用户名: 密码: 验证码:
南疆地区建筑蓄热与自然通风耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的目的是根据南疆和田地区的气象条件设计适合该地区特点的零能耗被动式太阳能建筑。首先,采用EnergyPlus图形界面软件DesignBuilder建立了新疆和田地区被动式太阳能建筑模型,并对模型建筑的冬季热环境进行了全面的模拟。从太阳能建筑内部热环境模拟的结果可以看出,各房间内实效温度均较室外温度有较大幅度的提高,温度升高幅度在10℃左右,模型中采用直接受益式结构的房间,室内实效温度在日间的大部分时间可比室外高出8-15℃,采用Trombe墙式结构的房间,室内实效温度在全天的大部分时间可比室外温度高出10-15℃,采用附加阳光间的房间,室内实效温度全天可比室外温度高出12-15℃,基本满足了文献中提出的零能耗太阳房舒适温度为12℃的标准。温度升高的幅度,取决于当日太阳辐射量的大小,这表明通过被动的利用太阳辐射能量,可以改善该地区居住建筑室内热环境。南疆和田地区充足的光热资源为被动式太阳房的发展和推广提供了有利的条件,两种形式的被动式太阳房结构对改善该地区居住热环境,降低能耗,节省采暖成本,保护环境有显著的效果,具备在该地区推广实行的可行性。
     然后,采用室内流动模拟商业软件Airpak建模,模拟了集热蓄热墙(Trombe墙)式结构的太阳房冬季典型周中一天14时(即太阳辐射最强时刻)该房间室内的气流状况及温度场分布。考虑到该地区冬季北风出现的频率、当日的平均风速以及房间最小换气次数,在一定保证率下,确定在北侧设置自然通风口,并计算出相应通风口尺寸。通过模拟结果可以看出Trombe墙造成的热压诱导气流循环,可使室内空气被加热至10℃左右,比室外温度高出5-10℃,且室内冷热气流混合良好,房间内温度分度较均匀。
The purpose of this study is designing passive solar building with zero energy consumption for Hotan of Xinjiang Province based on meteorological condition of this region. First of all , the passive solar building model for Hotan has been built with DesignBuilder, an interface of EnergyPlus, and the thermal environment of winter has been simulated overall. It is observed from the simulation result of thermal environment in this model, the operative temperature is much higher than the dry bulb temperature outdoor, and the increment is about 10℃.The operative temperature of room with direct benefit window structure is 8-15℃higher than outdoor temperature in most of daytime; the operative temperature of room with Trombe wall structure is 10-15℃higher than outside temperature in all day; the operative temperature of room with sunspace structure is 12-15℃higher than outside temperature in all day. The comfort temperature standard for passive solar house of zero energy consumption has been satisfied with 12℃in articles. Since the temperature increment rest with the amount of solar radiation on that day, it can improve the initial thermal environment of residential building through using solar energy passively. The three type passive solar house structures has notable effect in improving the initial thermal environment of houses ,depressing energy consumption, save heating cost in this region, can be feasible for developing and expanding.
     Then, the room with heat collection and storage wall (Tombe wall) has been modeled and simulated with Airpak, a CAE software for simulating indoor air flow condition.The indoor airflow and temperature distribution has been simulated and the effect of natural ventilation of this passive solar room has been evaluated at 14o'clock(the time with the most solar radiation) of one day in winter typical week. For north wind is the most occurrence frequency of this region, opening vent for natural ventilation has been set in north side of the room, and the size of vent for mineral air changes has been determined in a certain guarantee rate by average wind velocity on that day. It is observed that, Trombe wall can inspire the airflow circulation caused by hot press induction, and the indoor air could be heated up to 10 ℃ more or less, higher than outdoor temperature with 5-10℃,the cold and hot airflow are mixed well, and the temperature distribution is uniformly.
引文
[1] 王如竹,翟晓强:基于太阳能热利用的生态建筑能源技术.建筑热能通风空调.2004,23(1)
    [2] J.D.Balcomb, J.C.Acdstrom,R.D.McFarland.:Simulation analysis of passive solar heating Building—preliminaryresults, Solar Energy, Vol.19(1974): 277-282.
    [3] J.D.Balcomb,R.D.MeFarland.:Simulation analysis of passive solar heating buildingcomparison with test room results, AS/ISES, 1977 Annual Meeting, 11—14.
