用户名: 密码: 验证码:
盘锦芦苇湿地参数化方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地与森林、海洋并称为全球三大生态系统。长期以来,生态系统长期通量观测大都集中在草地,农田和森林生态系统,关于湿地的相关研究,特别是基于长期观测资料的研究甚少,制约着对湿地陆-气通量输送的准确估算。
     我国通量观测研究与网络建设起步较晚,涡度相关观测只有7年多的时间,且涡度相关系统仪器较为昂贵,难以普及。而风速、温度和湿度的梯度观测开始时间早,资料较易获取。因此,基于梯度观测资料获取陆-气通量成为人们关注的焦点。已有研究表明,目前基于梯度观测资料计算陆气通量的方法中,变分法(variational technique, VT)充分利用了边界层观测资料、Monin-Obukhov相似性理论和地表能量平衡方程,使算法更加稳定可靠,是目前除涡度相关技术外的最优计算方法。
     本研究利用盘锦芦苇湿地2005年和2006年的开路式涡度相关系统和微气象梯度系统观测资料定量描述了盘锦芦苇湿地下垫面的空气动力学特征及其统计不稳定性,分析了其主导影响因子。在此基础上,验证了B-D稳定度函数参数化方案的适用性。同时反演了盘锦芦苇湿地的变分法权重系数,探讨了其主导影响因子,提出了变分法权重系数的估算方法。主要结论如下:
     1)盘锦芦苇湿地非生长季的零平面位移(d)可按照Garratt建议的2/3植被高度(h)计算;生长季的d值和植被群落高度呈很好的线性相关关系,( d = 0.77h),略大于(2/3)h,可能与生长季湿地芦苇群落稠密有关;芦苇湿地粗糙度(z0)与叶面积指数(LAI)呈二次曲线关系,z0/h随LAI增大迅速减小并逐渐趋于稳定。
     2)盘锦芦苇湿地近地面层一般不存在极稳定或极不稳定的层结,经常维持弱稳定和弱不稳定层结。
     3)基于观测资料拟合的盘锦芦苇湿地近地面层不稳定层结(-0.4     4)初步建立了估算变分法权重系数的统计学方法,指出变分法权重系数在不同月份并不相同,变分法权重系数不仅与仪器误差有关,还受下垫面植被生长的动态影响,包括植被高度和零平面位移等。
     5)与涡度相关方法相比较,变分法受能量平衡方程的限制,能量闭合度更高,水热通量之和更加集中在有效能附近,与已有的研究结果相吻合。
Wetland, forest and ocean ecosystems are the three most important ecosystems in the world. At present, the long-term studies on ecosystem flux exchanges are concentrated in the forest and grassland ecosystems. There are few studies about wetland ecosystems. It restricts the understanding and the accurate estimation of the land-atmosphere flux exchanges in wetland ecosystems.
     The observations and researches on the land-atmosphere flux exchanges and the construction of the flux network in our country started relatively late. There are only 7 years about eddy correlation observations, and the eddy covariance system is too expensive to popularize. But two height layers’wind speed, temperature and humidity gradient observations started more early and the data were easier to access. Therefore, the estimation of land-atmosphere flux exchanges based on the micrometeorological gradient observation database has become the hot focus. Variational method is often taken as the better method calculating land-atmosphere flux exchanges based on the micrometeorological gradient observation database, which made full use of the boundary layer observational data, Monin-Obukhov similarity theory and the surface energy balance equation.
