用户名: 密码: 验证码:
基于液体环境的内窥镜机器人的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微创外科手术技术的应用范围不断拓展,自主式内窥镜机器人研究已成
    为科学家们的研究热点。本文作者考虑到人体内腔环境中或多或少存在一定量体
    液的现实,给出基于流体环境的螺旋式无损伤内窥镜机器人,基于生物游动原理
    的内窥镜机器人以及瑞利阶梯内窥镜机器人设计方案。本文在对这三种内窥镜机
    器人进行理论及实验研究的基础上,比较分析各自的优缺点,同时,基于功能组
    合创新的设计理念,提出一种有望应用到血管等充满液体的微细管道中运行的基
    于生物游动与螺旋驱动原理的内窥镜机器人设计方案。
     论文的第一章首先分析传统内窥镜系统的缺陷以及自主内窥镜机器人之于
    微创外科手术技术的重要研究意义。在概述自主内窥镜机器人的研究现状及成果
    的基础上,指出其需要改进的地方,提出本论文的研究切入点和主要研究内容。
     论文的第二章在双圆柱螺旋内窥镜机器人的基础上,提出单圆柱螺旋变体内
    窥镜机器人设计方案。同时,作者研究了内窥镜机器人系统的无线控制与图像传
    输子系统及配套的体外监控系统的理论设计方案。
     论文第三章在对肠道壁的生物力学特性及生物体液的非牛顿特性进行实验
    研究的基础上,建立肠道壁的粘弹性材料模型以及生物体液的非牛顿流变模型,
    进而获得肠道内窥镜机器人运行环境的数学模型。将运行环境的非线性数学模型
    耦合到螺旋内窥镜机器人理论分析模型中即得螺旋内窥镜机器人非线性仿真分
    析模型。
     论文第四章利用前文的所述的螺旋内窥镜机器人非线性仿真分析模型,理论
    比较分析牛顿流体和Casson非牛顿流体中机器人无量纲轴向牵引力和周向摩擦
    阻力随着螺纹几何特征参数的变化规律,得出获得最佳动力学性能时,螺纹几何
    特征参数的优选解。另外,作者还对运行环境特征参数对机器人运动学性能的影
    响进行了研究。
     论文第五章为了验证螺旋内窥镜机器人非线性仿真分析模型的正确性以及
    仿真分析结果的可信性,研制出螺旋内窥镜机器人轴向牵引力和周向摩擦阻力的
    测试实验台。利用该测试实验台对机器人轴向驱动力及周向摩擦阻力随螺旋几何
    特征的变化规律进行实验测试,并与理论值进行了比较。研究表明,理论值与实
    验值能很好的吻合,这充分证明上述非线性仿真分析模型的J下确性和仿真分析结
    果的可信性。测试比较了螺旋内窥镜机器人轴向驱动力的变化规律与机器人尺寸
    的关系,测试结果表明,当机器人外形尺寸微型化到φ0.5mm时,理论分析模型
    依然正确。依据前文获得的螺纹结构优选解,作者制作了双圆柱螺旋内窥镜机器
    人及其变体机器人实验样机,利用实验样机在离体肠道进行了机器人运行特性实
    验研究。
     论文第六章给出基于流体环境的另外两种内窥镜机器人即基于生物体游动
    原理的内窥镜机器人和瑞利阶梯内窥镜机器人驱动方案,并对这两种内窥镜机器
    人分别进行了理论建模及原理实验研究。在比较分析螺旋内窥镜机器人、基于生
    物游动原理的内窥镜机器人和瑞利阶梯内窥镜机器人各自优缺点的基础上,基于
    功能组合创新的设计思想,提出一种基于生物游动与螺旋驱动原理的内窥镜机器
    人设计方案。
With the expanding of applied range of minimal invasive surgery (MIS) technology, studies on the autonomic endoscopic micro robots have been more and more important. Many kinds of micro robots have been studied in the past decades for medical use. After the analysis of present research status of endoscopic micro and considering they always operate in the environment with liquid, the dissertation proposed a novel spiral-type non-invasive endoscopic micro robot and its modified micro robot, a tadpole-like micro robot and a Rayleigh stepped micro robots. After making the theoretical and experimental researches about performances of the micro robots, merits and faults of the three kinds of endoscopic micro robots had been compared each other, and a derived endoscopic micro robot which is the tadpole-like micro robot with spiral head has been proposed to operate in blood vessels in the future.The first chapter analyzed the shortcomings of the conventional endoscope system, investigated the present research status of autonomic endoscopic and then pointed out the primary coverage of the dissertation.Chapter two showed the design scheme and the locomotion principle of spiral-type endoscopic micro robot. After the research on the thrust force of the micro robot, the modified spiral-type endoscopic micro robot was presented. A branch system of the image acquisition, wireless transmission and control has been designed to integrate with the endoscopic micro robots.Chapter three provided the nonlinear theoretical model of the spiral-type micro robot. In this chapter, we firstly made experiments about the rheologic behaviors of dog's intestinal juice, human's gastric juice, whole blood and artificial blood. The rheologic behaviors can be expressed with the Casson equation. We also studied on the biomechanical behavior of dog's small intestines experimentally and obtained an equation to express the viscoelasticity performance. The nonlinear theoretical model of the spiral-type micro robot was constructed after coupling the models of operating environment with the innovation Reynolds equations.With the nonlinear theoretical model mentioned above, chapter four studied on the axial thrust force and circumferential factional resistance varied with the characteristic parameters of spiral of the micro robot. We also studied about the influences of the environment character to the locomotion performance theoretically. Chapter five gave the design scheme of the experimental facility of axial thrust force and circumferential frictional resistance and fabricated it to confirm the validity of the nonlinear theoretical model. With the experimental facility, we studied about the axial thrust force and circumferential frictional resistance varied with the characteristic parameters of spiral of the micro robot. Also comparative studies on the large-scale and small-scale spiral-type micro robot have been made experimentally. With the 2 mm diameter micro motor, 4 mm diameter model machines of spiral-type micro robot and it's modified one have been fabricated. Locomotion speeds of micro robots
    operating in isolated pig's intestines have been studied experimentally.Chapter six provided two derived endoscopic micro robots: the tadpole-like microrobot with spiral head and the stepped micro robot. After making theoretical andexperimental researches about performances of the two micro robots, merits and faultsof the three kinds of endoscopic micro robots had been compared each other, and aderived endoscopic micro robot which is the tadpole-like micro robot with spiral headhas been proposed to operate in blood vessels in the future.Chapter seven generalized all the studies of this dissertation and pointed out theinnovations, and then discussed which studies should be made in future.
