用户名: 密码: 验证码:
基于非局部弹性理论的微纳米质量传感器振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管、石墨烯等纳米尺度下的材料和结构具有尺度小,密度小,刚度大,强度高,对周围环境特别敏感等特性,可用于细菌、病毒、气体分子等原子级质量的探测,在微纳米质量传感器方面具有广阔的应用前景。碳纳米管/石墨烯作为原子级质量传感器,主要利用其固有频率的改变量来探测附加质量,因此,研究其振动特性具有重要的理论意义和实际应用价值。本文研究工作的重点是建立适用于弹性模量具有尺度效应的碳纳米管/石墨烯等微纳米质量传感器振动特性分析的非局部弹性理论模型,并采用分布参数传递函数方法(以下简称传递函数方法)或Galerkin方法对其进行求解。主要研究内容如下:
     建立了单壁碳纳米管(SWCNT)质量传感器振动特性分析的非局部Euler梁模型。利用携带集中质量的非局部Euler梁模型模拟含附加质量的SWCNT质量传感器,考虑悬臂和两端固支两种支撑方式,得到了含附加质量的SWCNT振动特性分析的传递函数解。进一步,考虑轴向预应力的影响,建立了两端固支SWCNT屈曲分析和振动特性分析的传递函数求解模型。讨论了非局部效应、附加质量、支撑方式以及轴向预应力对SWCNT固有频率和频率漂移的影响。研究表明,碳纳米管质量传感器的灵敏度可以达到10-21g。
     建立了双壁碳纳米管(DWCNT)质量传感器振动特性分析的非局部Euler梁模型。利用带集中质量的两根相互嵌套的非局部Euler梁模拟含附加质量的DWCNT质量传感器,内外管之间的范德华力由线弹簧模拟,分别得到了含附加质量的内外管长度不同的悬臂DWCNT、以及两端固支DWCNT振动特性分析的传递函数解。此外,对内外管受不同轴向预应力的两端固支DWCNT进行了稳定性分析,在此基础上,讨论了内外管不同预应力对两端固支DWCNT固有频率和频率漂移的影响。
     建立了SWCNT质量传感器振动特性分析的非局部Timoshenko梁模型。考虑横截面剪切变形和转动惯量的影响,通过含集中质量的非局部Timoshenko梁模拟携带附加质量的SWCNT质量传感器,采用传递函数方法得到了悬臂和两端固支SWCNT的固有频率。分析比较了Timoshenko梁模型和Euler梁模型在SWCNT振动特性分析中的差异性。研究表明,Timoshenko梁模型能更精确地模拟SWCNT的振动,对短粗SWCNT或SWCNT高阶模态的影响尤为突出。
     建立了多壁碳纳米管(MWCNT)质量传感器振动特性分析的非局部Timoshenko梁模型。基于非局部Timoshenko理论,推导了含附加质量的内外管长度不同悬臂DWCNT以及两端固支DWCNT振动特性分析的传递函数解。考虑端部附加质量转动惯量的影响,利用传递函数方法,得到了悬臂MWCNT传感器的固有频率,结果可应用于生物传感器的病毒辨识。比较分析了单壁和双壁Timoshenko模型,以及Timoshenko梁模型和Euler梁模型在DWCNT振动特性分析中的差异性。研究表明,附加质量转动惯量降低了悬臂MWCNT的基频。
     建立了单层石墨烯(SLGS)质量传感器振动特性分析的非局部Kirchhoff板模型。基于非局部Kirchhoff板理论,分别在直角坐标系和柱坐标系下推导了含附加质量的矩形和圆形SLGS质量传感器的控制方程,考虑简支和固支两种支撑方式,利用Galerkin近似方法进行求解。研究了非局部参数、附加质量以及SLGS形状对系统基频和频率漂移的影响。
     由于纳米尺度下结构和材料的弹性模量具有尺度效应,经典理论不能诠释这一现象。本文将非局部弹性理论成功用于碳纳米管/石墨烯微纳米质量传感器的振动特性分析,并将传递函数方法和Galerkin近似方法的应用范围拓展到了微纳米力学领域。相关结论可为微纳米质量传感器的设计提供理论依据和参考价值。
Materials and structures at nano scale such as carbon nanotubes and graphenesheets, have small scale, low weight, extremely high rigidity as well as high intensity,and are highly sensitive to their environment change. Therefore, they are very promisingcandidates as atomic-resolution mass sensors that are used to detect the micro-masssuch as bacteria, virus or molecule of some gas. The principle of mass detection usingthe nanosized mass sensor from a vibration analysis is in quantifying the change in itsresonant frequency due to added mass. Therefore, the study of the vibrationcharacteristic of carbon nanotubes/graphenes based mass sensor is significant both intheory and in practical application. The emphasis of this dissertation is to establishtheoretical models suiting for dynamic behaviors of micro/nano-mass sensor. Themodels are based on nonlocal elasticity theory, which captures scale-dependent elasticmodulus of carbon nanotubes/graphenes. The transfer function method(TFM) orGalerkin method is used to solve the governing equations. The main achievements aresummarized as follows:
     The nonlocal Euler beam model is established to analyze the vibrationcharacteristics of single-walled carbon nanotube(SWCNT) based mass sensor. ASWCNT mass sensor carrying an attached micro-mass is modeled as a nonlocal Eulerbeam with a concentrated mass. Taking into account the support conditions ofcantilevers and clamped-clamped beams, the governing equations are solved by TFM.Furthermore, the critical buckling stress and natural frequencies of the SWCNT basedsensors under initial axial stress are computed using TFM. The effects of nonlocalparameter, attached mass, support condition and axial stress on the natural frequenciesand frequency shifts are discussed. The obtained results show that the mass sensitivityof the carbon nanotube based mass sensor can reach at least10-21g.
     Nonlocal Euler beam model for vibration characteristic analysis of double-walledcarbon nanotube (DWCNT) based mass sensor is established. The DWCNT mass sensorcarrying a nanoparticle is modeled as two nonlocal Euler-Bernoulli beams, and theinteraction between two tubes is governed by van der Waals force. The nonlocal Eulerbeam theory and TFM are used to analyze the vibration characteristic of cantilever andclamped-clamped DWCNT with different inner and outer wall lengths. Moreover, theeffect of different initial axial stress in inner tubes and outer tubes on the naturalfrequencies and frequency shift of clamped DWCNT based sensor is discussed.