     Based on the data from the open eddy correlation system and micrometeorological gradient system in Panjin reed wetland in the years of both 2005 and 2006, a quantitative description of the surface aerodynamic characteristics and their statistical instabilities and their main controlling factors have been analyzed. On this basis, the applicability of B-D stability function was analyzed at this site. Based on the surface aerodynamic parameters and the data from those two systems, the weighting coefficients of variational method and their controls were studied. A method to estimate the weighting coefficients of variational method was proposed. The main conclusions were listed as follows:
     1) In non-growing season, the zero plane displacement (d) of reed ecosystem can be calculated according to 2/3h at this site as the formula suggested by Garrett. In growing season, d and the height of the plant (h) has a very good linear correlation: d=0.77h. The zero plane displacement is bigger than 2/3h, it's probably caused by a dense reed community in the growing season. z0/h has a quadratic curve correlation with LAI. z0/h firstly decreases rapidly with increasing LAI, then changes very little.
     2) The atmospheric stability in the atmospheric surface layer of Panjin reed wetland often maintains weak stability and unstability.
     3) Businger-Dyer stability function parameter schemes could be used in Panjin reed wetland under the atmospheric stability (-0.4< z/L<-0.1). The parameterization scheme in the atmospheric surface layer of Panjin reed wetland needs further study, when the stability function is beyond the range of the atmospheric stability (-0.4< z/L<-0.1).
     4) This study developed the preliminary statistical method for estimating weighting coefficients of the variational method. The weighting coefficients are various among different months, and they are not only related with the observation error of the instrument, but also related with the height of plant, zero-plane displacement et al.
     5) Compared with the eddy correlation method, the variational method subjects to the restrictions on energy balance equation, the sum of sensible heat flux and latent heat flux is more concentrated in the vicinity of the effective energy.
引文
[1]于贵瑞等.陆地生态系统通量观测的原理与方法.北京:高等教育出版社, 2006, 2-15.
    [2]陈宜瑜. IGBP未来发展方向.地球科学进展, 2001, 16(1): 15-17.
    [3] Global Carbon Project (2003) Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No.1; Global Carbon Project Report No.1, 66pp, Canberra: 6-8.
    [4]于贵瑞.不同冠层类型的陆地植被蒸散模型研究进展.资源科学, 23(6): 72-84.
    [5]孙睿,刘昌明.地表水热通量研究进展.应用生态学报, 2003, 14(3): 434-438.
    [6]周广胜,周莉等.盘锦湿地生态系统野外观测站概况.气象与环境学报, 2006, 22(4): 1-6.
    [7] Matthew S E, Fung I Y. Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources [J]. Global Biogeochemical Cycle, 1987, 1: 61-86.
    [8] Maltby E, Immirzi P. Carbon dynamics in peatlands and other wetland soils: regional and global perspectives [J]. Chemosphere, 1993, 27: 999-1023.
    [9]吕宪国,何岩等.湿地碳循环在全球变化中的响应.中国湿地研究.北京:科学出版社. 1995, 68-71.
    [10] Zhang Y, Li C, Trettin C C, et al. Modelling soil carbon dynamics of forested wetlands. Symposium 43. Carbon Balance of Peatlands Sponsor. International Peat Society. 1999, 165-168
    [11] Baldocchi D, Hicks B B, et al. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 1988, 69: 1331-1340
    [12] Baldocchi D, Valentini R, et al. Strategies for measuing and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 1996, 2: 159-168
    [13] Baldocchi D, Finnigan J, et al. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 2000, 96: 259-291.
    [14] Baldocchi D, Falge E, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 2001, 82(11): 2415-2434
    [15] Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9: 479-492
    [16]杨娟,周广胜等.基于变分方法的内蒙古典型草原水热通量估算.应用生态学报, 2006, 17(11): 2046-2051.
    [17]刘树华,张蔼琛等.近地面层中通量廓线关系的适用性研究.北京大学学报(自然科学版), 1991, 27(1): 89-98.
    [18]何奇瑾,周广胜等.盘锦芦苇湿地水热通量计算方法的比较研究.气象与环境学报, 2006, 22(4): 35-41.
    [19]何奇瑾,周广胜等.盘锦芦苇湿地空气动力学参数动态及其影响因子.应用生态学报, 2008,19(3): 481-486
    [20]陈刚起.三江平原沼泽研究.北京:科学出版社. 1996, 165-168.
