用户名: 密码: 验证码:
聚苯胺复合导电纤维的制备与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝土被广泛应用于高速公路、机场跑道、桥面铺装和城市主干道。与发达国家相比,我国的沥青路面破损问题依然严重。为了提高沥青路面使用寿命,对沥青路面进行损坏监测和公路交通智能化管理,本文结合辽宁省科技基金项目(20062147)“聚苯胺/聚丙烯导电纤维混凝土复合材料研究”和辽宁省教育厅项目(20040099)“聚苯胺/聚丙烯导电复合纤维研究”,以聚苯胺复合导电纤维为导电相材料,采用沥青玛蹄脂碎石混合料SMA-16非连续密级配,制备了聚苯胺复合导电纤维沥青混凝土。
     以聚丙烯纤维为基质,以苯胺单体为原料,采用现场吸附聚合法,制备了聚苯胺/聚丙烯(PANI/PP)复合导电纤维。对比研究了掺杂酸种类及其浓度、氧化剂种类及其浓度、苯胺单体含量、反应时间、反应温度等因素对聚合反应的影响,得出了最佳反应条件。聚苯胺含量达2.5%即可在基质纤维表面形成连续的导电沉积层,使纤维的电导率由原来的10~(-13)S/cm增大到10~(-1)S/cm数量级。
     利用红外光谱(FT-IR)、扫描电镜(SEM)、热重分析(TG)、拉伸试验等手段对PANI/PP复合导电纤维的结构与性能进行了测试。结果表明:复合纤维是聚丙烯与聚苯胺的共混体系,具有典型的皮芯型结构,皮层为墨绿色的聚苯胺沉积层,形成连续的导电通道,芯层为白色的聚丙烯基质纤维,提供物理机械性能;导电改性后纤维的强度、强力和伸长率均有下降,但热稳定性得到提高;复合纤维的耐酸性比耐碱性好,以对甲苯磺酸做掺杂酸比盐酸掺杂聚苯胺热稳定性好,脱掺杂后的复合纤维,可用其它无机酸或有机酸进行再掺杂;复合导电纤维的电导率随温度升高降低幅度较大,但几乎不受湿度影响;基质纤维细旦化、截面异形化、表面等离子体处理或共混COPET等改性处理均能提高纤维的吸附性,进而提高复合纤维表面聚苯胺含量、电导率和耐久性。经表面等离子体处理的纤维,聚苯胺含量可达到7.9%,电导率为0.17S/cm,耐水洗次数可达到55次以上,导电纤维的电导率在6个月内没有变化。
     采用马歇尔试验法对掺混复合纤维前后的沥青混合料的力学性能进行了测试,研究表明:聚苯胺复合导电纤维沥青混凝土的力学性能得到了明显改善,在纤维分散均匀时,随着纤维掺量的增加,稳定度、流值、空隙率均有增大趋势;对沥青混合料力学性能的提高程度由高到低依次为混配复合导电纤维、PANI/PP复合纤维、PANI/PET复合纤维、PP纤维和PET纤维;导电纤维沥青混合料试件的稳定度比掺原丝的高,这与导电改性后纤维强度明显降低的变化规律不同。
     掺混导电纤维的沥青混凝土电性能得到明显改善,研究表明:复合导电纤维沥青混合料电导率提高了5~6个数量级,渗流阈值为0.2%。在复合纤维拌和分散均匀的情况下,相同掺量下,12mm长导电纤维的导电改性效果要好于6mm长导电纤维;将碳黑导电母粒与复合纤维混配掺入时,能显著提高沥青混合料的电导率,增大幅度达1个数量级。
     纤维沥青混合料的电导率随时间的变化呈现良好的稳定性。压敏性和温敏性试验表明,随着压力增大电导率先快后慢逐渐增大,最后趋于导电纤维的电导率,电导率随温度的升高缓慢上升,呈现正温度系数效应。导电沥青混凝土的导电行为可用导电通道和隧道效应进行分析,引进了考虑填料在基体中形成导电网络链难易程度的网络因子n,结合渗流导电理论,建立了导电沥青混合料的“海岛—网络”模型。
     综合分析复合导电纤维沥青混凝土中纤维分散性、力学性能和电性能指标,确定导电纤维的最佳掺量是0.2%~0.4%。
Asphalt concrete is widely used in freeway, runway of airport, bridge pavement, and the roads of the city. Currently, the breakage of asphalt concrete pavement in China is still a serious problem. In order to monitor the damage of the asphalt pavement and manage the Intelligent Transportation System to prolong the service life of asphalt concrete pavement, a new multi-functional material-polyaniline compound conductive fiber blended asphalt concrete was investigated in the paper, in which the polyaniline compound conductive fiber mixed as electric conduction material. The design of the asphalt concrete was based on the SMA (Stone Mastic Asphalt) -16 discontinuous grade gradation. The paper was supported by "the research of polyaniline/polypropylene conductive fiber concretes compound materials" of the Science and Technology Funding Project of Liaoning Province and "the research of polyaniline/polypropylene electric conduction complex fiber" of the Education Departmentn of Liaoning Province Project.
