE and Sm/Nd-Td/La diagram, suggesting skarnization of the Kaladawan iron deposit is resulted from the acid-intermediate intrusive rock in the south of the Kaladawan area iron deposit.
     Zircon is collected fron the three samplies of granitic intrusion rock in the Kaladawan area iron deposit, The result shows the age of zircon SHRIMP U-Pb dating of the three samplies is at477Ma,479Ma,488Ma, Re-Os isotopic dating of the molybdenites obtain an isochron age of480.2±3.2Ma, which was consistent with the emplacing age of the granitic intrusion in Kaladawan iron deposit. These features indicated that the molybdenites were results of the magma fluid activity. Meanwhile.480.2±3.2Ma represent the age of skamization of iron deposit.
     In summary, Kaladawan iron deposit is classified as a volcanic-sedimentary types iron deposit, which is latter effected by the skarnization.
引文
陈柏林,蒋荣宝,李丽,陈正乐,祁万修,刘荣,崔玲玲,王世新.2009.阿尔金山东段喀腊大湾地区铁矿带的发现及其意义[J].地球学报,30(2):1-13.
    陈柏林,陈正乐,韩凤彬,崔玲玲等.阿尔金山东段红柳沟矿带大型铜、金、铅锌矿床找矿靶区优选与评价技术与应用研究[R].地质力学研究所内部资料.
    陈根文,夏斌.肖振宇.等.2001.浅成低温热液矿床特征及在我国的找矿方向[J].地质与资源,10(3):165-171.
    陈光远,岱生,殷辉安.1987.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1-874.
    车自成,孙勇.1996.阿尔金麻粒岩相杂岩的时代及塔里木盆地的丛底[J].中国区域地质,15(1):51-57.
    段超.2012.宁芜矿集区凹山玢岩型铁矿床成矿作用研究[D].中国地质大学博上论文.
    丁振举.刘丛强,姚书振.等.2003.东沟坝多金属矿床矿质来源的稀土元素地球化学限制[J].吉林大学学报(地球科学版),(04):437-442.
    郭召杰,张志诚,贾承造.魏国齐.2000.塔里木克拉通丛底格架与构造演化[J],中国科学(D辑),30(6):568-575.
    韩凤彬.陈柏林,崔玲玲,王世新等.2012.阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义[J].岩石学报.28(7):2277-2291.
    洪为等.2012.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约[J].岩石学报,28(07):2089-2002.
    刘良,车自成,罗金海等.1996.阿尔金山西段榴辉岩的确定及地质意义[J],科学通报,41(14):1485-1488.
    刘永顺,辛后田,周世军,腾学建,杨俊泉,吕惠庆.2010.阿尔金山东段拉配泉地区前寒武纪及古生代构造演化[M].地质出版社,1-211.
    林师整.1982.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,(3):166-174
    刘军,靳淑韵.2009.中国铁矿资源的现状与对策[J].中国矿业,(12):12-19.
    孟繁聪,张建新,于胜尧,陈松永.2010.北阿尔金红柳泉早古生代枕状玄武岩及其大地构造意义[J].地质学报,84(7):981-999.
    宁芜研究项目编写小组.1978.宁芜玢岩铁矿[M].北京:地质出版社.
    戚学祥,李海兵,吴才来,杨经绥,张建新,盂繁聪,史仁灯,陈松永.2005.北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMPU-Pb定年及其地质意义[J].科学通报,50(6):571-576.
    青海省区域地质调查大队.1981.1/20万俄博梁幅区域地质图和调查报告.
    祁万修,马玉周,王瑞,魏新昌,姜杰岩.2008.阿尔金北缘八八铁矿地质特征与找矿标志[J].新疆地质,26(3):253-257.
    孙启祯.1993.论我国铁矿边缘成矿[J].地质与勘探,(8):13-18.
    邱家骧.]981.岩浆岩岩石学.成都:成都科技大学出版社,210-217.
    宋彪,张栓宏,王彦斌,赵越.2006.锆石SHRIMP年龄测定数据处理时系统偏差的避免[J].岩矿测试,25(1):9-14.
    宋学信,陈毓川,盛继福,艾永德.1981.论火山—一浅成矿浆铁矿床[J].地质学报,(1):41-55.
    天津地质矿产所.2006.1/25万石棉矿幅修测报告.
    吴才来,杨经绥,姚尚志,等.北阿尔金巴什考供盆地南缘花岗杂岩特征及锆石SHRIMP定年[J].岩石学报.2005,21(3):846~858.
    吴才来,姚尚志,曾令森,等.2007.北阿尔金巴什考供—斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年[J].中国科学(D辑).37(1):10-26.
    王登红,陈毓川.2001.与海相火山作用有关的铁-铜-铅-锌矿床成矿系列类型及成因初探[J].矿床地质.20(2):112-118.
    徐国风,邵洁涟.1979.磁铁矿的标型特征及其实际意义[J].地质与助探,(3):30-37
    王小凤,陈宣华,陈正乐,陈柏林,王克卓,杨风,王连庆等.2004.阿尔金地区成矿条件与预测[M].北京:地质出版社,1-541.
    王滋德.舒良树.2007.花岗岩构造岩浆组合[J].高校地质学报,13(3):362-370.
    许志琴,杨经绥.张建新.姜枚.李海兵,崔军文.1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,73(3):193-205.
    新疆地质矿产局.1993.新疆维吾尔自治区区域地质志.北京:地质出版社,163-165.
    新疆维吾尔自治区地质矿产局.1981a.1/20万巴什考供幅区域地质调查报告.
    新疆维吾尔自治区地质矿产局.1981b.1/20万索尔库里幅区域地质调查报告.