     A nonlocal Timoshenko beam model is established to analyze the dynamicbehavior of SWCNT based mass sensor. Taking into account the effects of sheardeformation and rotary inertia, the nonlocal Timoshenko beam model with aconcentrated mass is used to model a SWCNT sensor with an attached micro-mass. The natural frequencies are computed by the TFM. The difference of the vibrationcharacteristic of SWCNT according to the theories of Timoshenko beams and of Eulerbeams is analyzed. The results show that Timoshenko beam model is more adequatethan Euler beam model, especially for short beams or higher-order vibration modes.
     Nonlocal Timoshenko beam model for vibration characteristic of multiwall-walledcarbon nanotubes(MWCNT) based mass sensor is established. Based on the nonlocalTimoshenko beam model, TFM is used to obtain the natural frequencies of theclamped-free and clamped-clamped DWCNT with different inner and outer wall lengths.The natural frequencies of a MWCNT-based biosensor carrying a spherical nanoscalebio-object at the free end are calculated using the nonlocal Timoshenko beam theoryand TFM. The influence of the rotary inertia of the bio-object itself is considered. Thedifference between single-walled and double-walled Timoshenko model, as well as theTimoshenko and Euler beam theory in vibration of DWCNT based mass sensor isanalyzed. The results show that the rotary inertia decreases the fundamental frequenciesof MWCNT based biosensor.
     The nonlocal Kirchhoff plate model is established for vibration characteristic ofsingle-layered graphene sheet (SLGS) based mass sensor. Using the nonlocal Kirchhoffplate theory, the dynamic governing equations of the rectangle and circular SLGS withan attached micro-mass is derived under Cartesian coordinate system and cylindricalcoordinate system, respectively. The Galerkin method is used to obtain the naturalfrequencies. In the analysis, the clamped and simply supported support conditions areboth considered. The effect of nonlocal parameter, attached mass and the shape ofSLGS on the natural frequency are discussed.
     The elastic modulus of materials and structures at nano scale exhibits strongscale-dependent property, and this property cannot be interpreted by the classicalcontinuum mechanics approach. In the present dissertation, the nonlocal elasticitytheory is developed to study the vibration of CNT/grapheme based micro/nano-masssensor. Moreover, the classical TFM and Galerkin method are extended tomicro-/nano-mechanics. The obtained results provide a theoretical foundation and arehelpful to the design of CNT/SLGS based resonator as nanomechanical mass sensor.
引文
[1]张立德,李爱莉,端夫.奇妙的纳米世界[M].北京:化学工业出版社,2004.
    [2] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [3]韩强,姚小虎.碳纳米管的原子模拟和连续体描述[M].北京:科学出版社,2007.
    [4] Pan Z W, Xie S S. Very long carbon Nanotubes [J]. Nature,1998,394:631-633.
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films [J]. Science,2004,306:666-669.
    [6]朱宏伟,徐志平,谢丹.石墨烯[M].北京:清华大学出版社,2011.
    [7] Dresselhaus M S, Dresselhaus G, Jorio A. Unusual properties and structure ofcarbon nanotubes [J]. Annual Review of Materials Research,2004,34:247-278.
    [8] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength,and toughness of nanorods and nanotubes [J]. Science,1997,277:1971-1975.
    [9] Jensen K, Kim K, Zettl A. An atomic-resolution nanomechanical mass sensor [J].Nature Nanotechnology,2008,3:533-537.
    [10] Sakhaee-Pour A, Ahmadian M T, Vafai A. Applications of single-layeredgraphene sheets as mass sensors and atomistic dust detectors [J]. Solid StateCommunications,2008,145:168-172.
    [11] Binnig G, Quate C F. Atomic force microscope [J]. Physical Review Letters,1986,58:930-933.
    [12] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high young's modulusobserved for individual carbon nanotubes [J]. Nature,1996,381:678-680.
    [13] Krishnan A, Dujardin E, Ebbesen T W, et al. Young's modulus of single-wallednanotubes [J]. Physical Review B,1998,58:14013-14019.
    [14] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections andelectro-mechanical resonances of carbon nanotubes [J]. Science,1999,283:1513-1516.
    [15] Gao R P, Wang Z L, Bai Z G. Nanomechanics of individual carbon nanotubesfrom pyrolytically grown arrays [J]. The American Physical Society,2000,85(3):622-624.
    [16] Cuenot S, Frétigny C, Demoustier-Champagne S, et al. Measurement of elasticmodulus of nanotubes by resonant contact atomic force microscopy [J]. Journalof Applied Physics,2003,93(9):5650-5655.
    [17] Shen W D, Jiang B, Han B S, et al. Investigation of the radial compression ofcarbon nanotubes with a scanning probe microscope [J]. Physical ReviewLetters,2000,84(16):3634-3637.
    [18] Jena D, Fang T, Zhang Q, et al. Zener tunneling in semiconducting nanotube andgraphene nanoribbon p-n junctions [J]. Applied Physics Letters,2008,93:112106.
    [19] Falvo M R, Steele J, Taylor R M, et al. Gearlike rolling motion mediated bycommensurate contact: Carbon nanotubes on HOPG [J]. Physical Review B,2000,62:10665-10667.
    [20] Moon S, Jung K, Park K, et al. Intrinsic high-frequency characteristics ofgraphene layers [J]. New Journal of Physics,2010,12:113031.
    [21] Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes:Instabilities beyond linear response [J]. Physical Review Letters,1996,76(14):2511-2514.
    [22] Sears A, Batra R C. Buckling of multiwalled carbon nanotubes under axialcompression [J]. Physical Review B,2006,73:085410.
    [23] Legoas S B, Coluci V R, Braga S F, et al. Molecular-Dynamics Simulations ofCarbon Nanotubes as Gigahertz Oscillators [J]. Physical Review Letters,2003,90:055504.
    [24] Kang J W, Kwon O K, Hwang H J, et al. Resonance frequency distribution ofcantilevered (5,5)(10,10) double-walled carbon nanotube with different intertubelengths [J]. Molecular Simulation,2011,37(1):18-22.
    [25] Kang J W, Kwon O K, Lee J H, et al. Frequency change by inter-walled lengthdifference of double-wall carbon nanotube resonator [J]. Solid StateCommunications,2009,149(1):1574-1577.
    [26] Zhang Y Y, Wang C M, Tan B C. Assessment of Timoshenko beam models forvibrational behavior of single-walled carbon nanotubes using moleculardynamics [J]. Advances in Applied Mathematics and Mechanics,2009,1:89-106.
    [27] Arash B, Wang Q, Varadan V K. Carbon nanotube-based sensors for detectionof gas atoms [J]. ASME Journal of Nanotechnology in Engineering Medicine,2011,2:021010.