     Preparing polyaniline/polypropylene compound conductive fiber through the in-situ polymerization synthesis and using aniline as a monomer and polypropylene fiber as a matrix. The optimal reaction condition could be gotten from the experimental results: the density of hydrochloric acid is 0.6 mol/L, the content of aniline monomer is 90 %; the density of oxidant is 0.02 g/mL; the reaction time is 2 h; the reaction temperature is below 20℃. Moreover, the polyaniline can form continuous electric conductive deposited coating on the surface of the matrix fiber as its content reaches 2.5 %, and the conductivity of the fiber can increase from 10~(-13)S/cm to 10~(-1)S/cm.
     The structure and the property of the polyaniline/polypropylene compound conductive fiber were examined by using infrared spectrum (FT-IR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), optical microscope, and tensile test. The results show that the compound conductive fiber has typical structure of sheath-core consists of black greened polyaniline electric conductive deposition as the skin and the white polypropylene matrix fiber as the core, which makes the compound fiber preferable physical mechanical property. The intensity and the elongation ratio of the electric conductive fiber are decreased but the thermal stability is enhanced after modified. The compound fiber has the good acid resistance but poor base resistance. The thermal stability of the compound fiber prepared by 4-methyl-benzene sulfonic acid (organic acid) is better than that prepared by hydrochloride acid (inorganic acid). Moreover, the compound fiber can be re-doped by other organic or inorganic acid after freed from the adsorbed acid. Furthermore, the electric conductivity of the compound fiber decreases with the temperature increasing but hardly changed with the humidity. The adsorptive ability and therefore the content of the polyaniline, the constant of electric conduction, and the durability of the compound fiber can be enhanced by thinning the diameter, section heteromorphosis, section heteromorphosis and plasma treatment of the surface or blending with COPET of the fiber. The content of polyaniline of the fiber is 7.9 %, the constant of electric conduction is 0.17 S/cm and unchangeable for more than 6 months, and the washing times in water is more than 55 after plasma treatment of the fiber surface.
     The mechanical properties of the asphalt concrete mixed with and without compound fiber were examined through Marshall Method. The result show that the mechanical property of the asphalt concrete intermingled with polyaniline compound fiber was enhanced. When the fiber dispersed uniformly, the Marshall stability, the flow value, the air voids ratio, and the voids filled of the asphalt concrete increase with the content of the compound fiber increasing. On the degree of enhancing the mechanical property of the bituminous mixture, the four things rank in turn from high to low are mixed PANI/PP and PANI/PET fibers, the PANI/PP compound conductive fiber, the PANI/PET compound conductive fiber, the polypropylene fiber, and the polyester fiber. It is obviously that stability of the asphalt concrete intermingled with polyaniline compound fiber is better than that with polyaniline compound fiber, which shows the different trends comparing with the mechanical property of the conductive fiber after conduction modified.