引文
1. K. Ikuta, M. Tsukamoto, S. Hirose. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope, IEEE Int. Conf. Robotics and Automation, 1988:427~430
    2. K. Ikuta, M. Tsukamoto, S. Hirose. Mathematical model and experiment verification of shape memory alloy for designing micro actuator. IEEE Micro Electro Mechanical Systems, 1991: 103~108
    3. S. Hirose. Biologically inspired robots: snake-like locomotors and manipulators. Oxford University press, 1993
    4. T. Yamaguchi, Y. Kagawa, I. Hayashi, N. Iwatsuki, K. Morikawa, K. Nakamura. Screw principle microrobot passing steps in a small pipe. Proceedings of 1999 International Symposium on Micromechatronics and Human Science, 1999:149~152
    5. S. Iwashina, I. Hayashi, N. Iwatsuki, K. Nakamura. Development of in-pipe operation micro robots. Proceedings of 1994 5th International Symposium on Micro Machine and Human Science, 1994:41~45
    6. M. Takahashi, I. Hayashi, N. Iwatsuki, K. Suzumorl, N. Ohki. The development of an in-pipe micro robot applying the motion of an earthworm. Proceedings of 1994 5th International Symposium on Micro Machine and Human Science, 1994:35~40
    7. S. Kato, H. Akita, K. Miyajima, T. Sugaya, Y. Kasai, N. Kato. Fabrication of an in-pipe microrobot movable in sheep's small intestine. Proceedings of the Fifteenth Annual Meeting of the American Society for Precision Engineering, 2000:341~344
    8. S. Kato, M. Shirakawa, M. Ohno, M. Tabata. Fabrication of a microrobot movable in the small intestine of a pig. Proceedings of the Fourteenth Annual Meeting of the American Society for Precision Engineering, 1999:204~207
    9. S. Maeda et al., Active endoscope with SMA coin springs. IEEE Int. Conf. Robotics and Automation, 1996:290~295
    10. K. Hwang, H. Kim, S. Oh, J. W. Jeon, J. D. Nam, H. Choi. Dynamic modeling of the electrostrictive polymer to make micro endoscope robot. 2001 Proceeding of the 23rd Annual EMBS International Conference, 2001:3472~3479.
    11. N. Saga, T. Nakamura. Elucidation of propulsive force of microrobot using magnetic fluid. Journal of Applied Physics, 2002, 91 (10): 7003~7005.
    12. A. B. Slatkin, J. W. Burdick. The development of a robot endoscope. Proceeding of the International Symposium on Experimental Robotics, Standford, CA, 1995:162~171.
    13. H. D. Hoeg, A. B. Slatkin, J. W. Burdick. Biomechanical Modeling of the Small Intestine as Required for the Design and Operation of a Robotic Endoscope. Proc Int Conf on Robotic and A utomation, Sanfrancisco, CA, 2000:1599~1606
    14. P. Dario, M. C. Carrozza, and B. Allotta. Micro-mechatronics in Medicine. IEEE/ASME Transactions on Mechatronics, 1996:35~42
    15. P. Dario, M. C. Carroza, L. Lencioni, B. Magnani, S. D. Attansio. A micro-robotic system for colonoscopy, 1997 IEEE International Conference on Robotics and Automation, Albuquerque(NM), 1997:1567~1572
    16. P. Dario, M. C. Carrozza, and A. Pietrabissa. Development and in vitro testing of a miniature robotic system for computer-assisted co lonoscopy. Comput. Aided Surg., 1999, 4:1~14
    17. P. Dario, M. C. Carroza, A. Bennenutio et al. Micro-systems in biomedical applications. J. Micromech. Micro Eng, 2000, 10:235~244
    18. E. V. Mangen et al. Development of peristaltic endoscope. IEEE Int. Conf. Robotics and Automation, Washington, DC, 2002:347~352
    19. Y. M. Lim et al. A self-propelling endoscopic system. IEEE Int. Conf. Robotics and Automation, 2001:1117~1122
    20. L. M. Gao, Y. Chen, L. M. Lin, G. Z. Yan. Micro motor based a new type of endoscope. Proceeding of the 20th Annual Conference of the IEEE Engineering in Medicine and Biology Society. 1998, 20(4): 1822~1825
    21. L. Lin, L. Gao, G. Yah, R. Rong. A study on the endoscope system driven by squirmy robot. IEEE Int. Conf. Intelligent Processing Systems, 1997:75~81
    22. P. Basset, A. Kaiser, P. Bigotte, D. Collard, L. Buchaillot. A large stepwise motion electrostatic actuator for a wireless microrobot. Fifteenth IEEE International Conference on Micro Electro Mechinical Systems, 2002:606~609
    23. S. Kumar, I. M. Kassim, V. K. Asari. Design of a vision-guided microrobotic colonoscopy system. Advanced robotics, 2000, 14(2): 87~104
    24.徐小云,颜国正,鄢波.一种新型管道检测机器人系统.上海交通大学学报,2004,38(8):1324~1327
    25.迟冬祥,颜国正,林良明.基于蚯蚓运动原理的肠道检查微小机器人内窥镜系统.机器人,2002,24(3):222~228
    26.卢永奎,许日文,吴月华等.微型机器人蛇行游动机构的系统仿真.光学精密工程,2001,9(6):542~547
    27.李勃,吴月华,许旻,杜华生,杨杰.基于压电陶瓷驱动的腹腔手术微型机器人.光学精密工程,2001,9(6):535~538
    28.李佳列,颜国正等.微小型仿生变体驱动机器人的研究.仪器仪表学报,2001,22(1):101~103
    29.程良伦,杨宜民.一种新型管道内微机器人的研究.机器人,1999,21(4):249~255
    30.张凯,周铁英.三种弯曲旋转超声电机的原理及研究,压电与声光,2002,24(3):191~195
    31.米智楠,钱晋武,龚振邦,沈林勇,李竁.气动微型机器人的研究.机床与液压,2000,No.6:31,44
    32.贾宝贤,刘永红,杨毅.仿蚯蚓机器人蠕动装置的研究.机器人,2000,22(5):415~419
    33. Y. S. Zhou et al. A new medical microrobot for minimal invasive surgery. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 2001, 2001, 215(H2):215~220
    34. Y. S. Zhou et al. Noninvasive method to drive medical micro-robot. Chinese Science Bulletin, 2000, 45(5):617~620
    35.周银生,李立新,赵东福.一种新型的微型机器人.机械工程学报,2001,37(1):11~13.
    36.周银生,贺惠农,全永昕.无损伤肠道机器人运行速度的研究,摩擦学学报,1999,19(4):299~303
    37.周银生,贺惠农,顾大强等.医用微型机器人的体内驱动方法.科学通报,1999,44(20):2210~2211
    38.何斌,杨灿军,周银生,陈鹰.医用微型机器人蠕动肠道中的驱动力计算及实验研究.中国机械工程,2002,13(1):49~51
    39.何斌,周银生,陈鹰.新型医用微型机器人特性参数的研究.自然科学进展,2002, 12(8):882~885
    40.何斌,杨灿军,陈鹰,周银生.粘弹性肠道能动性模型的建立与数值模拟.中国生物医学工程学报,2003,22(3):267~273
    41. B. Chen, Y. Zhou, J. Kang, X. Mu. Biomechanical behavior of dog's small intestines. Journal of Zhejiang University Science, 2002, 3(5):549~552
    42. K. Ikeuchi, S. Fujita, M. Ohashi. Analysis of fluid film formation between contacting compliant solids. Tribology, 1998, 31 (10):613~618
    43. K. Yoshinaka, N. Tomita, K. Ikeuchi. Experimental study of hydrodynamic propulsion of a medical device with a spiral ribbed impeller. Wear, 1998, No. 220:141~144
    44. K. Ikeuchi, K. Yoshinaka, N. Tomita. Low invasive propulsion of medical devices by traction using mucus. Wear, 1997, No. 209:179~183
    45. K. Ikeuchi, K. Yoshinaka, S. Hashimoto et al. Locomotion of medical micro robot with spiral ribs using mucus. Micro Machine and Human Science, 1996, Proceedings of the Seventh International Symposium, 1996:217~222
    46. K. Ishiyama, K. I. Arai, M. Sendoh et al. Spiral-type micro-machine for medical applications. Proceedings of 2000 International Symposium on Micromechatronics and Human Science, 2000:65~69
    47. T. Honda, K. I. Arai, K. Ishiyama. Micro swimming mechanisms propelled by external magnetic fields. 1996 IEEE Transactions on Magnetics, 1996, 32(5):5085~5087
    48. M. Sendoh, N. Ajiro, K. Ishiyama et al. Effect of machine shape on swimming properties of the spiral-type magnetic micro-machine. 1999 IEEE Transactions on Magnetics, 1999, 35(5): 3688~3690
    49. K. Ishiyama, M. Sendoh, A. Yamazaki et al. Swimming of magnetic micro-machines under a very wide-range of Reynolds number conditions. 2001 IEEE Transactions on Magnetics, 2001, 37(4):2868-2870
    50. I. Hayashi et al. The running characteristics of a screw-principle micro robot in a small bent pipe. Proc of MHS'95, Nagoya, Japan, 1995:225~228
    51. E. W. H. Jager, O. Inganas, I. Lundstrom. Microrobots for micrometer-size objects in aqueous media:potential tools for single-cell manipulation. Science, 2000, 288:2335~2338.
