用户名: 密码: 验证码:
枪械自动机关重件冲击疲劳实验机相关理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动机是枪械的关键部件,其寿命直接影响着枪械的整体寿命。对自动机部件失效原因的研究表明,冲击疲劳是影响其寿命的重要因素。目前,国内枪械设计的冲击疲劳理论尚未形成,实验数据也很少。而研究自动机冲击疲劳寿命的变化规律,必须建立专业的实验系统。现在市面没有适用于自动机关重件冲击疲劳的实验机,为满足自动机关重件冲击疲劳实验需求,本文设计开发了一种冲击疲劳实验系统,并进行了相关理论与实验研究。
     基于机构运动可靠性和低成本原则,本文提出了一种自动机关重件冲击疲劳实验机总体方案,主机采用机械式结构。由于自动机冲击疲劳实验对冲击脉冲幅值、幅宽和频率均有严格要求,作为实验机主机关键部件的加载机构是本文的难点之一。针对实验系统的加载要求,提出了含弹簧振子让位装置的曲柄滑块机构、含拨叉的曲柄连杆机构、直动滚子凸轮机构和双凸轮-滑块机构4种加载机构方案。运用数值仿真计算方法分析4种机构运行情况,分析4种机构的优缺点,最终确定加载机构方案为特殊的双凸轮-平底滑块机构。建立了双凸轮平底滑块加载机构数值仿真模型,得到机构在最高转速条件下的工作特性。建立了加载机构多目标优化模型,用基于Pareto最优理论的多种群遗传算法得到了加载机构优化方案。
     冲击疲劳实验中对试件的冲击加载由力脉冲发生器完成,力脉冲发生器中的冲头与试件直接接触,冲头的形状与材料特性对冲击接触过程有重要影响作用,从而影响着实验系统的运行情况。本文建立了冲头和试件两构件间的冲击接触仿真模型,计算2种形状、3种材料的冲头在2种冲击条件下冲击钢试件的过程,得到冲击力-时间、冲击力-变形、冲击冲量-变形和冲击冲量-时间的变化规律,分析并获得了超弹性体-弹性体、弹性体-弹性体和弹塑性体-弹性体间的冲击过程与冲头形状和材料的关系。
     本文建立了一种基于非线性弹簧阻尼理论的冲击接触力工程模型,用于求解在不同冲击质量和冲击速度条件下,特殊材料、特殊形状的冲头向试件提供的冲击接触力、冲击作用时间、变形量和冲击冲量。使用落锤式冲击实验机对3种材料、2种形状的冲头进行冲击实验。对冲击接触工程模型进行修正,得到超弹性体-弹性体、弹性体-弹性体和弹塑性体-弹性体间在2种冲头形状下的冲击接触力修正模型,修正模型结果与实验数据吻合较好。另外,本文为提高冲击接触有限元模型的计算精度,引入指数型接触约束条件,通过调整接触约束条件中的关键参数,使有限元计算结果与实验值吻合较好。
     建立了冲击疲劳实验机整机有限元仿真模型,利用仿真计算结果进行工作特性分析。为分析整机性能稳定性,建立了整机多体动力学虚拟样机仿真模型。以导轨工作面间隙、滑块体运动行程、冲击速度、冲头形状和冲头材料为变量,以保证滑块体运动和冲击脉冲的重复性为目标,分析4个变量对整机性能稳定性的影响。由数值计算结果可知,稳定性受导轨工作面间隙和滑块体运动行程影响,而冲击速度、冲头材料和形状仅对冲击脉冲产生影响。以冲击质量、冲击速度、冲头材料和冲头形状为变化因素,以4个因素对冲击脉冲的影响为目标,利用正交实验法进行正交敏感性分析,结果表明冲击速度对冲击脉冲影响最大,冲击质量对其影响最小,冲头材料和冲头形状的影响居中。
     本文建立了自动机典型关重件的冲击疲劳寿命仿真分析模型,采用局部应力应变法分析了12.7mm狙击步枪枪机、12.7mm狙击步枪节套、95式5.8mm步枪拉壳钩、95式5.8mm步枪击针和12.7mm航空机枪闭锁片的冲击疲劳寿命,所得寿命估算值略大于10000次,与实际工程实验结果基本一致。
     研制了国内首套大吨位高频枪械自动机关重件冲击疲劳实验样机,样机运行稳定可靠,能够模拟自动机关重件实际工况,为自动机关重件实验提供了有力的技术手段。
The automatic mechanism is one of the most important components of firearms and its life affects the overall life of gun directly. The researches on failure results of automatic mechanism components indicate that impact fatigue is a critical factor. At present, the theory of firearms design in domestic field is undeveloped and the testing data of impact fatigue of the components is insufficient. It is essential to set up the impact fatigue testing system in order to study the viariation principle about impact fatigue life of the components. However, the impact fatigue testing machine specially designed for the components has not been manufactured on the current market. In this paper, a variety impact fatigue testing system is designed to satisfy the requirements of automatic mechanism components.
     The main machine of impact fatigue testing system is designed to be mechanical-structured in consideration of movement reliability of mechanism and cost. The most difficult part in this system is to design the loading mechanism of impact fatigue testing machine as the automatic mechanism impact testing has high requests for the amplitude, width and frequency of impact pulse. In this study, there are four mechanisms to be considered:crank-slipper mechanism making up of spring mass, crank connecting rod mechanism containing shifting fork, direct motion roller cam mechanism and double cams mechanism. The advantages and disadvantages of these mechanisms are compared and analied through simulating caculating. Finally, the special double cams flat slipper mechanism is adopted to be the loading mechanism. It is a modeled simulation model of the loading mechanism to analyse movement status of mechanism under the highest rotation velocity condition. A multi-objective optimization model is built, with the multi-population genetic algorithm based on the Pareto optimal theory, an optimization scheme is obtained.
     The force-pulse generator executes the impact loading on the sample in the impact fatigue testing through its punch. The contact between punch and sample influences the operation of system significantly. Modeling the two components both punch and sample finite element models and computing the impact process of punch with two shapes and three material, the variety principles of force-time, force-displacement, impulse-displacement and impulse-time about impact pulse are obtained, the relationships between the shape of punch and impact process of hyperelasto-elastic, elastic-elastic and elastic-plastic are analyzed.
     This paper sets up the engineering model of impact contact basing on nonline spring damping theory, and it is used to analyze the impact force, impact time and impulse of special material and shape under different impact mass and velocity. It is executed the impact testing on three materials of two shapes. The engineering model is modified according to the testing data and the results of correct model matches the testing data. The finite element model is built and introducted type of index numbers contact constraint conditions and the results of correct model match the testing data through adjusting the key parameters under constraint conditions.
     The testing machine finite element model is modeled. The simulation analysis results are used to operating characteristic analysis. The virtual engine model of the overall machine is built to analyses the stability of machine movement. Taking the clearance of guide rail working surfaces, the movement distance of slipper, impact velocity, punch shape and material as the analysis factors, taking the repetition of displacement of slipper and impact pulse as the analysis objects, the stability of impact fatigue testing machine is analized. The simulation numerical results indicate that the clearance of guide rail working surfaces and the movement distance of slipper affect the stability and others analysis factors only influence the impact pulse. The conclusion of orthotropic sensibility analysis which adopts the orthotropic experimentation is:the impact velocity has the most important influence and impact mass has the least influence on the impact pulse.
     The simulation model of impact fatigue life of automatic mechanism key components is built and local stress-strain method is adopted to estimate impact fatigue life of the bolt and barrel extension of 12.7mm sniping rifle, the extractor and firing pin of 95 type 5.8mm rifle and the locking plate of 12.7mm aerial machine gun. The life of components is estimated to about 10000 times and the results are consistent to the actual engineering experiment.
     The domestic first set of great tonnage and high frequence impact fatigue testing model machine of automatic mechanism components has developed. The mechanism movement is stable and reliable. The mechanism can simulate the actual working conditions of critical components of automatic mechanism of firearms, so it provides the powerful technological means for impact fatigue test of the critical components of automatic mechanism of firearms.
引文
[1]兵器工业公司208研究所.枪械技术研究条件单项论证之13枪械自动机冲击疲劳模拟实验系统[R].2009
    [2]张守中.爆炸与冲击动力学[M].北京:兵器工业出版社,1993
    [3]柳光辽.自动武器测试技术[M].南京:华东工学院,1985:219-257
    [4]南京理工大学105教研室.枪械自动机冲击疲劳模拟实验系统实施方案.[R]2009
    [5]史瑞明.武器撞击动力学[M].北京:兵器工业出版社,1991
    [6]王学颜,宋广惠.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1991
    [7]陈庆生.冲击振动理论与应用[M].北京:国防工业出版社,1989
    [8]刘先志.机械振动学导论[M].济南:山东人民出版社,1962
    [9]胡斌译.现代接触动力学[M].南京:东南大学出版社,2003
    [10]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [11]Harris.C.M冲击和振动手册[M].北京:科学出版社,1990
    [12]K.L.Johnson接触力学[M].北京:高等教育出版社,1992
    [13]金栋平.碰撞振动及其典型现象[J].力学进展.29,155-164
    [14]Kil-Young Ahn. A modeling of impact dynamics and its application to impact force prediction[C]. Proceedings of ACMD 2004:448-453
    [15]Xiang Zhang. Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions[J]. International Journal of Impact Engineering 2002(27):317-341
    [16]Nicholas P. Hones. A modified, Slowly varying parameter approach for systems with impulsive loadings[C]. ASME 1991:251-258
    [17]Bertil Storakers. Hertzs contact at finite friction and arbiterary profiles[J]. Journal of the mechanics and physics of solids 2005(53):1422-1447
    [18]Contact-Impact force models for mechanical systems[M],1-20
    [19]葛藤.钢球和刚性平面弹塑性正碰撞恢复系数研究[J].工程力学.2008(6):209-214
    [20]吴飞科.关于Hertz点接触理论适用范围的探讨[J].轴承.2007(5):1-3
    [21]陈皎.基于Hertz接触理论的纳观摩擦机理研究[J].机械设计与制造.2007(2):8-10
    [22]庄茁ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998
    [23]王涛.基于模型的碰摩转子动力学响应研究[J].汽轮机技术.2009(2):39-41
    [24]金栋平.基于Hertz接触模型的柔性梁碰撞振动分析[J].振动工程学报.1998(3):46-50
    [25]冯剑军.基于Hertz理论圆柱和平面之间的滑动接触分析[J].摩擦学学报.2009(4):346-351
    [26]葛藤.计算点接触碰撞恢复系数的一种理论模型[J].机械设计与研究.2007(6):14-16
    [27]Hamid M. Lankarani. Continuous contact force models for impact analysis in multibody systems[C]. Nonlinear dynamics.1994,193-207
    [28]T. Tanaka. H. