用户名: 密码: 验证码:
硅胶基质分离载体的功能化及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效分离载体是实现化学分离分析过程的核心部件,通常由表面结合特定功能基团的固相介质组成。多孔硅胶具有机械强度高,形貌可控,生物相容性好,表面活性基团丰富等特点,成为分离载体的理想基质材料。以硅胶为基质的有机基团功能化分离载体在色谱分离、污染物去除、工业催化等领域有着广泛的应用前景,因此研究硅胶的功能化新方法并开发它们在制药工业中的应用是当前药物分析领域的热点问题。本论文从多孔硅胶基质的功能化出发,研究了以多孔硅胶为基质的极性嵌入反相色谱固定相的合成,表征及应用;高惰性十八烷基键合硅胶色谱填料的合成及其色谱性能评价;多孔硅胶基质的巯基基团功能化新技术的开发;磁性多孔硅胶为基质的钯高效吸附剂的制备,表征及其应用。在发展环境友好、节能降耗的材料合成技术、开拓硅胶基质分离载体的应用领域,以及设计并制备具有特定用途的高性能分离载体等方面进行了初步尝试。论文主要内容如下:
     1、以多孔球型硅胶为基质,采用“一步法”成功制备了十八烷基酰胺、十八烷基尿素、十八烷基醚键和十八烷基氨基甲酸酯四种极性基团嵌入反相烷基色谱固定相,并以二氢麦角碱中的四种生物碱作为分离模型,研究了这四种色谱固定相的保留机理。采用该方法制备的十八烷基酰胺固定相,首次在中性流动相条件下实现了对四种生物碱的基线分离。与传统的向流动相中添加有机胺的方法相比,使用该十八烷基酰胺固定相可以大幅度的延长色谱柱的使用寿命,并能实现在温和的流动相条件下对碱性化合物进行有效的分离。
     2、自主开发了制备高惰性C18硅胶填料的新型气固相反应法。本方法不消耗有机溶剂,只需将C18键合硅胶填料和小分子硅烷试剂六甲基二硅氮烷(HMDS)的混合物置于高压釜中,在惰性气体保护下进行加热反应即可。本文系统考察了反应温度、HMDS用量、反应时间及封端次数对C18硅胶填料惰性化效果的影响。利用在优化的反应条件下封端处理过的C18硅胶填料在pH 7.0的流动相中对阿米替林(强碱性化合物)进行分离,其拖尾因子为1.30。而传统液相法封端处理过的C18硅胶填料对阿米替林具有较强保留,拖尾因子高达5.35;并且,Agilent Zorbax SB-C18和Kromasil C18两种商品化的C18硅胶填料(经过封端)对阿米替林的分离谱峰的拖尾因子也分别为2.04和1.91。上述结果表明C18硅胶填料表面残存硅羟基对碱性化合物的强保留作用,已通过对填料进行气固相封端处理得以有效的弱化;同时也显示,利用该方法封端处理过的C18硅胶填料的色谱性能已经超出国外同类产品;并且,与传统液相法相比,本方法简单快速,封端反应完全,制备批次间重复性好。
     3、自主开发了制备硅胶基质化学键合相填料的新型气固相反应法。本研究首次采用该方法将γ-巯丙基三甲氧基硅烷(MPTMS),γ-巯丙基三乙氧基硅烷(MPTES)和γ-巯丙基二甲氧基甲基硅烷(MPDMMS)三种巯丙基硅烷化学键合到多孔硅胶载体表面,并系统考察了反应温度、硅烷试剂用量、反应时间、催化剂及键合次数对巯丙基硅胶表面键合量的影响。优化后的反应条件下,MPTMS,MPTES和MPDMMS所修饰的多孔硅胶表面巯丙基键合率分别可达到2.76,2.53和2.57μmol·m-2,较通过传统液相法所修饰的多孔硅胶表面巯丙基的键合率1.90,1.08和1.60μmol·m-2有明显的优势。本文采用FT-IR,13C和29Si固体核磁,元素分析,热重分析,氮气吸附-脱附等技术研究了巯丙基硅胶的键合模式和孔结构。研究发现,该方法所制备的巯丙基多孔硅胶可用于Pd(II)离子的高效吸附。另外,采用该气固相化学键合反应制备了环氧丙基功能化硅胶,并考察了反应温度对其表面键合量的影响。本方法不仅降低了化学键合相填料的生产成本,而且后处理简单,有利于降低劳动强度,改善环境质量,为硅胶基质化学键合相填料的生产开辟了一条节能降耗,环境友好的绿色途径。
     4、以多孔磁性二氧化硅微球(MSM)复合材料为基质,采用气固相反应技术,首次制备了一种可磁分离的巯丙基功能化材料。此类材料兼备了多孔硅胶和磁性颗粒的优点,不仅具有较高的表面键合率,而且可以在液相介质中通过外置磁场进行很好的分离。利用此类材料不仅可以对离子进行快速而有效的吸附,所测定的吸附实验数据能很好地和Langmuir等温吸附模型相匹配;并且,在负载了Pd(II)离子后能通过外置磁场进行快速的分离。
chemical separation and can be normally prepared by attaching specific ligands to the surface of solid support. Porous silica supports, with the advantages of high mechanical strength, controllable morphology, good biocompatibility, abundant surface reactive groups, are ideal matrix materials of separation carriers. Silica-based separation carriers, which are functionalized with organic moleculars, have extensive application perspective in chromatographic resolution, scavenging pollutants and industrial catalysis. Therefore, pharmaceutical analysis area has been focusing on developing new functional methods of silica and their application in pharmaceutical industry. From the perspective of functionalization of silica matrix, in this thesis, preparation, characterization and application of polar embedded alkyl phases based on porous silica matrix were studied; highly deactivated octadecyl bonded silica packing was prepared and its chromatographic performance was evaluated; a new technology of functionalization for the preparation of mercaptopropyl ligands grafted porous silica was developed; preparation, characterization and application of efficient absorbents of palladium based on porous magnetite/silica matrix were studied. Some proposals such as developing environmental benign and economic technology for synthesis of materials, exploiting the application area of silica-based separation carriers, designing and preparation of high performance separation carriers with specific application, were attempted originally. The main research results are listed as follows:
     1、Four kinds of polar embedded octadecyl (C18) phases, C18 amide, C18 urea, C18 ether and C18 carbamate, were prepared successfully by single-step silylation process using porous silica microspheres as matrix. The retention mechanism of four kinds of polar embedded C18 phases were studied by using the four components of dihydroergotoxine as a model of separation. And the baseline separation of the four components was achieved on C18 amide phase under a neutral mobile phase for the first time. In comparison with traditional methods, which triethylamine was added to the mobile phase as modifier, the method described here offer several advantages such as improving the separation performance of basic compounds and prolonging the service-time of HPLC column. The results showed that the stationary phase could be efficiently used for the separation of basic compounds under a neutral mobile phase. 2、A novel gas-solid reaction method for the preparation of highly deactivated octadecyl (C18) bonded silica packing was developed independently. By this method, the highly deactivated C18 bonded silica packing can be obtained conveniently by high temperature treatment of the mixture of C18 bonded silica and endcapping reagent of hexamethyldisilazane (HMDS) added to an autoclave under the protection of the inert gas. Effects of reaction temperature, HMDS amount, reaction time and times of endcapping on endcapping reaction were systematically studied. Tailing factor value of amitriptyline on endcapped C18 silica by gas-solid phase procedure under an optimal reaction condition, endcapped C18 silica by liquid-phase method, two kinds of commercial C18 bonded silica Agilent Zorbax SB-C18 and Kromasil C18 were 1.30, 5.35, 2.04 and 1.91, respectively, under pH 7.0 mobile phase. This shows that the undesirable silanol of C18 bonded silica has been deactivated successfully by gas-solid phase reaction and the performance of endcapped product had surpassed commercial products. In comparison with liquid-phase procedure, this method is simple, effective and a complete endcapping and good reproducibility of inter-batch preparation can be obtained.
     3、A novel gas-solid reaction method for the preparation of chemically bonded silica packing was developed independently, which involves the modification of porous silica via gas-solid reaction procedure carried out in an autoclave with trifunctionalγ-mercaptopropyltrimethoxysilane,γ-merecaptopropyltriethoxysilane and bifunctionalγ-mercaptopropyldimethoxymethylsilane, respectively. Effects of reaction temperature, amount of silanes reagent, reaction time, catalyst and reaction times on surface coverage of mercaptopropyl group were systematically studied. Mercaptopropyl surface coverage of MPTMS, MPTES and MPDMMS modified silica by gas-solid reaction method under an optimal reaction condition were 2.76,2.53 and 2.57μmol·m-2, respectively. However, MPTMS, MPTES and MPDMMS modified silica by liquid-phase procedure only show 1.90,1.08 and 1.60μmol·m-2 surface coverage of mercaptopropyl ligands. The bonding mode and pore structure of the resultant products were characterized by FT-IR, solid state 13C and 29Si nuclear magnetic resonance, elemental analysis, TGA, nitrogen adsorption-desorption, respectively. The thiol functional silica was efficient for the removal of Pd(II) ions. In addition, glycidoxypropyl functional silica was also prepared via gas-solid phase silylation reaction and the effect of reaction temperature on surface coverage of glycidoxypropyl groups was inspected. More importantly, gas-solid reaction method reduces the cost of production of chemically bonded silica phases packing and the intensity of physical work with a simple post treatment. Therefore, this method described here offer an economic and environmental benign approach for mass production of chemically bonded silica packing.
     4、Magnetically recoverable mercaptopropyl functional materials of combining the advantages of porous silica and magnetic particles were prepared successfully by vapor phase deposition using uniform porous magnetite/silica microspheres (MSM) as matrix for the first time. As-prepared mercaptopropyl functional materials have higher surface coverage and their separation in liquid media can be controlled well by magnetic fields. Palladium adsorption on thiol functionalized absorbents is a fast and efficient process and very low levels of residual Pd (II) ions content can be achieved. Langmuir isotherms have been fitted to experimental palladium adsorption data very well, palladium (II) loaded the mercaptopropylsilanes modified absorbents can be separated quickly using an external magnetic field.
引文
[1] Unger K. K., Porous Silica, Amsterdam: Elsevier, 1979, Packing and Stationary Phases in Chromatographic Thchniques, New York: Marcel Ddkker, 1990
    [2]杨新立,王俊德,熊博晖,高效液相色谱用硅质填料的进展,色谱,2000, 18(4): 308~312
    [3] Nawrocki J., The silanol group and its role in liquid chromatography, J. Chromatogr. A, 1997, 779(1-2): 29~71
    [4] Van Der Voort P., Gillis-D’Hamers I., Vansant E. F., Estimation of the distribution of surface hydroxyl groups on silica gel, using chemical modification with trichlorosilane, J. Chem. Soc. Faraday Trans., 1990, 86(22): 3751~3755
    [5] Gillis-D’Hames I., Cornelissens I., Vrancken K. C., et al., Modelling of the hydroxyl group population using an energetic analysis of the temperature-programmed desorption of pyridine from silica gel, J. Chem. Soc. Faraday Trans., 1992, 88(5): 723~727
    [6] Van Der Voort P., Vansant E. F., Silylation of the silica surface: A review, J. Liq. Chromatogra. Rel. Technol., 1996, 19: 2723~2752
    [7] Kirkland J. J., Controlled surface porosity supports for high-speed gas and liquid chromatography, Anal. Chem., 1969, 41(1): 218~220
    [8]邹汉法,张玉奎,卢佩章,高效液相色谱法,科学出版社,北京,1998: 1~41
    [9] Arkles B., Tailoring surfaces with silanes, Chem.Tech., 1977, 7: 766~770
    [10] Moon J. H., Shin J. W., Kim S. Y., et al., Formation of uniform aminosilane thin layers: An imine formation to measure relative surface density of the amine group, Langmuir, 1996,12(20): 4621~4624
    [11] Moon J. H., Kim J. H., Kim K.-J., et al., Absolute surface density of the amine group of the aminosilylated thin layers: ultraviolet?visible spectroscopy, second harmonic generation, and synchrotron-radiation photoelectron spectroscopy study, Langmuir, 1997, 13(16): 4305~4310
    [12] Rye R., Nelson G., Dugger M., Mechanistic aspects of alkylchlorosilane coupling reactions, Langmuir, 1997, 13(11): 2965~2972
    [13] Gilpin R. K., Korpi J. A., Janicki C. A., On-column preparation of bonded phases for high pressure liquid chromatography, Anal. Chem., 1974, 46(9): 1314~1316
    [14] Wirth M. J., Fatunmbi H. O., Horizontal polymerization of mixed trifunctional silanes on silica: a potential chromatographic stationary phase, Anal. Chem., 1992, 64(22): 2783~2786
    [15] Wasserman S. R., Whitesides G. M., Tidswell I. M., et al., The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle x-ray reflectivity, J. Am. Chem. Soc., l989,111(15): 5852~5861
    [16] Healy L. O., Owens V. P., O’Mahony T., et al., Supercritical fluid generated stationary phases for liquid chromatography and capillary electrochromatography, Anal. Chem., 2003, 75(21): 5860~5869
    [17] Yarita T., Nomura A., Horimoto Y., et al., In situ silylation of silica-based packings using supercritical fluid as reaction medium, J. Chromatogr. A, 1996, 724: 373~377
    [18] Welsch T., Engewald W., Klaucke C., Deactivation of glass capillary columns by silanization, Chromatographia, 1977, 10(1): 22~24
    [19] Khong T. M., Simpson C. F., Novel method for the preparation of chemically bonded phases and studies of their chromatographic performance, Chromatographia, 1987, 24: 385~394
    [20] Mauss M., Engelhardt H., Thermal treatment of silica and its influence on chromatographic selectivity, J. Chromatogr., 1986, 371(2): 235~242
    [21] K?hler J., Kirkland J. J., Improved silica-based column packings for high-performance liquid chromatography, J. Chromatogr. A, 1987, 385(1): 125~150
    [22]刘国诠,余兆楼,色谱柱技术,化学工业出版社,北京,2001:162~169
    [23] Buszewski B., Effect of destruction of chemically bonded reversed phases by hexamethyldisilazane duing end-capping, Chromatographia, 1989, 28(11-12): 574~578
    [24] Yarita T., Ihara T., Horimoto Y., et al., Endcapping of octadecylsilyl-silica gels using supercritical fluid as reaction medium, Anal. Sci., 1999, 15(4): 377~380
    [25] Sudo Y., End-capping of octadecylsilylated silica gels by high-temperature silylation, J. Chromatogr. A, 1996, 737(2): 139~147
    [26] Sudo Y., Optimization of end-capping of octadecyl-silylated silica gels by high-temperature silylation, J. Chromatogr. A, 1997, 757(1): 21~28
    [27] Tedder L. L., Lu G., Crowell J. E., Mechanistic studies of dielectric thin film growth by low pressure chemical vapor deposition: The reaction of tetraethoxysilane with SiO2 surfaces, J. Appl. Phys., 1991, 69(10): 7037~7049
    [28] Ferguson J. D., Smith E. R., Weimer A. W., et al., ALD of SiO2 at room temperature using TEOS and H2O with NH3 as the catalyst, J. Electrochem. Soc., 2004, 151(8): G528~G535
    [29] White L. D., Tripp C. P., A Low-Frequency Infrared Study of the Reaction of Methoxymethylsilanes with Silica, J.Colloid Interf. Sci., 2000, 224(2): 417~424
    [30] Dubois L. H., Zegarski B. R., Bonding of alkoxysilanes to dehydroxylated silica surfaces: a new adhesion mechanism, J. Phys. Chem., 1993, 97(8): 1665~1770
    [31] Hoffmann P. W., Stelzle M., Rabolt J. F., Vapor phase self-assembly of fluorinated monolayers on silicon and germanium oxide, Langmuir, 1997, 13(7): 1877~1880
    [32] Hertl W., Mechanism of gaseous siloxane reaction with silicaⅠ, J. Phys. Chem.,1968, 72(4): 1248~1253
    [33] Dubois L. H., Zegarski B. R., Reaction of alkoxysilane coupling agents with dehydroxylated silica surfaces, J. Amer. Chem. Soc., 1993, 115(3): 1190~1191
    [34] Wikstr?m P., Mandenius C. F., Larsson P.-O., Gas phase silylation, a rapid method for preparation of high-performance liquid chromatography supports, J. Chromatogr., 1988, 455: 105~117
    [35] Sugimura H., Hozumi A., Kameyama T., et al., Organosilane self-assembled monolayers formed at the vapour/solid interface, Surf. Interface Anal., 2002, 34(1): 550~554
    [36] Doppelt P., Stelzle M., Selective metallization of silica surfaces by copper CVD using a chemical affinity pattern created by gas phase silylation and UV exposure, Microelectron. Eng., 1997, 33(1-4): 15~23
    [37] Hertl W., Mechanism of gaseous siloxane reaction with silica, II. J. Phys. Chem., 1968, 72(12): 3993~3997
    [38] Sever R. R., Alcala R., Dumesic J. A., et al., Vapor-phase silylation of MCM-41 and Ti-MCM-41, Micropor. Mesopor. Mater., 2003, 66(1): 53~67
    [39] Kurth D. G., Bein T., Surface reactions on thin layers of silane coupling agents, Langmuir, 1993, 9(11): 2965~2973
    [40] Haller I., Covalently attached organic monolayers on semiconductor surfaces, J. Amer. Chem. Soc., 1978, 100(26): 8050~8055
    [41] Juvaste H., Iiskola E. I., Pakkanen T. T., Preparation of new modified catalyst carriers, J. Molec. Catal. A, 1999, 150(1-2): 1~9
    [42] Basiuk V. A., Chuiko A. A., Gas-phase synthesis, properties and some applications of acylamide stationary phases for high-performance liquid chromatography, J. Chromatogr., 1990, 521(1): 29~42
    [43] Basiuk V. A., Khil’chevskaya E. G., Gas-phase acylation of aminopropyl-silica gel in the synthesis of some chemically bonded silica materials for analytical applications, Anal. Chim. Acta., 1991, 255(1): 197~205
    [44] Juvaste H., Iiskola E. I., Pakkanen T. T., Aminosilane as a coupling agent for cyclopentadienyl ligands on silica, J. Organomet. Chem., 1999, 587(1): 38~45
    [45] White L. D., Tripp C. P., Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces, J.Colloid Interf. Sci., 2000, 232(2): 400~407
    [46] Soliman E. M, Saleh M. B., Ahmed S. A., New solid phase extractors for selective separation and preconcentration of mercury (II) based on silica gel immobilized aliphatic amines 2-thiophenecarboxaldehyde Schiff’s bases. Anal. Chim. Acta., 2004, 523(1): 133~140
    [47] Silva E. L, Maritns A. O.,Valentini A., et al., Application of silica gel organofunctionalized with 3(1-imidazolyl)propyl in an on-line preconcentration system for the determination of copper by FAAS, Talanta, 2004, 64(1): 181~189
    [48] Bianco A., Gasparrini F., Michele M., et al., Molecular recognition by a silica-bound fullerene derivative, J. Amer. Chem. Soc., 1997, 119(32):7550~7554
    [49] Garrett C. E., Prasad K., The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions, Adv. Synth. Catal. 2004, 346: 889~900
    [50] Mercier L., Pinnavaia T. J., Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater., 1997, 9(6): 500~503
    [51] Kang T., Park Y., Yi J., Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica, Ind. Eng. Chem. Res., 2004, 43(6): 1478~1484
    [52]王俊徳,商振华,郁蕴璐,高效液相色谱法,北京,中国建筑工业出版社,1992:107~139
    [53]杨柄华,樊立民,魏芸等,二乙烯苯与乙烯基吡咯烷酮共聚硅质填料的制备及对蛋白质的分离,分析化学,1998, 26(10): 1267~1270
    [54] Nimura N., Itoh H., Kinoshita T., et al., Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded non-porous silica gel: Effect of particle size of column packing on column efficiency, J. Chromatogr., 1991, 585(2): 207~211
    [55] Hyun M. H., Han S. C., Lee C.W., et al., Preparation and application of a new ligand exchange chiral stationary phase for the liquid chromatographic resolution ofα-amino acid enantiomers, J. Chromatogr. A, 2002, 950(1-2): 55~63
    [56]绳金房,宋燕玲,杨欣,HPLC法测定复方氨苄西林丙磺舒胶囊中氨苄西林和丙磺舒的含量,药物分析杂志,2004, 24(4): 411~414
    [57]柏正武,吴小聪,程志斌,1-萘氨基甲酸酯β-环糊精手性固定相的合成及其手性分离特性,分析科学学报,2004, 20(4): 379~381
    [58] Sadek P. C., Koester C. J., Bowers L. D., Investigation of the influence of trace metals in chromatographic retention processes, J. Chromatogr. Sci., 1987, 25(11): 489~493
    [59] Wirth M. J., Fatunmbi H. O., Horizontal polymerization of mixed trifunctional silanes on silica: a potential chromatographic stationary phase, Anal. Chem., 1992, 64(22): 2783~2786
    [60] Hirayama C., Ihara H., Mukai T., Lipid membrane analogs. Specific retention behavior in comb-shaped telomer-immobilized porous silica gels, Macromolecules, 1992, 25(23): 6375~6376
    [61]王萍,王俊德,从润滋,用于碱性物质分离的高效液相色谱键合相的制备及评价,色谱,1997, l5(3): 189~192
    [62] Kirkland J. J., Glajch J. L., Farlee R. D., Synthesis and characterization of highly stable bonded phases for high-performance liquid chromatography column packings, Aanl. Chem., 1989, 61(1): 2~11
    [63] Jaroniec C. P., Gilpin R. K., Jaroniec M., Comparative studies of chromatographic properties of silica-based amide-bonded phases underhydro–organic conditions, J. Chromatogr. A, 1998, 797(1-2): 103~110
    [64] Ascah T. L., Kallury K. M. L., Szafranski C. A., et al., Characterization and high performance liquid chromatographic evaluation of a new amide-functionalized reversed phase column, J. Liq. Chromatogr. R. T., 1996, 19(17-18): 3049~3073
    [65] Buszewski B., Jaroniec M., Gilpin R. K., Influence of eluent composition on retention and selectivity of alkylamide phases under reversed-phase conditions, J. Chromatogr. A, 1994, 668(2): 293~299
    [66] O’Gara J. E., Alden B. A., Walter T. H., et al., Simple preparation of a C8 HPLC stationary phase with an internal polar functional group, Anal. Chem., 1995, 67(20): 3809~3813
    [67] O’Gara J. E., Walsh D. P., Phoebe C. H., et al., Embedded-polar-group bonded phases for high performance liquid chromatography, LC-GC, 2001, 19(6): 632~642
    [68] Silva C. R., Bachmann S., Schefer R. R., et al., Preparation of a new C18 stationary phase containing embedded urea groups for use in high-performance liquid chromatography, J. Chromatogr. A, 2002, 948(1-2): 85~95
    [69] Silva C. R., Jardim I. C. S. F., Airoldi C., New generation of sterically protected C18 stationary phases containing embedded urea groups for use in high-performance liquid chromatography, J. Chromatogr. A, 2003, 987(1-2): 127~138
    [70] Liu X., Bordunov A., Tracy M., et al., Development of a polar-embedded stationary phase with unique properties, J. Chromatogr. A, 2006, 1119(1-2): 120~127
    [71] Layne J., Characterization and comparison of the chromatographic performance of conventional, polar-embedded, and polar-endcapped reversed-phase liquid chromatography stationary phases, J. Chromatogr. A, 2002, 957(2): 149~164
    [72] Wilson N. S., Gilroy J., Dolan J. W., et al., Column selectivity in reversed-phase liquid chromatography VI columns with embedded or end-capping polar groups, J. Chromatogr. A, 2004, 1026(1-2): 91~100
    [73] Przybyciel M., Majors R. E., Phase collapse in reversed-phase liquid chromatography, LC-GC, 2002, 20(6): 516~520
    [74] Nomura A., Yamada J., Tsunoda K., Acylation of aminopropyl-bonded silica gel for liquid chromatography, Analytical Sciences, 1987, 3: 209~212
    [75]黄晓佳,刘莺,丛润滋等,用于碱性物质分离的酰胺型反相色谱键合相的制备及评价,色谱,2001,19(4): 293~296
    [76] Carabias-martinez R., Rodriguez-gonzalo E., Smith N. W., et al., Use of a polar-embedded stationary phase for the separation of tocopherols by CEC, Electrophoresis, 2006, 27: 4423~4430
    [77] Czajkowska T., Hrabowsky L., Buszewski B., et al., Comparison of the retention of organic acids on alkyl and alkylamide chemically bonded phases, J. Chromatogr. A, 1995, 691(1-2): 217~224
    [78] Kasturi P., Buszewski B., Jaroniec M., et al., Reordering/resonation studies of alkylamide phases, J. Chromatogr. A, 1994, 659(2): 261~265
    [79] Buszewski B., Jaroniec M., Gilpin R. K., Studies of physicochemical and chromatographic properties of mixed amino-alkylamide bonded phases, J. Chromatogr. A, 1994, 673(1): 11~19
    [80] Silva C. R., Airoldi C., Process of preparation of new alkoxysilanes with polar urea groups, Brazilian Patent PI, 1999, 9903110-8
    [81] Silva C.R., Airoldi C., Collins K. E., et al., Preparation and characterization of a new C18 urea phase based on titanized silica, J. Chromatogr. A, 2005, 1087: 29~37
    [82] Stoffregen S. A., Griffin A. K. K., Kostic N. M., Thioether complexes of palladium(II) and platinum(II) as artificial peptidases. Residue-selective peptide cleavage by a palladium(II) complex, Inorg. Chem., 2005, 44(24): 8899~8907
    [83]何国亮,达世禄,王忠华,键合硅胶固定相表面上α-环氧基的测定及硅胶键合反应研究,色谱,1993, 11(4): 232~234
    [84] Wadworth A. N., Chrisp P., Codergocrine mesylate, a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in agerelated cognitive decline, Drugs Aging, 1992, 2: 153~173
    [85] Berde B., Schild H. O., Ergot alkaloids and related compounds. Handbook of experimental pharmacology, 1978, 49: 321~317
    [86] Hartman V., Rodiger M., Ableidingcr W., et al., Dihydroergotoxine: separation and determination of four components by high-performance liquid chromatography, J. Pharm. Sci., 1978, 67(1): 98~103
    [87] Unger K. K., Becker N., Roumeliods P., Recent developments in the evaluation of chemically bonded silica packings for liquid chromatography, J. Chromatogr., 1976, 125(1): 115
    [88] Pryde A., J. Chromatogr. Sci., 1974, 12: 486~498
    [89] Majors R. E., Hopper M. J., Siloxane phases bonded to silica gel for use in high-performance liquid chromatography, J. Chromatogr. Sci., 1974, 12(12): 767~778
    [90] Lochmüller C.H., Marshall D.B., The effect of end-capping reagent on liquid chromatographic performance, Anal. Chim. Acta., 1982, 142: 63~72
    [91] Kimata K., Tanaka N., Araki T., Suppression of the effect of metal impurities in alkylsilylated silica packing materials, J. Chromatogr., 1992, 594(1-2): 87~96
    [92] Nawrocki J., Moir D. L., Szczepaniak W., Trace metal impurities in silica as a cause of strongly interacting silanols, Chromotographia, 1989, 28(3-4): 143~147
    [93] Lobert T., Engerlhardt H., Chromatographic determination of metallic impurities in reversed-phase HPLC columns, Anal. Chem., 1999, 71(9): 1885~1892
    [94] Buszewski B., Influence of silica gel surface purity on the coverage density of chemically bonded phases, Chormatographia, 1992, 34(11-12): 573~580
    [95] Lesainta C., Frébaulta F., Delac?teb C., et al., Synthesis and characterization ofmesoporous silicas functionalized by thiol groups, and application as sorbents for mercury (II), Stud. Surf. Sci. Catal., 2005, 156: 925~932
    [96] Etiennea M., Sayena S., Lebeaub B., et al., Organically-modified mesoporous silica spheres with MCM-41 architecture as sorbents for heavy metals, Stud. Surf. Sci. Catal., 2002, 141: 615~622
    [97] Scully N. M., O’Sullivan G. P., Healy L. O., et al., Preparation of a mercaptopropyl bonded silica intermediate in supercritical carbon dioxide: Synthesis, characterisation and chromatography of aquinine based chiral stationary phase, J. Chromatogr. A, 2007, 1156: 68~74
    [98] Ledung G., Bergkvist M., Quist A. P., et al., A novel method for preparation of disulfides on silicon, Langmuir, 2001, 17(20): 6056~6058
    [99] Vallea L., Díaz C., Zanoccoc A. L., et al., Determination of the sum of malachite green and leucomalachite green in salmon muscle by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry, J. Chromatogr. A, 2005, 1067(1-2): 101~105
    [100] Melero J. A., Grieken R. V., Morales G., Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials, Chem. Rev., 2006, 106(9): 3790~3812
    [101] Ganesan V., Walcarius A., Surfactant templated sulfonic acid functionalized silica microspheres as new efficient ion exchangers and electrode modifiers, Langmuir, 2004, 20(9): 3632-3640
    [102] Chang S. H., Gooding K. M., Regnier F. E., Use of oxiranes in the preparation of bonded phase supports, J. Chromatogr., 1976, 120(2): 321~333
    [103] Chang J.-P., Rassi Z. E., Horva’th C., Silica-bound polyethyleneglycol as stationary phase for separation of proteins by high-performance liquid chromatography, J.Chromatogr., 1985, 319: 396~399
    [104]刘武平,达世禄,缩乙二醇双羟基新型键合固定相的合成及性能研究,高等学校化学学报,1991, 12(7): 976~978
    [105] Vansant E. F., Van Der Voort P., Vrancken K. C., Characterization and chemical modification of the silica surface. Elsevier: Amsterdam 1995, 93 Chapters 8 and 9
    [106] Welsch T., Frank H., A study in high-temperature silylation of silica, J. High Resolut. Chromatogr., 1985, 8(11): 709~714
    [107] Simpson C. F., Khong T. M., Novel method for the preparation of chemically bonded phases and studies of their chromatographic performance, Chromatographia, 1987, 24(1): 385~394
    [108] Suntola T., Atomic layer epitaxy, Mater. Sci. Rep., 1989, 4(5): 261~312
    [109] Arakaki L. N. H., Augusto Filha V. L. S., Espínola, J. G. P., et al., New thiol adsorbent grafted on silica gel: synthesis, characterization and employment for heavy metal adsorptions, J. Environ. Monit., 2003, 5(2): 366~370
    [110] Albert K., Bayer E., Characterization of bonded phases by solid-state NMRspectroscopy, J. Chromatogr., 1991, 544: 345~370
    [111] Pfleiderer B., Albert K., Bayer E., Investigations by 29Si cross-polarization magic angle spinning NMR spectroscopy of reaction pathways of silica gel polyfunctional modification, J. Chromatogr., 1990, 506: 343~355