    52. E. W. H. Jager, C. Immerstrand, K. E. Magnusson, O. Inganas, I. Lundstrom. Biomedical applications of polypyrrole microactuators:from single-cell clinic to microrobots. First Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Lyon, France, 2000:58~61
    53. M. Sendoh, K. Ishiyama, K. I. Arai. Direction and individual control of magnetic micromachine. 2002 IEEE Transactions on Magnetics, 2002, 38(5):3356~3358
    54. M. Sendoh, K. Ishiyama et al. Fabrication of magnetic actuator for use in a capsule endoscope. 2003 IEEE transactions on magnetics, 2003, 39(5):3232~3234
    55. K. Ishiyama, M. Sendoh, K. I. Arai. Magnetic micromachines for medical applications. Journal of Magnetism and Magnetic Materials, 2002, 242(4):41~46.
    56. A. Yamazaki, M. Sendoh, K. Ishiyama. Fabrication of micropump with spiral-type magnetic micromachine. 2003 IEEE Transactions on Magnetics, 2003, 39(5):3289~3291.
    57. Fukuda, Hosokai, Kikuchi. Distributed type of actuators by shape memory alloy and its application to underwater mobile robotic mechanism. Proceeding of the 1990 IEEE Conference on Robotics and Automation, 1991:1316~1321
    58. Fukuda, Hosokai, Ohyama, Hashimoto, Arai. Giant magnetostrictive alloy applications to micro mobile robot as a micro actuator without power supply cables. Proceeding of 1990 IEEE Conference on Micro Electro Mechanical Systems, 1990:210~215
    59. K. Fukuda, M. Arai. Steering mechanism of underwater micro mobile robot. Proceeding of the 1994 IEEE Conference on Robotics and Automation, 1994:814~819
    60. T. Fukuda, A. Kawamoto, F. Arai, H. Matsuura. Steering mechanism and swimming experiment of micro mobile robot in water. Proceedings of the 1995 IEEE Micro Electro Mechanical Systems, Piscataway, NJ, USA, 1995:300~305.
    61. T. Fukuda, A. Kawamoto, F. Arai, H. Matsuura. Micro-mobile robot in fluid (2nd report, steering mechanism and swimming experiment of micro-mobile robot in water). Transactions of the Japan Society of Mechanical Engineers, 1996, 61(591):4396~4401
    62. T. Fukuda, A. Kawamoto, K. Shimojima. Micro mobile robot in fluid (3rd report, acquisition of swimming motion by RBF fuzzy neuro with unsupervised learning). Transactions of the Japan Society of Mechanical Engineers, 1996, 62(597): 1888~1895
    63. S. Guo, T. Fukuda, N. Kato, K. Oguro. Development of underwater microrobot using ICPF actuator. IEEE Int. Conf. Robotics and Automation, 1998:1829~1834
    64. S. Guo, T. Fukuda, K. Asaka. Fish-like underwater microrobot with 3 DOF. Proceeding of the 2002 IEEE International Conference on Robotic and Automation, Washington, DC, 2002:738~743
    65. S. Guo, K. Asaka. Development of Underwater Microrobot and New Type of Micropumps Using ICPF Actuator. ICRA02 Workshop, USA, 2002:1829~1831
    66. S. Guo, Y. Hasegaw, T. Fukuda, K. Asaka. Fish-like underwater microrobot with multi DOF. IEEE 2001 International Symposium on Micromechatronics and Human Science, 2001:63~68
    67. S. Guo, K. Sugimoto, S. Hata, J. Su, K. Oguro. A new type of underwater fish-like microrobot. Proceeding of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000:867~872
    68. S. Guo, T. Fukuda, K. Oguro. Development of an artificial fish microrobot. IEEE 1999 International Symposium on Micromechatronics and Human science, 1999:135~140
    69. Guo S., Kato N., Fukuda, T., et al. A fish microrobot using ICPF actuator. 1998 5th International Workshop on Advanced Motion Control, Coimbra, 1998:592~597
    70. S. Guo, K. Wakabayashi, N. Kato, T. Fukuda, T. Nakamura, K. Oguro. An artificial fish robot using ICPF actuator. IEEE 1997 International Symposium on Micromechatronics and Human Science, 1997:205~210
    71. S. Guo, T. Fukuda, F. Arai. Micro active guide wire catheter system. 1995 IEEE International Conference on Robotics and Automation, 1995:172~177.
    72. G. Laurent, E. Piat. Efficiency of swimming microrobots using ionic polymer metal composite acruators. Proceeding of the 2001 IEEE International Conference on Robotics and Automation, 2001:3914~3919.
    73. M. Majarrad, M. Shahinpoor. Biomimetic Robot Propulsion Using Polymer Artificial Muscles. Proceeding of the 1997 IEEE International Conference on Robotics and Automation, 1997: 2152~2157
    74. M. Mojarrad, M. Shahinpoor. Noiseless propulsion for swimming robotic structures using polyelectrolyte ion-exchange membrane. Proceedings of Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 1996:183~192
    75. P. A. Kerrebrock, J. M. Anderson, J. Parry. Application requirements of artificial muscles for swimming. Smart Structures and Materials 2001 Conference, 2001:364~374
    76. M. Otake, Y. Kagami, M. Inaba, H. Inoue. Motion design of a starfish-shaped gel robot made of electro-active polymer gel. Robotics and Autonomous Systems, 2002, 40:185~191
    77. M. Otake, M. Inaba, H. Inoue. Kinematics of gel robots made of electro-active polymer PAMPS gel. 2000 IEEE International Conference on Robotics and Automation, 2000, 1:488~493
    78. M. Otake, M. Inaba, H. Inoue. Development of a gel robot made of electro-active polymer PAMP Sgel. 1999 IEEE International Conference on Systems, Man, and Cybernetics. 1999, 2: 788~793
    79. Y. Chen, T. Mei, D. Y. Kong, X. Y. Xiong, K. Li. Magnetic driving principle of a swimming microrobot. Proceeding of the Society of Photo-Optical Instrumentation Engineers, 2001: 222~225
    80. T. Mei, Y. Chen, G. Fu, D. Kong. Wireless drive and control of a swimming microrobot. 2002 IEEE International Conference on Robotic and Automation, Washington, DC, 2002: 1131~1136
    81. K. David, G. Mark, T. Michael. Optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology 1996, 1996:1~9
    82. Y. Osada, H. Okuzaki, H. Hori. A Polymer Gel with Electrically Driven Motility. Nature, 1992, 355:242~244
    83. Y. Osada, H. Okuzaki, J. P. Gong et al. Electro-Driven Gel Motility on the Base of Cooperative Molecular Assembly Reaction. Polym. Sci., 1994, 36:340~351
    84.张凯,周铁英.三种弯曲旋转超声电机的原理及研究.压电与声光,2002,24(3):191~195
    85.梅涛,陈永,张培强,伍小平.铁磁橡胶执行器与微型游泳机器人的尺寸效应.光学精密工程,2001,9(6):523~526
    86.钟映春,谭湘强,杨宜民.游动微机器人主体机构的设计研究.机床与液压,2001,6:18~19,31.
    87.梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展Ⅰ—鱼类推进机理.机器人,2002,24(2):107~111
    88.梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅱ—小型实验机器鱼的研制.机器人,2002,24(3):234~238
    89.梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅲ—水动力实验研究.机器人,2002,24(4):304~308
    90.梁建宏,王田苗,魏洪兴,刘淼,王晓君.水下仿生机器鱼的研究进展Ⅳ—多仿生机器鱼协调控制研究.机器人,2002,24(5):413~417
    91.刘军考,陈在礼,陈维山,王力刚.水下机器人新型仿鱼鳍推进器.机器人,2000,22(5):427~432
    92.谭湘强,钟映春,杨宜民.液体中游动微机器人的现状与分析.机器人,2001,23(5):467~470
    93. M. Sfakiotakis, D. M. Lane, J. B. C. Davies. Review of Fish Swimming Modes for Aquatic Locomotion. IEEE Journal of Oceanic Engineering, 1999, 24(2):237~252,
    94. E. G. Drucker, G. V. Lauder. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. Journal of Experimental Biology, 2000, 203 (16):2379~2393
    95. T. J. Pedley, S. J. Hill. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics. Journal of Experimental Biology, 1999, 202(23):3431~3438
    96. J. M. Wakeling. Biomechanics of fast-start swimming in fish. Comparative Biochemistry and Physiology, 2001, 131 (Part A):31~40
    97. C. E. Behlke. Hydraulic effects on swimming fish in fish passage structures. Proc Natl Conf Hydraul Eng. Publ by ASCE, New York, USA, 1988:1116~1121
    98. P. R. Bandyopadhyay. Maneuvering hydrodynamics of fish and small underwater vehicles. Integrative and Comparative Biology, 2002, 42(1):102~117
    99. T. Y. Wu. Hydromechanics of swimming propulsion (Part Ⅰ). Swimming of a two-dimensional flexible plate at variable forward speed in an inviscid fluid. J. Fluid Mech, 1971, 46(2): 337~ 350
    100. T. Y. Wu. Hydromechanics of swimming propulsion (Part Ⅱ). Some optimal shape problems. J. Fluid Mech, 1971, 46(3):521~547
    101. T. Y. Wu. Hydromechanics of swimming propulsion. Part Ⅲ. Swimming and optimum movements of slender fish with side fins. J. Fluid Mech, 1971, 46(3):545~568
    102. T. Y. Wu. Mathematical biofluiddynamics and mechanophysiology of fish locomotion. Mathematical Methods in the Applied Sciences, 2001, 24(17-18): 1541~1564
    103. J. Y. Cheng, G. L. Chahine. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure. Comparative Biochemistry and Physiology, 2001, 131 (Part A):51~60
    104. J. Y. Cheng, L. X. Zhuang, B. G. Tong. Analysis of swimming three-dimensional waving plates. J. FluidMech, 1991, 232:341~355
    105.吴耀祖.水波动力学研究进展.力学进展,2001,30(3):327~343
    106.程健宇,庄礼贤,童秉纲.波动薄板游动的展向变形作用和壁面效应.中国科学技术大学学报,1991,21(4):423~427
    107.程健宇,庄礼贤,童秉纲.三维变幅波板的游动.水动力学研究与进展,1991,No.6(增):1~11
    108.童秉纲,王安平.三维波动板加速运动的推进性能研究.空气动力学学报,1991,9(3):285~293
    109.庄礼贤,童秉纲,程健宇.鱼类波状摆动推进的流体力学研究.力学与实践,1991,13(3):17~26
    110.童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志,1998,20(1):1~7