     The electric conductivity of the asphalt concrete intermingled with polyaniline compound fiber is improved. The experimental results indicate that the constant electric conductivity of the asphalt concrete with the transfusion threshold of 0.2 % is increased by 5~6 power. When the compound fiber dispersed uniformly, the conductivity of the asphalt concrete modified with the fiber of 12 mm in length is better than that of 6 mm in length. Moreover, the electric conductivity of the asphalt concrete can be increased an order magnitude when the carbon black and the compound fiber mixture blended simultaneously in the asphalt concrete.
     The electrical conductivity of the asphalt concrete is stable over time. The examination of the susceptivities of press and temperature of the asphalt concrete indicated that the electric conductivity of samples increased with the press increasing with a degressive acceleration and finally reached the electrical conductivity of compound fiber. Moreover, the constant electrical conductivity of the asphalt concrete increased slowly with the temperature increasing, which presented a normal temperature effect. The mechanism of the electric conduction of the asphalt concrete can be explained by using electric channels and tunnel effect in which a net factor, n, which indicates the capability of conductive net formation in the concrete. Combined with the transfusion theory, a type of sea-island model is proposed.
     Based on the systematical analysis of the dispersivity of the compound fiber, the mechanical property, and the electric conductivity of the asphalt concrete, the optimal content of the compound fiber is 0.2~0.4 %.
引文
[1]杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [2]赵择卿,陈小立.高分子材料导电和抗静电技术及应用.北京:中国纺织出版社,2006.
    [3]Kathirgamanathan P,Toohey M J,Haase J et al.Measurements of incendivity of electrostatic discharges from textiles used in personal protective clothing.Journal of Electrostatics,2000,49(1-2):51-70.
    [4]Paligova M,Vileakova J,Saha P et al.Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base.Physica A:Statistical Mechanics and its Applications,2004,335(3-4):421-429.
    [5]Cheng K B.Electrical and impact properties of the hybrid knitted inlaid fabric reinforced polypropylene composites.Composites Part A:applied science and manufacturing,2002,33(9):1219-1226.
    [6]Christie S,Scorsone E,Persaud K et al.Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline.Sensors and Actuators B,2003,90(1-3):163-169.
    [7]Bowman D,Mattes B R.Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications.Synthetic Metals,2005,154(1-3):29-32.
    [8]Rossi D D,Santa A D,Mazzoldi A.Dresware:wearable hardware.Materials Science and Engineering C,1999,7(1):31-35.
    [9]Dhawan A.Woven fabric-based electrical circuits:[Master thesis].North Carolina:State University,2001.
    [10]简汇宏,曾信雄,张雅惠.碳纤维之结构与导电性的关系.高科技纤维与应用,2003,28(11):43-47.
    [11]Cheng K B,Lee M L,Ramakrishna S.Electromagnetic shielding effectiveness of stainless steel/polyester woven fabrics.Textile Research Journal,2001,71(1):42-49.
    [12]Ahmad M S,Zihilif A M.The elecrical conductivity of polypropylene and nickel-coated carbon fiber composites.Polymer Composites,1992,13(1):53-57.
    [13]DuPont."Smart" Materials,Wilmington,DE19898.www.dupont.com
    [14]余志成,陈文兴.导电涤纶纤维的微细结构研究.纺织学报,1998,19(4):14-16.
    [15]胡智文,傅雅琴.涤纶金属化纤维的结构与性能研究.印染,2001,27(1):8-9.
    [16]宫玉梅,郭静,吴剑虹等.白色导电锦纶的研制.合成纤维,2002,31(4):27-28.
    [17]Gareia B,Belanger D.Electrochemical preparation and characterization of Polypyrrole doped with bis(trifluoromethanesulfone)imide anions.Synthetic Metals,1998,98(2):135-141.
    [18]Jerome C,Labaye D,Bodart I.Electrosynthesis of polyacrylic/polypyrrole composites:Formation of polypyrrole wires.Synthetic Metals,1999,i01(I):3-4.
    [19]Novak L,KruPa L,Chodak L.Electroconductive adhesives based on epoxy and Polyurethane resins filled with silver-coated inorganic fillers.Synthetic Metals,2004,144(1):13-19.
    [20]金欣,肖长发,安树林等.碳黑涂覆型聚酯导电纤维的制备与性能.纺织学报,2007,28(5):9-12.
    [21]刘维锦,沈家瑞.聚苯胺导电纤维的结构与性能.纺织学报,2000,21(4):224-226.
    [22]Wang H L,Romecro R J,Mattes B R et al.Effect of processing condition on the properies of high molecular weight condrctive polyaniline fiber.Journal of Polymer Science Part B:Polymer Physics,2000,38:194-204.
    [23]Mattes B R,Wang H L,Yang D.Formation of conductive polyaniline fibers derived from hight concentrated emeraldine base solutions.Synthetic Metals,1997,84(1):45-49.
    [24]李磊,叶光斗.PVA/PANI导电复合纤维的制备.合成纤维工业,2007,30(4):20-22.
    [25]Oh W K,Kim S H,Kim E A.Improved surface characteristics and the conductive of polyaniline/nylon 6 fabrics by plasma treatment.Journal of Applied Polymer Science,2001,81(3):684-694.
    [26]Anbarasan R,Jayaseharan J,Sudha M et al.Peroxydisulfate initiated graft copolymerization of aniline onto Poly(propylene) fiber.Journal of Applied Polymer Science,2003,90(14):3827-3834.
    [27]Kim B,Koncar V,Devaux E et al.Electrical and morphological properties of PP and PET conductive polymer fibers.Synthetic Metals,2004,146(2):167-174.
    [28]罗洁,李瑞霞,周洪等.聚苯按涂层导电涤纶纤维的制备与性能.四川大学学报(工程科学版),2000,32(8):83.
    [29]Nousiainen P,Rissanen M,Puolakka A.Electrically conductive fibres from polyaniline -polypropylene blends.Chemical Fibers International.2001,51(5):361-362.
    [30]Yin X H,Kobayashi K,Yoshino K.Pereolation conduction in Polymer composites containing Polypyrrole coated insulating Polymer fiber and conducting polymer.Synthetic Metals,1995,69(1-3):36?-368.
    [31]Hakansson E,Kaynak A,Lin T.Characterization of condueting Polymer coated synthetic fabries for heat generation.Synthetic Metals,2004,144(1):21-28.
    [32]Zhang Q H,Sun Z C,Li J.Conductive Polyaniline/Poly-ω-aminoundecanoyle blending fiber.Synthetic Metals,1999,102(1):1198-1199.
    [33]Young H P,Won S K,Dai h W.Size analysis of industrial carbon black by sedimentation and flow field-flow fraction.Analytical Biochemistry,2003,375(4):489-495.
    [34]刘小波,安树林,卢佳楠.碳黑/聚氨酯共混导电纤维熔融纺丝的研究.天津工业大学学报,2007,26(1):5-7.
    [35]吴行,高绪珊,江锡复.导电纤维的研究开发第Ⅵ报:海-岛结构导电纤维的制备.合成纤维,1998,27(5):14-19.
    [36]侯庆华.白色复合导电纤维DDY-2的研制第2报:导电纤维的结构与性能.合成纤维,2005,34(10):47-50.
    [37]张清华,金惠芬.聚苯胺/PA11共混导电纤维的研制:影响纤维导电性能的因素.合成纤维,2001,30(3):22-24.
    [38]Cromack K R,Jozefowicz M E,Oinder A J et al.Thermal process for orientation of polyaniline films.Macromolecules,1991,24(14):4157-4161.
    [39]刘小波.炭黑/聚氨酯共混导电纤维的研究:(硕士学位论文).天津:天津工业大学,2006.
    [40]He Y J.A novel emulsion route to sub-micrometer polyaniline/nano-Zno composite fibers.Applied surface Science,2005,249(1-4):1-6.
    [41]王雪亮.导电纤维的合成.合成纤维,1998,27(2):43-46.
    [42]陶再荣,华靖乐,李荣珍等.三芯型复合导电纤维的研究,合成纤维,1999,28(2):7-10.
    [43]刘维锦,邹国铭.以聚苯胺为导电覆盖层制备导电性涤纶的研究.合成纤维工业,1996,19(6):21-23.
    [44]孙东豪.聚苯胺包覆导电涤纶的研制.合成纤维,1999,28(3):21-26.
    [45]罗洁.聚吡咯及聚苯胺复合导电纤维的制备与性能:(博士学位论文).四川:四川大学,1999.
    [46]潘玮,黄素萍,金惠芬.聚苯胺/涤纶导电复合纤维的制各.中国纺织大学学报,2000,26(2):96-99.
    [47]王永跃,肖长发,金欣等.导电聚吡咯/聚酯复合织物研究.合成纤维工业,2005,28(6):24-27.
    [48]张清华,金惠芬.聚苯胺/聚酰胺导电初生纤维形态结构的研究.合成纤维工业,2002,25(6):6-8.
    [49]Kuma S,Ramana J V,Christopher D et al.Polyaniline,a conducting polymer,as a standard for hydrogen proling on material surfaces.Nuclear Instruments and Methods in Physics Research B,1998,142(4):549-554.
    [50]廖川平.聚苯胺的合成与性能研究:(博士后论文).上海:上海交通大学,2002.
    [51]Wang X,Schreuder-Gibson H,Downey M et al.Conductive fibers from enzymatically synthesized polyaniline.Synthetic Metals,1999,107(2):117-121.
    [52]Vasileva I S,Morozova O V,Shumakovich G P et al.Laccase-catalyzed synthesis of optically active polyaniline.Synthetic Metals,2007,157(18-20):684-689.
    [53]Macdiarmid A G,Epstein A J.The Polyaniline,Molecular Weight,Oxidation State and Derivatives.Polymer Preprint,1989,30:147-152.
    [54]Barta P,Kugler T,Salaneck W R,Monkman A P et al.Electronicstructure of emeraldine and pernigraniline base:A joint theoretical and experimental study.Synthetic Metals,1998,93(2):83-87.
    [55]Wan X M,Yang J,Zhu C et al.Scanning tunneling microscopy image of polyaniline.Thin Solid Films,1992,208:153-155.
    [56]王利祥,王佛松.导电聚合物聚苯胺的研究进展1.合成,链结构和凝聚态结构.应用化学,1990,7(5):10.
    [57]Prigodin V N,Epstein A J.Nature of insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers.Synthetic Metals,2002,125(1):43-53.
    [58]Kohlman R S,Zibold A,Tanner D B et al.Limits for metallic conductivity in conducting polymers.Physiol Revista Letter,1997,?8(20):3915-3918.
    [59]景遐斌,王利祥王献红耿延候王佛松导电聚苯胺的合成、结构、性能和应用.高分子学报,2005,(5):655-663.
    [60]Zheng W,Angelopoulos M,Epstein A J,MacDiarmid A G.Concentration dependence of aggregation of polyaniline in NMP solution and properties of resulting cast films.Macromolecules,1997,30(23):7634-7637.
    [61]Angelopoulos M,Dipietro R,Zheng W G,MacDiarmid A G.Effect of selected processing Parameters on solution properties and morphology of polyaniline and impact on conductivity.Synthetic Metals,1997,84(1):35-39.
    [62]雀部博之.导电高分子材料.北京:科学出版社,1989.
    [63]Hirase R,Hasegawa M,Shirai M.Conductive fiber based on poly(ethyleneterephthalate)-polyaniline composites manufactured by electrochemical polymerization.Journal of Applied Polymer Science,2003,87(7):1073-1078.
    [64]Hsu C.Process forimpregnating filaments of p-aramid yarns with polyaniline.U.S.Pat.,5,248,554.1993.
    [65]Paligova M,Vilcakova J,Saha P et al.Electromagnetic shielding of epoxy resin composites containing carbon fibers coated polyaniline base.Physica A,2004,335(3-4):421-429.
    [66]刘站华,庄勤亮.聚苯胺/氨纶复合导电织物在应力作用下的信号响应及稳定性.东华大学学报(自然科学版),2006,32(2):119-123.
    [67]王燕.用于智能纺织品的聚苯胺/氨纶复合导电长丝的制备及性能研究:(硕士学位论文).上海:东华大学,2005.
    [68]Pan W,Yang S,Li G.Electrically conductive PANI-DBSA/Co-PAN composite fibers prepared by wet spinning.Synthetic Metals,2005,149(2-3):181-186.
    [69]Smith P,Heeger A J,Cao Y et al.Electrically polyaniline.U.S.Pat.,5,470,505.1995.
    [70]Can M,Sevin E.The effect of the proton on electropolymerization of the thiophene.Applied Surface Science,2003,210(3-4):338-345.
    [71]Hralin A,Nousiainen P,Devaux E et al.Electrically and optically conductive synthetic polymer fiber.Chemical fibers international,2003,53(1):42-45.
    [72]Zhang Z M,Wei Z X,Wan M X.Nanost ructures of polyaniline doped wit h inorganic acids.Macromolecules,2002,35(15):5937-5942.
    [73]王臻,力虎林.模板法制备高度有序的聚苯胺纳米纤维阵列.高等学校化学学报,2002,23(4):721-723.
    [74]Pinto N J,Carrion P.Electroless deposition of nickel on electrospun fiber.Materials Science and Engineering A,2004,366(1):1-5.
    [75]陈筝.纤维增强沥青混合料制备与性能研究:(硕士学位论文).武汉:武汉理工大学,2006.
    [76]徐至钧.纤维混凝土技术及应用.北京:建筑工业出版社,2003.
    [77]李国芬,王宏畅,高敏杰等.SBS改性和博尼维纤维加强沥青混合料路用性能试验研究.公路,2007,(9):176-182.
    [78]Dipl I,Ludwig B,Steve B.The influence to the mechanical proberties of bituminous mastics and thus to open grain asphalt using synthetic fibres.AAPA 12th International Flexible Pavements Conference,Melbourne Australia,2003.
    [79]Freeman R B,Burati J L,Amirkhanian S N et al.Polyester fibers in asphalt paving mixtures.Association Asphalt Paving Technology,1989,58(1):387-409.
    [80]Serfass J P,Samanos J.Fiber-modified asphalt concrete characteristics Applications and behavior.Asphalt Paving Technology:Association of Asphalt Paving Technologists -Proceedings of the Technical Sessions.Baltimore,USA,1996,65:193-230.
    [81]Cleven M A.Investigation of the Properties of Carbon Fiber Modified Asphalt Mixtures:[Master dissertation].Michigan:Michgan Technological University,2000.
    [82]Mahabir P,Mayajit M.Utilization of Reclaimed Polyethylene in Bituminous Paving Mixes.Journal of Materials in Civil Engineering,2002,14(6):527-530.
    [83]Chen J S,Lin K Y I.Mechanism and behavior of bitumen strength using fibers.Journal of Materials Science,2005,40(1):87-95.
    [84]Moussa G K,Effect of Addition of Short Fibers of Poly-Acrylic and Polyamide to Asphalt Mixtures.AEJ-Alexandria Eng.Journal,2003,42(3):329-336.
    [85]Lee S J,Rust J P,Hechmi H et al.Fatigue Cracking Resistance of Fiber-reinforced Asphalt Concrete.Textile Research Journal,2005,75(2):123-128.
    [86]Bueno B D,Silva W R,Lima D C et al.Engineering properties of fiber reinforced cold asphalt mixes.Journal of Enveronmental Engineering,2003,129(10):952-955.
    [87]杨锡武.不同纤维沥青混合料路用特性的室内试验研究.公路,2007,(9):188-194.
    [88]陈华鑫.纤维沥青混凝土路面研究:(硕士学位论文).西安:长安大学,2002.
    [89]李炜光,张争奇,张登良等.纤维加强沥青路面的研究.西安公路交通大学学报,1998.18(3):235-238.
    [90]孙立兵.纤维沥青混凝土路用性能研究:(硕士学位论文).西安:长安大学,2002.
    [91]张争奇,胡长顺.纤维加强沥青混凝土几个问题的研究和探讨.西安公路交通大学学报,2001,21(1):29-32.
    [92]廖卫东,吴少鹏,张继宁等.聚酯纤维对SMA性能影响的研究.公路,2004,(4):124-126.
    [93]罗福兰,施兵,杨红辉.德兰尼特AS纤维沥青混合料路用性能研究.中外公路,2004,24(4):132-133.
    [94]倪富健,郭咏梅,曾兰英等.聚丙烯睛纤维SMA路用性能.交通运输工程学报,2003,3(3):7-14.
    [95]张洁,任予峡.美国高新技术软纤维-路面加强筋的推广与发展.山西交通科技,2001(06):35-42.
    [96]曹丽萍,袁峻,孙立军等.福塔纤维沥青混凝土性能研究.中南公路工程,2006,31(4):33-36.
    [97]倪良松,陈华鑫,胡长顺等.纤维沥青混合料增强作用机理分析.合肥工业大学学报(自然科学版),2003(05):1033-1037.
    [98]鲁华英,陈小丽,郭彦章等.纤维沥青混凝土的作用及机理.中外公路2004,24(4):143-146.
    [99]郭乃胜,赵颖华,孙略伦.纤维掺量对聚酯纤维沥青混凝土韧性的影响.交通运输工程学报,2006,6(4):32-35.
    [100]封基良.纤维沥青混凝土增强机理及其性能研究:(博士学位论文).南京:东南大学,2006.
    [101]Wu S P,Mo L T,Shui Z H et al.Investigation of the conductivity of asphalt concrete containing conductive fillers.Carbon,2005,43(7):1358-1363.
    [102]Fu X,Chung D D L.Radio-Wave-Reflecting Concrete for Latera Guidance in Automatic Highways.Cement and Concrete Research,1998,28(6):795-801.
    [103]吴少鹏,刘小明,磨炼同等.自诊断沥青混凝土及其应用前景.华中科技大学学报(城市科学版),2005,22(3):1-3.
    [104]唐祖全,钱觉时,杨再富.导电混凝土研究进展.重庆建筑大学学报,2006,282(6):135-139.
    [105]Banthin N,Djeridane S,Pigeon M.Electrical Resistivity of Carbon and Steel Micro-Fiber Reinforced Cements.Cement and Concrete Research,1992,22(5):804-814.
    [106]Xie P,Gu P,Beaudoin J J.Electrical Phenomena in Cement Conposites Containing Condutive Fibres.Journal of Materials Science,1996,31(15):4093-4097.
    [107]Sherif Y,Christopher Y T.Conductive Concrete Overlay for Bridge Deck Deicing.ACI Materials Joumal,1999,96(3):382-390.
    [108]吴少鹏,磨炼同,水中和等.导电沥青混凝土的制备研究.武汉理工大学学报,2002,26(5):567-570.
    [109]吴少鹏 磨练同 水中和.石墨改性沥青混凝土的导电机制.自然科学进展,2005,15(4):446-452.
    [110]姚武,钟文慧.碳纤维增强水泥基复合材料的电阻计算模型.硅酸盐学报,2007,35(7):893-898.
    [111]姚武,王瑞卿.基于隧道效应的CFRC材料的导电模型.复合材料学报,2006,23(5):121-125.
    [112]Macdiarmid A G.The Production of Conducting Polymer Fibers.US Pat.:5,177,187,1993
    [113]马利,汤琪.导电高分子材料聚苯胺的研究进展.重庆大学学报(自然科学版),2002,25(2):124-127.
    [114]张广平,毕先同.聚苯胺在一些有机溶剂中溶解性.高分子学报,1994,(1):55-59.
    [115]李德元,赵文珍,董晓强等.等离子体技术在材料加工中的应用,北京:机械工业出版社,2005.
    [116]陈稀,黄象安.化学纤维实验教程.北京:纺织工业出版社,1998.
    [117]秦卫华.沥青玛蹄脂碎石混合料(SMA)路面特点的探讨.公路交通科技(应用技术版)2007,(9):16-19.