    杨富全,毛景文,徐林刚等.2007.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示.岩石学报,3(10):2443-2456.
    杨经绥,史仁灯,吴才来,等.2008.北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J].岩石学报.24(7):1567-1584.
    赵建安.2009.中国利用周边国家铁矿资源的潜力与对策[J].资源科学,31(10):1640-1646
    钟端,郝永祥,刘均儒.1995.阿尔金山地区寒武系、奥陶系.见:塔里木盆地震旦纪至(?)叠纪地层古生物(4)——阿尔金山地区分册.北京:石油出版社,8-70.
    张志诚,郭召杰,宋彪.阿尔金山北缘蛇绿混杂岩中辉长岩钻石SHRIMP U-Pb定年及其地质意义[J].石学报,2009,25(03):568-576.
    张建新,张泽明,许志琴等.]999a.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄阿尔金构造带中加里东期山根存在的证据[J].科学通报,44(16):1109-1112.
    张建新,张泽明,许志琴等.1999b.阿尔金西段孔兹岩系的发现及岩石学同位素年代学初步研究[J].中国科学(D辑),29(4):298-305.
    张建新,杨经绥,许志琴,孟繁聪,宋述光,李海兵.2002.阿尔金榴辉岩中超高压变质作用证据 [J].科学通报,47(3):231-234.
    张建新,盂繁聪.2005.南阿尔金含假蓝宝石高压丛性麻粒岩及其意义[J].科学通报,50(2):167-171.
    张建新,孟繁聪,于胜尧,陈文,陈松永.2007.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义[J].中国地质,34(4):558-564.
    张建新.孟繁聪,于胜尧.2010.两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约[J].岩石学报,26(7):1967-1992.
    张显庭,郑健康,苟金.1984.阿尔金山东段槽型晚奥陶世地层的发现及其构造意义.地质论评,30(2):184-186.
    赵一呜,吴良士,白鸽,等.2004.中国主要金属矿床成矿规律[M].北京:地质出版社,
    张占武,黄岗,李怀敏,张文峰.2012.北阿尔金拉配泉地区齐勒萨依岩体的年代学、地球化学特征及其构造意义[J].岩石矿物学杂志,30(1):13-27
    Compston W, Williams IS and Kirschvink JL.1992. Zircon U-Pb ages for the Early Cambrian timescale. J.Geol.Soc. London,149(2):171-18.
    Du AD, Shu Q, Sun DZ.2004. Preparation and Certification of Re-Os Dating Reference Materials:Molybdenite HLP and JDC. Geostandard Newslett,28:41-52.
    Dupuy C. Dostal J.1984. Trace element geochemistry of some continental tholeiites[J]. Earth and Planetary Science Letters,67:61-69.
    Gehrels G E, Yin A and Wang X F.2003. Magmatic history of the northeastern Ttibetan Plateau. J. Geophys. Res.,108 (B9),2423, doi:10.1029/2002 JB001876.
    Hass JR,Shock EL and Sassani DC.1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare Earth elements at high pressures and temperatures[J]..Geochim et Cosmochim Acta,59(21):4329-4350.
    J.Vander Auwera and L.Andre.1991. Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources:evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy)[J]. Contrib Mineral Petrol,106:325-339.
    Le Maitre R.W.1986. A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram[J].. Australian J Earth Sci,31:243-255,
    Ludwig KR.2004. Isoplot/Ex, version 3.0:a geochronological toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, CA.
    Mao JW, Zhang Z, and Du AD.1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W(Mo) Deposit in the Northern Qulian Mountains and its Geological Significance[J]. Geochim. Cosmochim. Acta,63:1815-1818.
    Meinert L D.1992. Skams and skarn deposits[J].Geoscience Canada,19:145-162.
    Michael Bau.1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium.Chemical Geology[J].,93:219-230.
    Michael Bau.1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J].. Contrib Mineral Petrol,123:323-333.
    Michael Bau-Peter Dulski.1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J].. Contrib Mineral Petrol,119:213-223
    Miguel Gaspar, Charles Knack, Lawrence D. Meinert Roberto Moretti.2008. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta.72,185-205.
    Meschede M.1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, (56):207-218.
    Pearceg A.1984. A "users guide" to basalt discrimination diagrams [J]. Overseas Geology, 4:1-13.
    Selby D and Creaser RA.2004. Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdenite:Testing Spatial Restrictions for Reliable Re-Os Age Determinations and Implications for the Decoupling of Re and Os within Molybdenite[J]. Geochimica et Cosmochimica Acta,68(19):3897-3908.
    Shirey SB and Walker RJ.1995. Carius Tube Dgestion for Low-blank Rhenium-Osmium Analysis[J]. Anal. Chem.,67:2136-2141.
    Stein HJ, Markey RJ, Morgan JW, et al.1997. Highly Precise and Accurate Re-Os Ages for Molybdenite from the East Qinling Molybdenum Belt, Shanxi Province, China[J]. Econ.Geol.,92:827-835.
    Williams IS, Buick S and Cartwright I.1996. An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia[J]. J.Metamorph.Geol. 14(1):29-47.
    Williams IS.1998. U-Th-Pb geochronology by ion microprobe.Rev.Econ[J].Geol.,7:1-35.
    Winchester J.A. andFloyd P.A.,1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J], Chemical Geology,20:325-343.
    Wood D A.1980. The application of a Th-Hf-Nb diagram to problems of tectomagmatic classification and to establishing the nature of crustal contamination of the British Tertiary volcanic provinic[J]. Earth Plant Sci Lett,50:11-30.
    Wood head J D.1988, The Origin of Geochemical Variations in Mariana Lavas:A General Model for Petrogenesis in Intra-Oceanic Island Arcs?[J]. journal of pertrology,29:805-830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700