    111.童秉纲.鱼类波状游动的推进机制.力学与实践,2000,22(3):69~74
    112. H. Liu, K. Kawachi. A numerial study of undulatory swimming. Journal of Computational Physics, 1999, 155:223~247
    113. H. Liu, R. J. Wassersug, K. Kawachi. The three dimensional hydrodynamics of tadpole locomotion. J. Exp. Biol., 1997, 200:2807~2819
    114. H. Liu, R. J. Wassersug, K. Kawachi. A computational fluid dynamic study of tadpole swimming. J. Exp. Biol., 1996, 199:1245~1260
    115. P. A. Doherty, R. J. Wassersug, J. M. Lee. Mechanical properties of the tadpole tail fin. J. Exp. Bio., 1998, 201:2691~2699
    116. W. M. Oxner, J. Quinn, M. E. DeMont. A mathematical model of body kinematics in swimming tadpoles. Can. J. Zool., 1993, 71:407~413
    117. V. H. Karin, J. W. Richard. Tadpole locomotion: axial movement and tail functions in a largely vertebraeless vertebrate. AMER. Zool., 2000, 40:62~76
    118. R. F. Gleen, F. K. David, L. P. Robert. Swimming of spermatozoa in a linear viscoelastic fluid. Biorheology, 1998, 35(45):295~309
    119. N. Kato, M. Furushima. Pectoral fin model for maneuver of underwater vehicles. Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996:49~56
    120. J. N. Newman. The force on a slender fish-like body. J Fluid Mecha., 1973, 58(4):689~672
    121. S. Maeda, K. Abe, M. Murayama, O. Tohyama. Shape memory alloy actuators and their reliability. Proceedings of the International Society for Optical Engineering, 2001: 111~118
    122. K. Kuribayashi, S. Shimizu, M. Yoshitake el at. Mechanical properties and control of shape memory alloy thin film actuator. Journal of the Japan Society for Precision Engineering, 1998, 64(3):413~417
    123.李明东,马培荪,马建旭等.形状记忆合金驱动器驱动方式研究.机械设计与研究,1999,No.3:26~29
    124.魏中国,彭红樱,杨大智.形状记忆合金传感驱动器件及其在机器人中的应用.机器人,1994:16(4):244~249
    125. O. K. Rediniotis, D. C. Lagoudas, T. Mashio el at. Theoretical and experimental investigations of an active hydrofoil with SMA actuators. Proceedings of The Society of Photo-Optical Instrumentation Engineers, 1997:277~289
    126. G. Webb, L. Wilson, D. Lagoudas, O. Rediniotis. Adaptive control of shape memory alloy actuators for underwater biomimetic applications. AIAA Journal, 2000, 38(2):325~334
    127. L. J. Garner, L. N. Wilson, D. C. Lagoudas, O. K. Rediniotis. Development of a shape memory alloy actuated biomimetic vehicle. Smart Mater. Struct, 2000, No. 9:673~683
    128.张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程,1998,6(5):26~32
    129.叶至碧.压电陶瓷驱动.电子元件与材料,1989,8(4):1~6
    130. T. Fukuda, A. Kawamoto, F. Arai, H. Matsuura. Steering mechanism of underwater micro mobile robot. Proceeding of the 1994 IEEE Conference on Robotics and Automation, 1994:814~819
    131. T. Fukuda, A. Kawamoto, A. Fumihito, M. Hideo. Steering mechanism and swimming experiment of micro mobile robot in water. Proceedings of the IEEE Micro Electro Mechanical Systems. 1995:300~305
    132.李勃,吴月华,许曼,杜华生,杨杰.基于压电陶瓷驱动的腹腔手术微型机器人.光学精密工程,2001,9(6):535~538
    133.贾宇辉,谭久彬,张杰.超磁致伸缩微位移驱动器的研究.微细加工技术,2000,No.2:70~74
    134.张秀丽.磁致伸缩薄膜和驱动器.光机电信息,1996,13(4):21~24
    135. C. Frank, L. Nicolas, G. Gilles. Giant magnetostrictive alloy actuators. Journal of Applied Electromagnetics in Materials, 1994, 5(1):67~73
    136. X. Yang, Z. Y. Jia, D. Guo el at. Theoretical analysis and experimental research on driving magnetic field in giant magnetostrictive actuator. Journal of Dalian University of Technology, 2001, 41(5):578~580
    137. E. Quandt, A. Ludwig, K. Seemann. Giant magnetostrictive multilayers for thin film actuators. International Conference on Solid-State Sensors and Actuators, 1997:1089~1092
    138.鲍芳,李继容,王春茹.磁致伸缩器件及其应用研究.传感技术,2001,20(8):1~3
    139.李文卓,赵万生,詹涵箐,吴湘.压电/电致伸缩材料及驱动器的新技术与应用.压电与声光,2001,28(4):260~264
    140.张永顺,贾振元,丁凡等.外磁场驱动无缆微型机器人行走特性的分析.机械工程学报,2003,39(6):135~139
    141.张秀丽.磁致伸缩薄膜和微驱动器.光机电信息,1996,13(4):21~24
    142. R. Kanno, A. Kurata, M. Hattori et al. Characteristic and Modeling of ICPF Actuator-2nd Report: Frequency Characteristics. Proceeding of JSME Annual Conference on Robotics and Mechatronics, Kobe, Japan, 1994:1206~1209
    143. K. Oguro, N. Fujiwara, K. Asaka el at. Polymer electrolyte actuator with gold electrode. In Proc. of Conf. on Electroactive Polymer Actuator and Devices, California, 1999, 64~71
    144. M. Shahinpoor. Electro-mechanics of iono-elastic beam as electrically- controllable artificial muscles. Smart Materials and Structures Conference, California, 1999:3669~3674
    145. M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson. Ionic polymer-metal composites as biomimetic sensor:actuator and artificial muscles a review. Smart Materials and Structures, 1998:15~30
    146.冯元桢.生物力学.湖南科学技术出版社,1984
    147.杨桂通.医用生物力学.科学出版社,1994
    148.柳兆荣.弹性腔理论及其在心血管系统分析中的应用.科学出版社,1987
    149.卢洁泉,施安辉.生物学手册,山东科学技术出版社,1991
    150.吴云鹏.体液的流变特性.科学出版社,1987
    151.赵光陆等.生物医用材料.人民卫生出版社,1986.
    152.王重庆等.人体器官与材料.天津科学技术出版社,1980
    153.D.O.库尼.生物医学工程学原理(流体、热和质量传递过程引论).科学出版社,1982
    154.胡良俊.生物医学工程教程.湖南科学技术出版社,1987
    155.周桂如等.流体润滑理论.浙江大学出版社,1990.
    156.吴建康,马向能,黄玉盈.不同设计参数下螺旋槽径向液体润滑轴承油膜稳定性的比较计算.摩擦学学报,1999,19(1):56~60
    157.李炜等.粘性流体混合有限元分析解法.科学出版社,2000
    158.T.J.钟.流体力学中的有限元分析.水利电力出版社,1989
    159. J. M. Mcgrew, J. D. Mchugh. Analysis and test of the screw seal in laminar and turbulent operation. Journal of Basic Engineering, 1965, No. 3:153~162
    160. B. Najji, B. Bou-Said, D. Berthe. New formulation for lubrication with non-Newtonian fluids. Journal of Tribology, 1989, 111 (1):29~34
    161.陈大融.适用于非牛顿介质的雷诺方程的普遍形式.机械工程学报,1991,27(1):21~31
    162. R. L. Powell, E. F. Aharonson et al.. Rheological behavior of normal tracheobronchial mucus of canines. Journal of Applied Physiology, 1974, 37(3):447~451
    163. H. Stolarskl, T. Belytschko. Membrane locking and reduced integration for curved elements. Transaction of the ASME, 1982, 49:172~176
    164. K. J. Bathe, C. A. Almeida, A simple and effective pipe elbow element-linear analysis, Journal of Applied Mechanics, 1980, 47:93~100
    165. K. J. Bathe, C. A. Almeida, A simple and effective pipe elbow element-interaction effects, Journal of Applied Mechanics, 1982, 49:165~171
    166. C. R. Calladine, Limit analysis of curved tubes, Journal Mechanical Engineering Science, 1974, 16(2): 85~87
    167.刘肖珩等.粘弹性血管入口区域血管壁与血液耦合运动的研究.生物物理学报,1998,14(2):353~359
    168.陆柳.一种关于食管蠕动输运的简单模拟.中国医学物理学杂志,2002,19(1):50~53
    169.王长彬,陆柳.食管蠕动特性的分析.医用生物力学,1996,11(4):237~243
    170.彭或华等.动脉壁静态非线性力学特性的实验和理论研究.实验力学,1999,14(4):425~431
    171.李晓阳等.动脉壁三维含残余应力因素的本构方程.中国生物医学工程学报,2002,21(1):237~243
    172.王忠民等.非守恒粘弹性输流管道系统的动力分析.机械工程学报,2002,38(4):17~21
    173.伍时桂等.弯管血管壁本构方程的理论研究.北京工业大学学报,1998,24(2):12~20
    174.莫华.血液粘弹特性的力学模型.数理医药学杂志,1995,8(2):104~107
    175.蒋文涛等.以Casson方程表征的血液在圆管中流动的稳定性研究.四川联合大学学报(工程科学版),1998,2(3):11~15
    176.邹鲲,胡元中,王慧.纳米尺度下流体的流变及尺度效应.机械工程学报,2002,38(4):237~243
    177.李栓庆,付士萍.微电子机械系统.半导体技术,2001,26(8):1~5
    178.姚燕生,沈健,吕召全.微机电系统在当代医学上的应用.医疗设备信息,2002,2:28~31
    179.陈寅,林良明,高立明等.微机电系统在医疗领域中的应用.医疗卫生设备,1999,1:16~17
    180. H. Joseph, B. Swafford, S. Terry. Medical applications for MEMS devices. International Svmposium on Test and Measurement, 1997:399~404
    181.陈寅,林良明,高立明等.微型电子机械系统应用于微型外科手术的研究.中国医疗器械杂志,2000,24(5):283~286
    182.李佳列,颜国正.微小型仿生变体驱动机器人的研究.仪器仪表学报,2001,22(1):101~103
    183.迟冬祥,颜国正.仿生机器人的研究状况及其未来发展.机器人,2001,23(5):476~480
    184.马光等.仿生机器人的研究进展.机器人,2001,23(5):463~466
    185.张秀丽,郑浩峻,陈恳等.机器人仿生学综述.机器人,2002,24(2):188~192
    186.章亚男,米智楠.管道微机器人技术的现状与趋势.机器人,2000,17(10):1~4
    187.杨宜民,张绍裘.微型驱动器及微型机器人的研究与开发.高技术通讯,1991,1(4):5~7
    188.杨志欣.孙宝元,董维杰等.微机器人关键技术及应用.机床与液压,2002,6:3~6
    189.彭冬亮,吴铁军.微型机器人的模型及研究方向.科技通报,2003,19(1):6~9
    190.林良明等.蠕动插入式内窥镜机器人的研究.中国医疗器械杂志,2001,25(1):45~47
    191.刘少强,黄惟一等.用于微创外科的遥控机器人系统现状及趋势.机器人,2002,24(3):283~288
    192.马建旭,王立鼎.微电子机械系统在生物医学领域中的应用.光学精密工程,1996,4(1):1~6
    193.张锐,吴成东.机器人智能控制研究进展.沈阳建筑工程学院学报:自然科学版,2003,19(1):61~64
    194.李庆中,顾伟康.移动机器人模糊控制方法研究.仪器仪表学报,2002,23(5):480~483
    195.房海蓉,李昆.基于神经网络的机器人智能控制.机器人技术与应用,2002,No.4:28~32
    196.王耀南,孙炜.基于模糊神经网络的机器人自学习控制.电机与控制学报,2001,5(2):92~94
    197.隋清,鲁逾.基于专家系统的机器人PID控制.模式识别与人工智能,1994,7(1):7~14
    198. M. Calin, N. Chaillet, A. Bourjault et al. Design and control of compliant microrobots. 1996 IEEE Conference on Emerging Technologies and Factory Automation, 1996:489~492
    199. S. Fatikow, G. Wohlke. A neuro-fuzzy control approach for intelligent microrobots. International Conference on Systems Engineering in the Service of Humans, 1993:441~446
    200. M. B. Khamesee, N. Kato, Y. Nomura et al. Performance improvement of a magnetically levitated microrobot using an adaptive control. International Conference on MEMS, NANO and Smart Systems, 2003, 332~338
    201. K. Santa, S. Fatikow, G. Felso. Control of microassembly-robots by using fuzzy-logic and neural networks. Computers in Industry, 1999, No. 39:217~219
    202.蔡自兴等.机器人学.清华大学出版社,2000
    203. K. Shinichiro, I. Toshiki, O. Nobuyuki. Multi-layered Piezoelectric Bimorph Actuator. IEEE 1997 International Symposium on Micromachine and Human Science, 1997:73~77
    204. T. Idogaki. Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine. Proc of MHS'95, Nagoya, Japan, 1995, 193~198
    205. Y. Yamagata et al. Micro motion mechanism using reaction force by rapid deformation of piezo-electric elements. Proc of Inter Micro-machine System, Tokyo, Japan, 1993:86~90
    206. M. Mizukami, et al. 1 cm~3 miniaturized mobile machine driven by electromagnetic force. Proc of Inter Micro-machine System, Tokyo, Japan, 1993:41~45
    207. I. Hayashi, et al. Micro Moving Robotics. International Symposium On Micromechatronics And Human Science, 1998:41~50
    208.刘方湖,马培荪.一种可越过凸凹障碍的仿医蛭管内微型机器人.上海交通大学学报,2000,34(10):1361~1364
    209.张小勇等.实用内镜检查与治疗学.湖南科学技术出版社,1996.
    210.付国强,梅涛,孔德义,等.无线微型机器人肠道内窥镜系统中图像采集与无线传输子系统的设计.光学精密工程,2002,10(6):614~617
    211.冯元祯.生物力学.科学出版社,1981.
    212. H. Gegersen, G. Kassab, E. Pallencaoe, C. Lee, S. Chien, R. Skalak, Y. C. Fung. Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state. Am J Physiol-Gastr L, 1997, 36 (4): 865~874
    213. H. Gregersen, J. L. Emery, A. D. McCulloch. History-dependent mechanical behavior of guinea-pig small intestine. Ann Biomed Eng., 1998, 26 (5): 850~858
    214. J. H. Storkholm, G. E. Villadsen, S. L. Jensen, H. Gregersen. Mechanical properties and collagen content differ between isolated guinea pig duodenum, jejunum, and distal ileum. Digest Dis. Sci., 1998, 43 (9): 2034~2041
    215. M. Denny. The role of gastropod pedal mucus in locomotion. Nature, 1980, 285(5): 160~161
    216.吴江红.肠道微型机器人无损伤驱动原理及其仿真模型研究.[博士学位论文]重庆:重庆大学,2000.4
    217.何斌.医用微型机器人动力学建模及其行为智能控制研究.[博士学位论文]杭州:浙江大学,2001.5
    218.安琦.气油两相流粘度特性及其对滑动轴承性能影响的研究.[博士学位论文]杭州:浙江大学,1995.11
    219.王海鸥,浦萍萍.液体咸蛋清的流变特性及其在工程设计中的应用.无锡轻工业大学学 报,1997,16(4):38~41
    220. A. M. Scalzo, R. W. Dickerson. The viscosity of egg products. Food Tech, 1970, 24:1301~1307
    221.陈柏,周银生,康剑莉.内窥镜机器人几何特性参数的优化研究.浙江大学学报(工学版),2004,38(9):1175~1179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700