    [4] 张红梅:被动式太阳能室内热环境分析,西安建筑科技大学(硕士论文),2005。
    [5] 和田自然资源.和田兴农网.2005
    [6] Utzinger, D M, Klein S A, Mitchell J W.:The effect of air flow rate in collector-storage walls.Solar energy,1980,25(6):511-519
    [7] Tarazi,Nasri Khadir.:A Model ofa Trombe wall.Renewable Energy,1991,I(3-4): 533-541
    [8] Duffin.R,J,Knowles.Greg.: A simple design method for the Trombe wall.SolarEnergy,1985,34(1):69-72
    [9] 王德芳:集热墙不稳态传热问题的反应系数解法.太阳能学报.1990,11(4):361-365
    [10] 方贤德:被动式太阳房的通用模拟程序.太阳能学报,1994,15(4):363-367
    [11] Smolec.W, Thomas.: A.Theoretical and experimental investigations of heat transfer in a Trombe wall.Energy Conversion and Management,1993,34(5):385-400
    [12] Chen.D.T, Chaturvedi.S,K,Mohieldin.T.O.:An approximate method for calculating laminar natural connective motion in a Trombe-wall channel.Energy,1994,19(2):259-268
    [13] Tsuji.T, Nagano.Y.:Characteristics of a turbulent natural convection boundary layer along a vertical flat plate.International Journal of Heat Mass Transfer,1988, 31(8):1723-1734
    [14] Jubran.B.A, Hamdan.M.A, Manfalouti.W.: Modelling free convection in a Trombe wall, Renewable Energy, 1991, 1 (3-4):351-360
    [15] Mohamad.A.A, Sezai.L.: Natural convection in C-shaped thermosyphon.Numerical Heat Transfer Part A, 1997,32:311-323
    [16] Ormistan.S .J,Raithby.G.D,Gollands.K.G.T.:Numerical predictions of convection in a Trombe wall system, International Journal of Heat Mass Transfer,1986,29(6):869-877
    [17] Yedder, R.Ben, Bilgen.:Natural convection and conduction in Trombe wail systems. International Journal of Heat and Mass Transfer, 1991,34(4-S): 1237-1248
    [18] Chappidi.P.R,Eno,B.E.:A comparative study of the effect of inlet conditions on a free convection flow in a vertical channel.lournal of Heat Transfer, 1990, 112(4): 1082-1085
    [19] Akbari.H,Borgers.T.R.:Free connective laminar flow within the Trombe wall channel.Solar Energy, 1979,22:165-174
    [20] Borgers.T.R,Akbari.H.:Free connective turbulent flow within the Trombe wall channeLSolar Energy, 1984,33:253-264
    [21] Tasdemiroglu.E,Tinaut.D.:Comparison of an analytical model with experimental results for a passive thermal storage wall.Solar Energy, 1985,35(3):283-286
    [22] 叶宏,葛新石:几种集热—贮热墙式太阳房的动态模拟及热性能比较.太阳能学报,2000,21(4):349-357
    [23] 刘加平.无辅助热源被动式太阳房热工设计.西安建筑科技大学学报,1995,27(4)
    [24] Sodha.M .Setal.: Solar passive building science& design,Pergamon Press, 1986
    [25] Druury.B.Crawley, etc,: Energyplus:Creating A New Generation Building Energy Simulation Program, Energy and Building, Vol.3 3 (4):443—457
    [26] Lawrence Berkeley National Laboratory, university of Illinois,university of California, EnergyPlus 1.10Manual [M],April 2003,LBNL in Berkeley, California.
    [27] 潘毅群.建筑暖能耗分析软件EnergyPlus及其应用.暖通空调.2004,34(9):2-7
    [28] 刘洋等.EnergyPluS建筑能耗分析软件汉化用户应用界面的开发.暖通空调。2005,35(9):114-118
    [29] Dr Andy Tindale. DesignBuilder and EnergyPlus. The Building Energy Simulation User News.2004 Vol 25.No.1
    [30] ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests —DesignBuilder Version 1.2.0 (incorporating EnergyPlus version 1.3.0) - June 2006
    [31] H.M.Mathisen.Case studies of displacement Ventilation in public halls.ASHRAE Trans. 1989 vol(A)
    [32] JLaurikainen.Calculation method for air flow rate in displacement ventilation system.IAQ'91Healthy Buildings. 1991
    [33] Qingyan CHEN,Leon R GLICKSMAN.System Performance Evaluation and Design Guidelines for Displacement ventilation[M]ASHRAE Inc, 2003.
    [34] 张旺达.竖壁贴附射流及其空气池现象的预测与可视化验证.[硕士论文].西安建筑科技大学,2005
    [35] Airpak:Beijing Hi-key Technology Corporation Ltd.Airpak2.1 Tutorial Guide,Beijing: FLUENT Inc.2002.1-3
    [36] 杨惠,张欢,由世俊著:基于Airpak的办公室热环境CFD模拟研究,山东建筑工程学院学报,2004年12月,第19卷第4期:11-12
    [37] 张泠,汤广发,吕文瑚著:建筑室内环境数值方法的研究-三维紊流室内流动态数值研究,长沙:湖南大学学报,1995年6月,第22卷第3期:55—56
    [38] Brury B.etc. Which Weather Data Should You Use for Energy Simulations of Commercial Building.ASHRAE Transaction. 1998.498-515
    [39] NCDC.Typical Meteorological Year User' Manual.TD-9734,Hourly Solar Radiation-Surface Meteorological Observations.Asheville,North Carolina: National Climate Data enter, U.S.Department of Commerce, 1981
    [40] James R, Augustyn. WYEC2 User' s Manual and Software Toolkit. ASHRAE Transaction.1998. Part 1B. 32-40
    [41] 日本空调设备基准委员会第2小委员会.标准气象数据的研究(空气调和卫生学)Vol.48.No.7
    [42] 田胜元,李百战.采暖空调能耗分析用动态气象资料的标准年构成方法.暖通空调.No.2,1992
    [43] 郎四维.建筑能耗分析逐时气象资料的开发研究.暖通空调.2002 Uol.32.No.4.1-5
    [44] 彰国社.国外建筑图集:被动式太阳能建筑设计.中国建筑工业出版社,2003
    [45] 李元哲.被动式太阳方热工设计手册.清华大学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700