    [118]彭波,袁万杰,李晓华等.贝雷法在SMA-16型集料级配设计中的应用.公路交通科技,2005,22(10)):23-26.
    [119]Chung D D.Strain sensors based on the electrical resistance change accom panying the reversible pull-out of condrcting short fibers in a less condrcting matrix.Smart Material and Structures.1995,4(1):59-61.
    [120]Wu S P,Mo L T,Shui Z H.Piezoresistivity of graphi te mokified asphalt-based composites.Key Engineering Materials,2003,249:391-395.
    [121]Li R Q,Dou D Y,Miao J L et al.Complicated resistivity-temperature behavior in polymer composites.Journal of Applied Polymer Science,2002,86(9):2217-2221.
    [122]余永宁,刘国权.体视学—组织定量分析的原理与应用.北京:冶金工业出版社,1989.
    [123]黄晚清.SMA粗集料骨架结构的细观力学模型研究:(博士学位论文).成都:西南交通大学,2007
    [124]Conkin J A,Huang S C,Huang S M et al.Thermal properties of polyaniline and poly (aniline-co-o-ethylanilien),Macromolecrles,1995,28(19):6522-6527.
    [125]Grunlan J C,Gerberich W W,Francis L F.Lowering the percolation threshold of conductive composites using particulate polymer microstructure.Journal of Applied Polymer Science,2001,80(4):692-705.
    [126]Zhang X W,Pan Y.Piezoresistance of conductor filled insulator composites.Polymer International,2001,50(2):229-236.
    [127]Matsumura T,Ochi M.Thermomechanical properties,Phase structure,and conductivity of organic/inorganichybridmaterial filled with a conductive filler.J.Appl.Polym.Sci.,1999,73:489-494.
    [128]Jessica A H,Julia A K.Tensile and impact properties of carbon filled nylon-6,6based resins.Journal of Applied Polymer Science,2004,91:2881-2893.
    [129]Chen G H,Weng W G.Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold.Journal of Polymer Science,Part B,Polymer Physics,2004,42:155.
    [130]Zou J F,Yu Z Z,Pan Y X et al.Conductive mechanism of polymer/graphite conducting composites with low percolation threshold.Journal of Polymer Science Part B:Polymer Physics,2004,40(i):954-963.
    [131]孙润军,来侃,张建春等.复合导电纤维导电理论模型研究.纺织学报,2002,22(4):214-215.
    [132]Clingerman M L,King J A,Schulz K H et al.Evaluation of electrical conductivity models for conductive polymer composites.Journal of Applied Polymer Science,2002,83(6):1341-1356.
    [133]Bueche F.Modification of polymers under heterogeneous conditions.Journal of Applied Physics,19?2,43(11):4837.
    [134]Wber.M,Kamal M R.Estimation of the volume resistivity of electrically conductive composites.Polymer Composites,1997,18(6):711-725.
    [135]Sumita M,Asai S,Miyadera N et al.Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acetate content.Colloed &Polymer Science,1986,264(3):212-217.
    [136]Miyasaka K,Watanabe K,Jojima E.Electrical conductivity of carbon-polymer composite as a function of carbon content.Journal of Materials Science,1982,17(6):1610-1616.
    [137]Mo L T,Wu S P,Shui Z H.Percolation model of graphite-modified asphalt concerte.Journal of Wuhan University of mechnoloqy(Materaials Science Edition),2005,20(1):111-113.
    [138]Chen P W,Chung D D L.Concrete as a new strain/stress sensor.Composites Part B,1996,27(1):11-23
    [139]孙建刚,杨伟东,张斌等.基于均匀试验的碳纤维混凝土导电性研究.大连民族学院学报,2007,(1):20-23
    [140]Heiser J A,King J A,Konell J P.Electrical Conductivity of Carbon Filled Nylon 6,6.Advances in Polymer Technology,2004,23(2):135-146.
    [141]Vilcakova J,Saha P,Quadrat O.Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region.European Polymer Journal,2002,38(12):2343-2347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700