    [21]杨青,吕宪国.三江平原湿地生态系统土壤呼吸动态变化的初探.土壤通报, 1999, 30(6): 254-256.
    [22] Swinbank, W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of the Atmospheric Sciences.1951, 8(3), 135-145.
    [23] Desjardins, R L, Lemon E R. Limitations of an eddy covariance technique for the determination of the carbon dioxide and sensible heat fluxes. Boundary Layer Meteorology, 1974, 5: 475-488.
    [24] Desjardins, R L. A technique to measure CO2 exchange under field conditions. International Journal of Biometeorology, 1974, 18: 76-83.
    [25] Anderson D E, Verma S B, et al. Eddy correlation measurement of an open-canopies ponderosa pine ecosystem. Agricultural and Forest Meteorology, 1984, 95: 115-168.
    [26] Otaki E. Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport. Boundary-Layer Meteorology, 1984, 29: 85-107.
    [27] Desjardins R L. Carbon Dioxide budget of maize. Agricultural and Forest Meteorology. 1985, 36: 29-41.
    [28] Anderson D E, Verma S B. Carbon dioxide, water vapor and sensible heat exchanges of a grain sorghum canopy. Boundary-Layer Meteorology, 1986, 34: 317-331.
    [29] Verma S B, Baldocchi D D, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary-Layer Meteorology, 1986, 36: 71-91.
    [30] Verma S B, Kin J, et al. Carbon dioxide, water vapor, and sensible heat fluxes over a tall grass prairie. Boundary-Layer Meteorology, 1989, 46: 53-67.
    [31] Fan S M, Wofsy S C, et al. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research, 1990, 95: 16851-16864.
    [32] Valentini R, Magnozza G E S, et al. An experimental test of the eddy correlation technique over a Mediterranean macchia canopy. Plant, Cell and Environment, 1991, 14: 987-994.
    [33]于贵瑞,伏玉玲等,中国陆地生态系统通量观测研究网络(ChinaFlux)的研究进展及其发展思路.中国科学, D辑, 2006, 36(增刊I): 1-21.
    [34] Kaimal J C, Finnigan J. Atmospheric boundary layer flows: their structure and measurement. Oxford: Oxford University Press, 1994, pp: 266
    [35]张军辉,冬季强风条件下森林冠层/大气界面开路涡度相关CO2净交换通量的UU*修正,中国科学, D辑, 2004, 34(增刊II): 77-83.
    [36]田静,张仁华等,基于遥感信息的水平平流通量观测影响校正模型研究.中国科学, D辑, 2006, 36(增刊I): 255-262.
    [37]朱治林,孙晓敏等,中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究.中国科学, D辑, 2006, 36(增刊I): 34-44.
    [38]孙晓敏,朱治林等,涡度相关测定中平均周期参数的确定及其影响分析.中国科学, D辑, 2004,34(增刊II): 30-36.
    [39]朱治林,孙晓敏等,非平坦下垫面涡度相关通量的校正方法及其在ChinaFLUX中的应用.中国科学, D辑, 2004, 34(增刊II): 37-45.
    [40]宋霞,于贵瑞等.开路与闭路涡度相关系统通量观测比较研究.中国科学, D辑, 2004, 34(增刊II): 67-76.
    [41]高志球,卞林根等.城市下垫面空气动力学参数的估算.应用气象学报, 2002, 13(特刊): 26-33.
    [42]张宏,陈家宜等.非单一水平均匀下垫面空气动力学参数的确定.应用气象学报, 1997, 8(3): 310-315.
    [43] Roberto S, Maurizio F. Method for Estimation of Surface Roughness and Similarity Function of Wind Speed Vertical Profile. Journal of Applied Meteorology, 1998, 37: 461-469.
    [44] Paolo Martano. Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data. Journal of Applied Meteorology, 2000, 39: 708-715.
    [45]胡隐樵,张强.大气边界层相似性理论及其应用.地球科学进展, 1996, 11(6): 550-554.
    [46]张强,胡隐樵.大气边界层物理学的研究进展和面临的科学问题.地球科学进展, 2001, 16(4): 526-531.
    [47] Gao Z Q, Bian L G, et al. Measurements of turbulent transfer in the near-surface layer over a rice paddy in China. Journal of Geophysical Research, 2003, 108(D13): 4387-4399.
    [48]丁一汇.地表通量的计算问题.应用气象学报, 1997, 8(1): 29-35.
    [49] Monin AS, Obukhov AM. Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans Geophys Inst Akad Nauk USSR, 1954, 24(151): 163-187.
    [50] Businger J A, Wyngaard J C, et al. Flux-Profile Relationships in the Atmospheric Surface Layer. Journal of the atmospheric sciences, 1971, 28: 181-189.
    [51] Dyer A J. A review of flux-profile relationships. Boundary Layer Meteorology, 1974, 7: 363-372
    [52] Dyer A J, Hicks B B. Flux-gradient relationships in the constant flux layer. Quarterly Journal of the Royal Meteorological Society. 1970, 96: 715-721.
    [53] Dyer A J. An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary Layer Meteorology, 1982, 22: 3-19.
    [54] Businger J A. A note on the Businger-Dyer Profiles. Boundary-Layer Meteorology, 1988, (42): 145-151.
    [55]张强.荒漠戈壁下垫面地表湍流通量参数化的研究.科学技术与工程, 2003, 3(1): 30-39.
    [56]胡艳冰,高志球等.六种近地层湍流动量输送系数计算方案对比分析.应用气象学报,2007, 18(3): 407-411.
    [57]吴家兵,张玉书,关德新.森林生态系统CO2通量研究方法与进展.东北林业大学学报, 2003, 31(6): 49-51.
    [58]李正泉,于贵瑞等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价.中国科学, D辑, 2004, 34(增刊II): 46-56.
    [59]张述文,邱崇践等.用变分法估算淮河流域总体输送系数.高原气象, 2004, 23(4): 506-511.
    [60] Stewart J B, Thom A S. Energy Budgets in Pine Forest, Quarterly Journal of the Royal Meteorological Society, 1973, 99: 154-170.
    [61]胡隐樵,奇跃进.组合法确定近地面层湍流通量和通用函数.气象学报, 1991, 49(1): 46-53.
    [62] Xu Q, Qiu C J. A variational method for computing surface heat fluxes from ARM surface energy and radiation balance systems. Jounal of Applied Meteorology, 1997, 36: 3-11.
    [63]任宏利,王澄海等.利用变分法计算西北典型干旱区地表通量的研究.大气科学, 2004, 28(2): 269-277.
    [64]李袆君,许振柱等.玉米农田水热通量动态与能量闭合分析.植被生态学报, 2007, 31(6): 1132-1144.
    [65]张强,卫国安等.西北干旱区荒漠戈壁动量和感热总体输送系数.中国科学, D辑, 31(9): 783-792.
    [66]魏鸣,刘国庆等.一类含有约束的变分法问题中圈中因子的最优选取.应用数学和力学, 2003, 24(8): 827-834.
    [67]马刚,邱崇践等.用变分法修正边界层资料的数值试验.气象学报, 2001, 59(1): 107-114.
    [68]李荣平,周莉等. 1957~2004年盘锦芦苇湿地的气候变化特征分析. 2006, 22(4): 13-17.
    [69]周艳莲,孙晓敏等.几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响.中国科学, D辑, 2006, 36(增刊I): 244-254.
    [70]杨振,张一平等.西双版纳热带季节雨林大气稳定度特征.生态学杂志, 2008, 27(1): 130-134.
    [71] Aubinet M, Grelle A, et al. Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research, 2000, 30: 113-174.
    [72] Wilson K, Goldstein A, et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113: 223-243.
    [73] Lee X H. On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology , 1998, 91: 39-50.
    [74] Paw U K, Baldocchi D, et al. Correlation of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 2000, 97: 127-150.
    [75] Wilczak J M, Oncley S P, et al. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 2001, 99: 127-150.
    [76] Kaimal J C, Haugen D A. Some errors in the measurement of Reynolds stress. Journal of Applied Meteorology, 1969, 8: 460-462.
    [77] Tanner C B, Thurtell G W. Anemoclinometer measurement of Reynolds stress and heat transport in the atmospheric surface layer. Department of Soil Science, University of Wisconsin, Madison W I, Research and Department Technique Report ECOM-66-G22-F to the US Army Electronics Command, 82.
    [78] Webb E K, Pearman G I, et al. Correction of flux measurments for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 1980, 106: 85-100.
    [79] Xu L, Baldocchi D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 2004, 123: 79-96.
    [80] Anthoni P M, Law B E, et al. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agrcultural and Forest Meterology. 1999, 95: 151-168.
    [81] Hunt J E, Kelliher F M, et al. Long-term carbon exchange in a sparse, seasonally dry tussock grassland. Global Change Biololgy. 2004, 10: 1785-1800.
    [82] Li S G, Asanuma J, et al. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biololgy. 2005, 11: 1-15.
    [83] Schuepp P H, Leclerc M Y, et al. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology, 1990, 50: 353-373.
    [84] Leclerc M Y, Thurtell G W. Footprint prediction of scalar fluxes using a Markovia analysis. Boundary Layer Meteorology, 1990, 52: 247-258
    [85]米娜,于贵瑞等.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究.中国科学, D辑, 2006, 36(增刊I): 22-33.
    [86] Vesala T, Rannikü, et al. Flux and concentration footprints. Agricultural and Forest Meteorology, 2004, 127: 111-116.
    [87] Schmid H P. Experimental design for flux measuremens: matching the scales of observations and fluxes. Agricultural and Forest Meteorology, 1997, 87: 179-200.
    [88] Schmid H P. Source areas for scalars and scalar fluxes. Boundary Layer Meteorology. 1994, 67: 293-318.
    [89]赵晓松,关德新等.长白山阔叶红松林通量观测的footprint及园区分布.北京林业大学学报, 2005, 27(3): 17-23.
    [90] Sozzi R, Favaron M. Method for estimation of surface roughness and similarity function of wind speed vertical profile. Journal of Applied Meteorology, 1998, 37: 461-469.
    [91] Monin A S, Obukhov A M. Basic laws of turbulent mixing in the ground layer of the atmosphere. 1954, 24(151):163-187.
    [92] Paolo Martano. Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data. Jounal of Applied Meteorology, 2000, 39: 708-715.
    [93] Wieringa J. Representative roughness parameters for homogeneous terrain. Boundary Layer Meteorology, 1993, 63: 323-363.
    [94] Beljaars A C M, Holtslag A A M. Flux Parameterization over Land Surfaces for Atmospheric Models. Journal Applied Meteorology, 1991, 30: 327-341.
    [95] Holtslag A A M, DeBruin H A R. Applied modeling of the nighttime surface energy balance over land. Journal Applied Meteorology, 1988, 27: 689-704.
    [96] Garratt J R. The Atmospheric Boundary Layer. London: Cambridge University Press, 1992.
    [97]刘树华.林网下垫面稳定大气近地面层温、湿和风速廓线相似性及通量特征.北京大学学报(自然科学版), 1993, 29(1): 107-116.
    [98]朱廷曜,周广胜等.防护林体系生态效益及边界层物理特征研究.气象出版, 1992. 44-57.
    [99]张强,胡隐樵.“HEIFE”中‘中方’微气象塔的仪器精度和观测误差.高原气象, 1992. 11(4): 460-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700