    [112] Ek S., Iiskola E. I., Niinist? L., A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-depositedγ-aminopropylalkoxysilanes on heat-treated silica, J. Phys. Chem. B, 2004, 108(31): 11454~11463
    [113] Mercier L., Detellier C., Preparation, characterization, and applications as heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite, Environ. Sci. Technol., 1995, 29(5): 1318~1323
    [114] Aguado J., Arsuaga J. M., Arencibia A., Adsorption of aqueous mercury(II) on propylthiol-functionalized mesoporous silica obtained by cocondensation, Ind. Eng. Chem. Res., 2005, 44(10): 3665~3671
    [115] Antochshuck V., Olkhovyk O., Jaroniec M., et al., Benzoylthiourea-modified mesoporous silica for mercury(II) removal, Langmuir, 2003, 19(7): 3031~3034
    [116] Kruk M., Jaroniec M., Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater., 2001, 13(10): 3169~3183
    [117] Welch C. J., Albaneze-Walker J., Leonard W. R., et al., Adsorbent screening for metal impurity removal in pharmaceutical process research, Org. Process Res. Dev., 2005, 9(2): 198~205
    [118] Lu A.-H., Li W.-C., Kiefer A., et al., Fabrication of magnetically separable mesostructured silica with an open pore system, J. Am. Chem. Soc., 2004, 126(28): 8616~8617
    [119] Yang H.-H., Zhang S.-Q., Chen X.-L., et al., Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations, Anal. Chem., 2004, 76(5): 1316~1321
    [120] Hai B., Wu J., Chen X., et al., Metal-ion adsorption on carboxyl-bearing self-assembled monolayers covalently bound to magnetic nanoparticles, Langmuir, 2005, 21(7): 3104~3105
    [121] Chang Y.-C., Chen D.-H., Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid Interface Sci., 2005, 283(2): 446~451
    [122] Guo Y., Wang Y., Yang Q.-X., et al., Preparation and characterization of magadiite grafted with an azobenzene derivative, Solid State Sci., 2004, 6(9): 1001~1006
    [123] Ek S., Iiskola E. I., Niinist? L., Gas-phase deposition of aminopropylalkoxysilanes on porous silica, Langmuir, 2003, 19(8): 3461~3471
    [124] Fadeev A. Y., McCarthy T. J., Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis, Langmuir, 1999, 15(11): 3759~3766
    [125] Slavov S. V., Sanger A. R., Chuang K. T., Mechanism of silation of Silica withhexamethyldisilazane, J. Phys. Chem. B, 2000, 104(5): 983~989
    [126] Wikstr?m P., Mandenius C. F., Larsson P.-O., Gas phase silylation, a rapid method for preparation of high-performance liquid chromatography supports, J. Chromatogr., 1988, 455: 105~117
    [127] Zhang Z. C., Zhang L. M., Chen L., et al., Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA, Biotechnol. Prog., 2006, 22(2): 514~518
    [128] Kruk M., Jaroniec M., Gas adsorption characterization of ordered organic -inorganic nanocomposite materials, Chem. Mater, 2001, 13(10): 3169~3183
    [129] Zhang L., Chen L., Wan Q. H., Preparation of uniform magnetic microspheres through hydrothermal reduction of Iron hydroxide nanoparticles embedded in a polymeric matrix, Chem. Mater., 2008, 20(10): 3345~3353
    [130] Caruntu D., Caruntu G., Chen Y. X., et al., Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity, Chem. Mater, 2004, 16(25): 5527~5534
    [131] Hu J., Chen G.-H., Lo I. M. C., Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res., 2005, 39(18): 4528~4536
    [132] Mercier L., Pinnavaia T. J., A functionalized porous clay heterostructure for heavy metal ion (Hg2+) trapping, Micropor. Mesopor. Mater., 1998, 20(1-3): 101~106
    [133] Wang S.-X., Zhou Y., Guan W., et al., One-step copolymerization modified magnetic nanoparticles via surface chain transfer free radical polymerization, Appl. Surf. Sci., 2008, 254(16): 5170~5174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700