    [28] Nakajima T, Shintani K. Molecular dynamics study of energetics of grapheneflakes [J]. Journal of Applied Physics,2009,106:114305.
    [29] Ranjbartoreh A R, Wang G X. Consideration of Bending and BucklingBehaviors of Monolayer and Multilayer Graphene Sheets [J]. Journal ofNanoscience and Nanotechnology,2012,12:1395-1397.
    [30] Kwon O K, Lee G Y, Hwang H J, et al. Molecular dynamics modeling andsimulations to understand gate-tunable graphene-nanoribbon-resonator [J].Physica E,2012,45:194-200.
    [31] Odegard G M, Gates T S, Nicholson L M, et al. Equivalent continuum modelingof nano-structured materials [R]. NASA/TM-210863,2001.
    [32] Li C Y, Chou T W. A structural mechanics approach for the analysis of carbonnanotubes [J]. International Journal of Solids and Structures,2003,40:2487-2499.
    [33] Li C Y, Chou T W. Elastic moduli of multi-walled carbon nanotubes and theeffect of van der Waals forces [J]. Composites Science and Technology,2003,63:1517-1524.
    [34] Gupta S S, Batra R C. Elastic Properties and Frequencies of Free Vibrations ofSingle-Layer Graphene Sheets [J]. Journal of Computational and TheoreticalNanoscience,2010,7:2151-2164.
    [35] Sakhaee-Pour A, Ahmadian M T, Vafai A. Potential application ofsingle-layered graphene sheet as strain sensor [J]. Solid State Communications,2008,147:336-340.
    [36] Shi J X, Ni Q Q, Lei X W, et al. Nonlocal elasticity theory for the buckling ofdouble-layer graphene nanoribbons based on a continuum model [J].Computational Materials Science,2011,50:3085-3090.
    [37] Alibeigloo A. Free vibration analysis of nano-plate using three-dimensionaltheory of elasticity [J]. Acta Mechanica,2011,222(5):149-159.
    [38] Yoon J, Ru C Q, Mioduchowski A. Vibration of an embedded multiwall carbonnanotube [J]. Composites Science and Technology,2003,63:1533-1542.
    [39] Yoon J, Ru C Q, Mioduchowski A. Noncoaxial resonance of an isolatedmultiwall carbon nanotube [J]. Physical Review B,2002,66:233402.
    [40] Xu K Y, C.Aifantis E, Yan Y H. Vibrations of double-walled carbon nanotubeswith different boundary conditions between inner and outer tubes [J]. ASMEJournal of Applied Mechanics,2008,75:021013.
    [41] Natsuki T, Lei X W, Ni Q Q, et al. Vibrational analysis of double-walled carbonnanotubes with inner and outer nanotubes of different lengths [J]. PhysicsLetters A,2010,374:4684-4689.
    [42] Wu D H, Chien W T, Chen C S, et al. Resonant frequency analysis of fixed-freesingle-walled carbon nanotube-based mass sensor [J]. Sensors and Actuators A:Physical,2006,126:117-121.
    [43] Joshi A Y, Harsha S P, Sharma S C. Vibration signature analysis of singlewalled carbon nanotube based nanomechanical sensors [J]. Physica E,2010,42:2115-2123.
    [44] Elishakoff I, Versaci C, Maugeri N, et al. Clamped-free single-walled carbonnanotube-based mass sensor treated as Bernoulli-Euler beam [J]. ASME Journalof Nanotechnology in Engineering Medicine,2011,2:021001.
    [45] Elishakoff I, Versaci C, Muscolino G. Clamped-free double-walled carbonnanotube-based mass sensor [J]. Acta Mechanica,2011,219(5):29-43.
    [46] Yoon J, Ru C Q, Mioduchowski A. Timoshenko-beam effects on transversewave propagation in carbon nanotubes [J]. Composites Part B Engineering,2004,35:87-93.
    [47] Wang C M, Tan V B C, Zhang Y Y. Timoshenko beam model for vibrationanalysis of multi-walled carbon nanotubes [J]. Journal of Sound and Vibration,2006,294:1060–1072.
    [48] Wang C Y, Ru C Q, Mioduchowski A. Axially compressed buckling ofpressured multiwall carbon nanotubes [J]. International Journal of Solids andStructures,2003,40:3893-3911.
    [49] Han Q, Lu G X, Dai L M. Bending instability of an embedded double-walledcarbon nanotube based on Winkler and van der Waals models [J]. CompositesScience and Technology,2005,65:1337-1346.
    [50] Shen H S. Postbuckling prediction of double-walled carbon nanotubes underhydrostatic pressure [J]. International Journal of Solids and Structures,2004,41:2643-2657.
    [51] Kitipornchai S, He X Q, Liew K M. Continuum model for the vibration ofmultilayered graphene sheets [J]. Physical Review B,2005,72:075443.
    [52] He X Q, Kitipornchai S, Liew K M. Resonance analysis of multi-layeredgraphene sheets used as nanoscale resonators [J]. Nanotechnology,2005,16:2086-2091.
    [53]宋彦琦.非局部非对称弹性固体理论与应用[M].北京:知识产权出版社,2011.
    [54]黄再兴,朱金福.非局部场论的发展历史、研究现状及前景[J].江苏力学,1996,(11):27-33.
    [55]赵雪川.非局部弹性和粘弹性结构元件的力学分析[D].长沙:国防科技大学,2006.
    [56] Eringen A C. Nonlocal micropolar field theory, In: Continum Physics(Vol.4,Eringen A C, ed.)[M]. New York: Acadamic Press,1976.
    [57] Krumhansl J A. Generalized continuum field representations for latticevibrations, In: Lattice Dynamics (Wallis R F, ed.)[M]. Oxford: Pergamon Press,1965.
    [58] Kroner E, Datta B K. Nichtlokale elastostatik: Ableitung aus der gittertheorie[J]. Zeitschrift fur Physik A: Hadrons and Nuclei,1966,196:203-211.
    [59] Kroner E. Elasticity theory with long range cohesive forces [J]. InternationalJournal of Solids and Structures,1967,3:731-742.
    [60] Kunin I A. Elastic Media with Microstructure(Vol.2)[M]. Berlin:Springer-Verlag,1983.
    [61] Eringen A C. A unified theory of thermomechanical materials [J]. InternationalJournal of Engineering Science,1966,4:179-202.
    [62] Eringen A C. Theory of micropolar continua, In: Developments in Mechanicsand Materials (Huang T C, Johnson M W, ed.)[M]. New York: Wiley,1965.
    [63] Edelen D G B, Laws N. On the thermodynamics of system with nonlocality [J].Archive for Rational Mechanics and Analysis,1971,43(1):24-35.
    [64] Eringen A C, Edelen D G B. On nonlocal elasticity [J]. International Journal ofEngineering Science,1972,10(3):233-248.
    [65] Eringen A C. Linear theory of nonlocal elasticity and dispersion of plane waves[J]. International Journal of Engineering Science,1972,10(5):425-435.
    [66] Edelen D G B. Nonlocal feild theories, In: Continum Physics(Vol.4, Eringen AC, ed.)[M]. New York: Academic Press,1976.
    [67] Eringen A C. On differential equations of nonlocal elasticity and solution ofscrew dislocation and surface waves [J]. Journal of Applied Physics,1983,54(9):4703-4710.
    [68] Eringen A C. Theory of nonlocal pasticity [J]. International Journal ofEngineering Science,1983,21:741-751.
    [69] Eringen A C. Theory of nonlocal piezoelectricity [J]. Journal of Maths Physics,1983,25(3):717-727.
    [70] Eringen A C. Theory of nonlocal piezoelectricity [J]. Journal of Mathematicsand Physics,1984,25:717-727.
    [71] Eringen A C. Theory of nonlocal thermoelasticity [J]. International Journal ofEngineering Science,1974,12:1063-1077.
    [72] Eringen A C. Nonlocal continuum theory of liquid crystals [J]. MolecularCrystals Liquid Crystals,1981,75:321-343.
    [73] Eringen A C. Theory of nonlocal electromagnetic elastic solids [J]. Journal ofMathematics and Physics,1973,14:733-740.
    [74] Eringen A C. A unified continuum theory of electrodynamics of liquid crystals[J]. International Journal of Engineering Science,1997,35:1137-1157.
    [75] Edelen D G B. Global thermodynamics exterior banch forms and gateauxdifferential equations, In: Trends in Applications of Pure Mathematics toMechanics(Fichera G, ed.)[M]. Berlin: Piton,1976.
    [76] Bazant Z P. Why continuum damage is nonlocal: micromeehanics arguments [J].Journal of Engineering Mechanics,1991,117:1070-1087.
    [77] Bazant Z P. Nonlocal damage theory based on micromechanics of crackinteractions [J]. Journal of Engineering Mechanics,1994,120:593-617.
    [78] Stromberg L, Ristinmaa M. FE-formulation of a nonlocal plasticity theory [J].Comput. Methods Appl. Mech. Engng,1996,136:127-144.
    [79] Ozer T. On the symmetry group properties of equations of nonlocal elasticity [J].Mechanics Research Communications,1999,26(6):725-733.
    [80] Ozer T. Symmetry group classification for one-dimensional elastodynamicsproblems in nonlocal elasticity [J]. Mechanics Research Communications,2003,30:539-546.
    [81] Ozer T. Symmetry group classification for two-dimensional elastodynamicsproblems in nonlocal elasticity [J]. International Journal of Engineering Science,2003,41:2193-2211.
    [82] Eringen A C. Nonlocal Continuum Field Theories [M]. New York: Springer,2002.
    [83]戴天民.微极原弹性物质体理论和非局部微极弹性介质的本构方程[J].应用数学与力学,1980,2(2):167-172.
    [84]戴天民.非局部微极线性弹性介质中的各种互易定理和变分原理[J].应用数学与力学,1980,1(1):89-105.
    [85]戴天民.广义连续统场论的简略综述评论[J].力学进展,1983,13(4):432-445.
    [86]戴天民.广义连续统场论的现状和展望[J].力学进展,1999,29(1):1-8.
    [87]戴天民.广义连续统场论在中国的进展(续篇)[J].辽宁大学学报(自然科学版),2004,31(4):295-301.
    [88]高健,陈至达.非对称的非局部塑性理论[J].力学学报,1994,26(5):570-582.
    [89]高健,戴天民.具有非局部体力矩的非局部弹性理论[J].力学学报,1990,22(4):446-456.
    [90] Gao J. An asymmetric theory of nonlocal elasticity-Part1. Quasicontinuumtheory [J]. International Journal of Solids and Structures,1999,36:2947-2958.
    [91] Gao J. An asymmetric theory of nonlocal elasticity-Part2. Continuum field [J].International Journal of Solids and Structures,1999,36:2959-2971.
    [92] Huang Z X. New points of view on the nonlocal field theory and theirapplications to the fracture mechanics(II)—Rediscuss nonlinear constitutiveequations of nonlocal thermoelastic bodies [J]. Applied Mathematics andMechanics,1999,20:764-772.
    [93] Huang Z X. Formulations of nonlocal continuum mechanics based on a newdefinition of stress tensor [J]. Acta Mechanica,2006,187:11-27.
    [94]陈少华,王自强.应变梯度理论进展[J].力学进展,2003,33(2):208-216.
    [95]姚寅.非局部连续介质力学中的若干问题分析[D].南京:南京航空航天大学,2011.
    [96] Eringen A C, Kim B S. Stress concentration at the tip of crack [J]. MechanicsResearch Communications,1974,1(4):233-237.
    [97] Eringen A C, Speziale C G, Kim B S. Crack-tip problem in nonlocal elasticity[J]. Journal of Mechanic Physics Solids,1977,25(1):339-355.
    [98] Eringen A C. Line crack subjected to shear [J]. International Journal of Fracture,1978,14(4):367-369.
    [99] Eringen A C. Line crack subject to antiplane shear [J]. Engineering FractureMechanics,1979,12:211-219.
    [100] Atkinson C. On some recent crack tip stress in nonlocal elasticity [J]. ArchiwumMechaniki Stosowanej,1980,32:317-328.
    [101] Ari N, Eringen A C. Nonlocal stress field at Griffith crack [J]. Crystal LatticeDefect Amorphic Materials,1983,10:33-38.
    [102]程品三.脆性断裂的非局部力学理论[J].力学学报,1992,24(3):329-338.
    [103]王锐.非局部弹性体中的裂纹问题[J].中国科学(A辑),1989,10:1056-1064.
    [104]黄再兴.关于非局部场论的两点注记[J].固体力学学报,1997,18(2):158-162.
    [105]苗天德.非局部弹性理论与Griffith裂纹问题[J].兰州大学学报(自然科学版),1983,19(3):36-43.
    [106]虞吉林,郑哲敏.一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布[J].力学学报,1984,16(5):485-494.
    [107]周振功,王彪.双Ⅰ型裂纹断裂动力学问题的非局部理论解[J].应用数学与力学,2001,22(7):682-690.
    [108]周振功,王彪.采用新方法研究非局部理论中Ⅰ型裂纹的断裂问题[J].应用数学与力学,1999,20(10):1025-1032.
    [109] Eringen A C. Edge dislocation on nonlocal elasticity [J]. International Journal ofEngineering Science,1977,15:177-183.
    [110] Eringen A C. Screw dislocation in nonlocal elasticity [J]. Journal of Physics D:Applied Physics,1977,10:671-678.
    [111] Eringen A C, Balta F. Edge dislocation in nonlocal hexagonal elastic crystals [J].Crystal Lattice Defects,1979,8:73-80.
    [112] Eringen A C, Balta F. Screw dislocation in nonlocal hexagonal elastic crystals[J]. Crystal Lattice Defects,1978,7:183-189.
    [113] Povstenko Y Z. Straight disclinations in nonlocal elasticity [J]. InternationalJournal of Engineering Science,1995,33:575-582.
    [114] Polizzotto C, Fuschi P, Pisano A A. A strain-difference-based nonlocal elasticitymodel [J]. International Journal of Solids and Structures,2004,41:2383-2401.
    [115]雷勇军,赵雪川,唐国金.非局部弹性杆固有频率的Ritz法求解[J].国防科技大学学报,2006,28(5):1-6.
    [116]雷勇军,赵雪川,周建平.非局部弹性杆固有频率求解的传递函数法[J].振动与冲击,2006,25(6):104-107.
    [117]赵雪川,雷勇军,唐国金.传递函数法在非局部弹性梁动力学分析中的应用[J].振动与冲击,2007,26(5):4-7.
    [118]郑长良.非局部弹性直杆振动特征及Eringen常数的一个上限[J].力学学报,2005,37(6):796-798.
    [119] Li X F, Wang B L. Vibrational modes of Timoshenko beams at small scales [J].Applied Physics Letters,2009,94:101903.
    [120] Peddieson J, Buchanzn G R, Mcnitt R P. Application of nonlocal continuummodels to nanotechnology [J]. International Journal of Engineering Science,2003,41:305-312.
    [121] Sudak L J. Column bucking of multiwalled carbon nanotubes using nonlocalcontinuum mechanics [J]. Journal of Applied Physics,2003,94:7281-7287.
    [122] Zhang Y Q, Liu G R, Xie X Y. Free transverse vibrations of double-walledcarbon nanotubes using a theory of nonlocal elasticity [J]. Physical Review B,2005,71:195404.
    [123] Heireche H, Tounsi A, Benzair A. Scale effect on wave propagation ofdouble-walled carbon nanotubes with initial axial loading [J]. Nanotechnology,2008,19:185703.
    [124] Heireche H, Tounsi A, Benzair A, et al. Sound wave propagation insingle-walled carbon nanotubes with initial axial stress [J]. Journal of AppliedPhysics,2008,104:014301.
    [125] Lee H L, Hsu J C, Chang W J. Frequency shift of carbon-nanotube-based masssensor using nonlocal elasticity theory [J]. Nanoscale Research Letters,2010,5:1774-1778.
    [126] Shen Z B, Tang G J, Zhang L, et al. Vibration of double-walled carbon nanotubebased nanomechanical sensor with initial axial stress [J]. ComputationalMaterials Science,2012,58:51-58.
    [127] Wang C M, Zhang Y Y, He X Q. Vibration of nonlocal Timoshenko beams [J].Nanotechnology2007,18:105401.
    [128] Li X F, Wang B L, Mai Y W. Effects of a surrounding elastic medium onflexural waves propagating in carbon nanotubes via nonlocal elasticity [J].Journal of Applied Physics,2008,103:074309.
    [129] Benzair A, Tounsi A, Besseghier A, et al. The thermal effect on vibration ofsingle-walled carbon nanotubes using nonlocal Timoshenko beam theory [J].Journal of Physics D: Applied Physics,2008,41:225404.
    [130] Shen Z B, Li X F, Sheng L P, et al. Transverse vibration of nanotube-basedmicro-mass sensor via nonlocal Timoshenko beam theory [J]. ComputationalMaterials Science,2012,53:340-346.
    [131] Shen Z B, Li D K, Li D, et al. Frequency shift of a nanomechanical sensorcarrying a nanoparticle using nonlocal Timoshenko beam theory [J]. Journal ofMechanical Science and Technology,2012,26(5):1577-1583.
    [132] Shen Z B, Deng B, Li X F, et al. Vibration of double-walled carbonnanotube-based mass sensor via nonlocal Timoshenko beam theory [J]. ASMEJournal of Nanotechnology in Engineering and Medicine,2011,2(3):031003.
    [133] Shen Z B, Sheng L P, Li X F, et al. Nonlocal Timoshenko beam theory forvibration of carbon nanotube-based biosensor [J]. Physica E,2012,44:1169-1175.
    [134] Pradhan S C, Kumar A. Vibration analysis of orthotropic graphene sheetsembedded in Pasternak elastic medium using nonlocal elasticity theory anddifferential quadrature method [J]. Computational Materials Science,2010,50:239-245.
    [135] Pradhan S C, Murmu T. Small scale effect on the buckling analysis ofsingle-layered graphene sheet embedded in an elastic medium based on nonlocalplate theory [J]. Physica E,2010,42:1293-1301.
    [136] Pradhan S C, Kumar A. Vibration analysis of orthotropic graphene sheets usingnonlocal elasticity theory and differential quadrature method [J]. CompositeStructures,2011,93:774-779.
    [137] Aksencer T, Aydogdu M. Levy type solution method for vibration and bucklingof nanoplates using nonlocal elasticity theory [J]. Physica E,2011,43:954-959.
    [138] Wang Y Z, Li F M, Kishimoto K. Thermal effects on vibration properties ofdouble-layered nanoplates at small scales [J]. Composites: Part B,2011,42:1311-1317.
    [139] Shen L, Shen H S, Zhang C L. Nonlocal plate model for nonlinear vibration ofsingle layer graphene sheets in thermal environments [J]. ComputationalMaterials Science,2010,48:680-685.
    [140] Duan W H, Wang C M. Exact solutions for axisymmetric bending ofmicro/nanoscale circular plates based on nonlocal plate theory [J].Nanotechnology,2007,18:385704.
    [141] Farajpour A, Mohammadia M, Shahidi A R, et al. Axisymmetric buckling of thecircular graphene sheets with the nonlocal continuum plate model [J]. Physica E,2011,43:1820-1825.
    [142] Shen Z B, Tang H L, Li D K, et al. Vibration of single-layered graphenesheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory [J].Computational Materials Science,2012,61:200-205.
    [143] Ansari R, Sahmani S, Arash B. Nonlocal plate model for free vibrations ofsingle-layered graphene sheets [J]. Physics Letters A,2010,375:53-62.
    [144] Pradhan S C. Buckling of single layer graphene sheet based on nonlocalelasticity and higher order shear deformation theory [J]. Physics Letters A,2009,373:4182-4188.
    [145] Li C Y, Chou T W. Mass detection using carbon nanotube-basednanomechanical resonators [J]. Applied Physics Letters,2004,84:5246-5248.
    [146] Joshi A Y, Sharma S C, Harsha S P. Zeptogram scale mass sensing using singlewalled carbon nanotube based biosensors [J]. Sensors and Actuators A: Physical,2011,168:275-280.
    [147] Li Y, Qiu X M, Yang F, et al. Ultra-high sensitivity of supercarbon-nanotube-based mass and strain sensors [J]. Nanotechnology,2008,19:165502.
    [148] Chowdhury R, Adhikari S, Mitchell J. Vibrating carbon nanotube basedbio-sensors [J]. Physica E,2009,42:104-109.
    [149] Mehdipour I, Barari A, Domairry G. Application of a cantilevered SWCNT withmass at the tip as a nanomechanical sensor [J]. Computational Materials Science,2011,50:1830-1833.
    [150] Murmu T, Adhikari S. Nonlocal vibration of carbon nanotubes with attachedbuckyballs at tip [J]. Mechanics Research Communications,2011,38:62-67.
    [151] Aydogdu M, Filiz S. Modeling carbon nanotube-based mass sensors using axialvibration and nonlocal elasticity [J]. Physica E,2011,43:1229-1234.
    [152] Mateiu R, Davis Z J., Madsen D N., et al. An approach to a multi-walled carbonnanotube based mass sensor [J]. Microelectronic Engineering,2004,73:670-674.
    [153] Mateiu R, Kühle A, Marie R, et al. Building a multi-walled carbonnanotube-based mass sensor with the atomic force microscope [J].Ultramicroscopy,2005,105:233-237.
    [154] Chiu H Y, Hung P, Postma H W C, et al. Atomic-scale mass sensing usingcarbon nanotube resonators [J]. Nano Letters,2008,8(12):4342-4346.
    [155] Arash B, Wang Q, Duan W H. Detection of gas atoms via vibration of graphenes[J]. Physics Letters A,2011,375:2411-2415.
    [156] Arash B, Wang Q. Detection of gas atoms with graphene sheets [J].Computational Materials Science,2012,60:245-249.
    [157]周建平,雷勇军.分布参数系统的传递函数方法[M].北京:科学出版社,2010.
    [158] Yang B, Mote C D. Active vibration control of the axially moving string in thedomain [J]. ASME Journal of Applied Mechanics,1991,58(2):189-196.
    [159] Yang B, Tan C A. Transfer function of one-dimension distributed parametersystem [J]. ASME Journal of Applied Mechanics,1992,59(4):1009-1014.
    [160] Yang B. Transfer function of constrained/combined one-dimensional continuousdynamic systems [J]. Journal of Sound and Vibration,1992,156(2):425-443.
    [161] Tan C A, Chung C H. Transfer function formulation of constrained distributedparameter system, part I: Theory [J]. ASME Journal of Applied Mechanics,1993,60(4):1005-1011.
    [162] Chung C H, Tan C A. Transfer function formulation of constrained distributedparameter system, part II: Applications [J]. ASME Journal of AppliedMechanics,1991,60(4):1012-1019.
    [163] Yang B. Distributed transfer function analysis of complex distributed parametersystems [J]. ASME Journal of Applied Mechanics,1994,61(1):84-92.
    [164]蒋纯志.分布传递函数方法在梁杆结构分析中的应用[D].长沙:国防科技大学,2006.
    [165] Zhou J, Feng Z. Transient response analysis of one dimensional distributedparameter systems [J]. International Journal of Solids and Structures,1999,36(19):2807-2824.
    [166]冯志刚,周建平.基于直接数值积分的Laplace逆变换方法的比较研究[J].应用数学和计算数学学报,1997,11(1):33-40.
    [167]冯志刚,周建平.一维结构瞬态响应分析的传递函数方法[J].国防科技大学学报,1998,20(5):12-16.
    [168] Zhou J, Feng Z. A semi-analytical method for the one-dimensional distributedparameter systems [A].ASME Conference [C]. USA,1997.
    [169]李家文,李道奎,周建平.冲击波作用下悬臂梁瞬态响应的传递函数方法[J].振动与冲击,2007,26(3):101-103.
    [170]冯志刚,周建平.矩形变截面梁横向振动自振频率的传递函数渐进解法[J].强度与环境,1998,25(1):24-31.
    [171]冯志刚,周建平.一维非均匀变截面结构瞬态响应的传递函数渐近解法[J].强度与环境,1997,24(3):26-32.
    [172]冯志刚,周建平,李海阳.一维非均匀分布参数系统的渐近传递函数方法[J].国防科技大学学报,1999,21(2):17-20.
    [173]李海阳.数学物理问题的数值分布传递函数方法[D].长沙:国防科技大学,1999.
    [174] Zhou J, Yang B. A distributed transfer function method for analysis ofcylindrical shells [J]. AIAA Journal,1995,33(9):1698-1708.
    [175] Yang B, Zhou J. Analysis of ring-stiffened cylindrical shells [J]. ASME JournalApplied Mechanics,1995,33(4):1005-1014.
    [176] Zhou J, Yang B. Three dimensional analysis of simple supported laminatedcylindrical shells with arbitrary thickness [J]. AIAA Journal,1996,34(9):1960-1964.
    [177]雷勇军,周建平.圆锥壳自由振动传递函数解[J].上海力学,1998,19(3):235-243.
    [178]周建平,雷勇军.圆锥壳的渐进分布传递函数解[J].工程力学,1999,16(2):85-92.
    [179] Yang B, Zhou J. Semi-analytic solution of2D elasticity problem by the stripdistributed transfer function method [J]. International Journal of Solids andStructures,1996,33(27):3983-4005.
    [180] Zhou J, Yang B. Strip distributed transfer function method for analysis of plate[J]. international Journal for Numerical Methods in Engineering,1996,39(11):1915-1932.
    [181] Zhou J, Yang B. Striped distributed transfer function analysis of circular platesand sectorial plates [J]. Journal of Sound and Vibration,1997,201(5):641-647.
    [182]周建平,李海阳,李爱丽.弹性薄板分析的条形传递函数方法[J].力学学报,1999,31(3):320-329.
    [183]黄壮飞,周建平.2-D问题条形传递函数方法与有限元法的分区耦合[J].计算力学学报,2000,17(2):147-155.
    [184]黄壮飞,周建平.基于SDTFM理论的平面问题广义超级单元[J].国防科技大学学报,1999,21(5):5-8.
    [185]李海阳,雷勇军,周建平.平面问题的等参条形传递函数方法[J].工程力学,2000,17(5):121-126.
    [186]冯莹,李湘荣,李海阳.扩散平面光波导的传递函数方法[J].光学学报,1999,19(1):50-56.
    [187]李海阳,周建平,冯莹.光波导的条形传递函数无限元解[J].计算物理,2000,17(6):671-677.
    [188]李海阳,周建平,冯莹.扩散沟道光波导的数值条形传递函数方法[J].物理学报,2000,49(3):565-569.
    [189]冯莹,李海阳.矩形介质光波导的条形传递函数方法[J].光学学报,2000,20(1):39-45.
    [190]李海阳,冯莹,周建平.平面光波导的数值传递函数方法[J].国防科技大学学报,2000,22(1):85-88.
    [191]黄壮飞.弹性断裂问题的条形传递函数方法[D].长沙:国防科技大学,2001.
    [192]李道奎.含内埋脱层结构的屈曲分析与压电壳的三维应力分析[D].长沙:国防科技大学,2001.
    [193] Yang B, Yang Y, Fang H. DTFM modeling, optimization, and sensitivityanalysis for gossamer structures [R]. AIAA-2002-0596,2002.
    [194]刘晓平,杨秉恩.受粘弹阻尼器控制的轴向移动弦系统动态特性分析[J].振动工程学报,2001,14(3):268-272.
    [195]吴非.强激光辐照下结构热力效应分析[D].长沙:国防科技大学,2006.
    [196]孟祥贵,陈棣湘,潘孟春.厚壁圆筒热应力问题的传递函数方法[J].强度与环境,2008,35(1):41-46.
    [197]孟祥贵,陈棣湘,潘孟春.圆锥薄壳热应力分析的分布参数传递函数方法[J].国防科技大学学报,2008,30(4):43-46.
    [198]李道奎,雷勇军,唐国金.分段轴压阶梯梁自由振动及稳定性分析的传递函数方法[J].国防科技大学学报,2007,29(2):1-4.
    [199]李道奎,唐国金,雷勇军.弹性支撑条件下分段轴压阶梯梁自由振动及稳定性分析[J].强度与环境,2009,36(3):14-22.
    [200]李恩奇.基于分布参数传递函数方法的被动约束层阻尼结构动力学分析[D].长沙:国防科技大学,2007.
    [201] Iijima S, Ichihashi T. Single-shell carbon nanotubes of1-nm diameter [J].Nature,1993,363:603-605.
    [202] Joshi A Y, Sharma S C, Harsha S P. Dynamic analysis of a clamped wavy singlewalled carbon nanotube based nanomechanical sensors [J]. ASME Journal ofNanotechnology in Engineering Medicine,2010,1:031007.
    [203] Kis A, Kasas S, Babic B, et al. Nanomechanics of microtubules [J]. PhysicalReview Letters,2002,89:248101.
    [204] Sorop T G, Jongh T G. Size-dependent anisotropic diamagnetic screening insuperconducting Sn nanowires [J]. Physical Review B,2007,75:014510.
    [205] Timoshenko S P. Vibration problems in engineering [M]. New York: Wiley,1974.
    [206]李东旭.高等结构动力学(第2版)[M].北京:科学出版社,2010.
    [207] Sun C, Liu K. Vibration of multi-walled carbon nanotubes with initial axialloading [J]. Solid State Communications,2007,143:202-207.
    [208] Sun C Q, Liu K X. Vibration of multi-walled carbon nanotubes with initial axialforce and radial pressure [J]. Journal of Physics D: Applied Physics,2009,42:175412.
    [209] Wang X, Cai H. Effects of initial stress on non-coaxial resonance of multi-wallcarbon nanotubes [J]. Acta Materialia,2006,54:2067-2074.
    [210] Zhang Y Q, Liu G R, Han X. Transverse vibrations of double-walled carbonnanotubes under compressive axial load [J]. Physics Letters A,2005,340:258-266.
    [211]姚端正,梁家宝.数学物理方法(第二版)[M].武汉:武汉大学出版社,1997.
    [212] Duan W H, Wang C M, Zhang Y Y. Calibration of nonlocal scaling effectparameter for free vibration of carbon nanotubes by molecular dynamics [J].Journal of Applied Physics,2007,101:024305.
    [213]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [214]徐芝纶.弹性力学(第4版,上册)[M].北京:高等教育出版社,2006.
    [215] MSC.Software. PCL and Customization [M]. Los Angeles: TheMacneal-Schwendler Corporation,2005.
    [216]李磊.基于结构完整性分析的固体火箭发动机药形改进与优化设计[D].长沙:国防科技大学,2011.
    [217]申志彬,唐国金,雷勇军,等.基于Patran二次开发的星形药柱结构分析与设计[J].固体火箭技术,2009,32(2):175-179.
    [218]邹经湘等.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1996.
    [219] Adhikari S, Chowdhury R. The calibration of carbon nanotube basedbionanosensors [J]. Journal of Applied Physics,2010,107:124322.
    [220] Fraenkel-Conrat H. The Viruses: Catalogue, Characterization, and Classification[M]. New York: Plenum,1985.
    [221] Gunsalus I C, Stanier R I. The Bacteria: A Treatise on Structure and Function[M]. New York: Academic,1960.
    [222] Chowdhury R, Adhikari S. Boron-nitride nanotubes as zeptogram-scalebionanosensors: theoretical investigations [J]. IEEE Transactions onNanotechnology,2011,10(4):659-667.
    [223] Wang C M, Zhang Y Y, Ramesh S S, et al. Buckling analysis of micro-andnano-rods/tubes based on nonlocal Timoshenko beam theory [J]. Journal ofPhysics D: Applied Physics,2006,39:3904-3909.
    [224] Bethune D S, Kiang C H, Vries M S D, et al. Cobalt-catalysed growth of carbonnanotubes with single-atomic-layer walls [J]. Nature,1993,363:605-607.
    [225] Collins P G, Hersam M, Arnold M, et al. Current saturation and electricalbreakdown in multiwalled carbon nanotubes [J]. Physical Review Letters,2001,86:3128-3131.
    [226] Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators [J].Physical Review Letters,2002,88:045503.
    [227] Elishakoff I, Versaci C, Muscolino G. Clamped-free double-walled carbonnanotube-based mass sensor [J]. Acta Mechanica,2011,219(5):29-43.
    [228] MSC.Software. MSC.Nastran Quick Reference Guide [M]. Los Angeles: TheMacneal-Schwendler Corporation,2005.
    [229] Timoshenko S P. On the correction for shear of the differential equation fortransverse vibrations of prismatic bars [J]. Philosophical Magazine,1921,41:744-746.
    [230] Yoon J, Ru C Q, Mioduchowski A. Terahertz vibration of short carbonnanotubes modeled as Timoshenko beams [J]. ASME Journal of AppliedMechanics,2005,72:10-17.
    [231] Sudak L J. Column buckling of multiwalled carbon namotubes using nonlocalcontinuum mechanics [J]. Journal of Applied Physics,2003,94:7281-7287.
    [232] Pradhan S C, Phadikar J K. Nonlocal elasticity theory for vibration of nanoplates[J]. Journal of Sound and Vibration,2009,325:206-223.
    [233] Yang J, Ke L L, Kitipornchai S. Nonlinear free vibration of single-walled carbonnanotubes using nonlocal Timoshenko beam theory [J]. Physica E,2010,42:1727–1735.
    [234] Ansari R, Ramezannezhad H. Nonlocal Timoshenko beam model for thelarge-amplitude vibrations of embedded multiwalled carbon nanotubes includingthermal effects [J]. Physics E,2011,43:1171-1178.
    [235] Lee H L, Chang W J. Frequency analysis of carbon-nanotube-based mass sensorusing non-local Timoshenko beam theory [J]. Micro&Nano Letters,2012,7:86-89.
    [236] Wang Q. Wave propagation in carbon nanotubes via nonlocal continuummechanics [J]. Journal of Applied Physics,2005,98:124301.
    [237] Karnovsky I A, Lebed O I. Formulas for Structural Dynamics [M]. New York:McGraw-Hill,2004.
    [238]郭日修.弹性力学与张量分析[M].北京:高等教育出版社,2003.
    [239]单辉祖.材料力学(第2版)[M].北京:高等教育出版社,2004.
    [240] Talati M, Jha P K. Acoustic phonon quantization and low-frequency Ramanspectra of spherical viruses [J]. Physical Review E,2006,73:011901.
    [241] Rossi R E, Laura P A A. Vibrations of a Timoshenko beam clamped at one endand carrying a finite mass at the other [J]. Applied Accoustics,1990,30:293-301.
    [242]孙世贤,黄圳圭.理论力学教程[M].长沙:国防科技大学出版社,1996.
    [243] Rossi R E, Laura P A A, Gutierrez R H. A note on transverse vibrations of aTimoshenko beam of non-uniform thickness clamped at one end and carrying aconcentrated mass at the other [J]. Journal of Sound and Vibration,1990,143(3):491-502
    [244] Lee K, Luki B, Magrez A, et al. Diameter-dependent elastic modulus supportsthe metastable-catalyst growth of carbon nanotubes [J]. Nano Letters,2007,7(6):1598-1602.
    [245] Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensingand biosensing [J]. Trends in Analytical Chemistry,2010,29:954-965.
    [246] Shao Y, Wang J, Wu H, et al. Graphene based electrochemical sensors andbiosensors: a review [J]. Electroanalysis,2010,22:1027-1036.
    [247] Behfar K, Naghdabadi R. Nanoscale vibration alanalysis of a muti-layeredgraphene sheet embedded in an elastic medium [J]. Composites Science andTechnology,2005,65(2005):1159-1164.
    [248] Laura P A A, Laura P A, Diez G, et al. A note on vibrating circular platescarrying concentrated masses [J]. Mechanics Research Communications,1984,11(6):397-400.
    [249] Azimi S. Free vibration of a circular plate carrying a concentrated mass at itscenter [J]. Journal of Sound and Vibration,1988,127(2):391-393.
    [250] Bambill D V, Malfa S La, Rossit C A, et al. Analytical and experimentalinvestigation on transverse vibrations of solid, circular and annular platescarrying a concentrated mass at an arbitrary position with marine applications [J].Ocean Engineering,2004,31:127-138.
    [251] Ranjan V, Ghosh M K. Transverse vibration of thin solid and annular circularplate with attached discrete masses [J]. Journal of Sound and Vibration,2006,292:999-1003.
    [252]徐芝纶.弹性力学(第4版,下册)[M].北京:高等教育出版社,2006.
    [253]何福保,沈亚鹏.板壳理论[M].西安:西安交通大学出版社,1993.
    [254]老大中.变分法基础(第2版)[M].北京:国防工业出版社,2007.
    [255] Ventsel Eduard. Thin Plates and Shells—Theory, Analysis and Applications [M].Florida: The Chemical Rubber Company(CRC) Press,2001.
    [256] Boay C G. Free vibration of rectangular isotropic plates with and without aconcentrated mass [J]. Computers&Structures,1993,48(3):529-533.
    [257] Najafizadeh M M, Mirkhalaf-Valashani M. Vibration analysis of circular plateswith an eccentric circular perforation with a free edge and attached concentratedmass at any arbitrary position [J]. Australian Journal of Basic and AppliedSciences,2011,5(12):3052-3058.
    [258] Mirkhalaf-Valashani S M. Vibration analysis of circular plates with an eccentriccircular perforation with a free edge and attached concentrated mass at anyarbitrary position [J]. Journal of Solid Mechanics,2009,1:37-44.
    [259] Laura P A A, Avalos D R. Small amplitude, transverse vibrations of circularplates with an eccentric rectangular perforation elastically restrained againstrotation and translation on both edges [J]. Journal of Sound and Vibration,2008,312:906-914.
    [260] Lee H L, Chang W J. Surface and small-scale effects on vibration analysis of anonuniform nanocantilever beam [J]. Physica E,2010,43:466-469.
    [261] Chang C S, Gao J. Second-gradient constitutive theory for granular materialwith random packing structure [J]. International Journal of Solids and Structures,1995,32:2279-2293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700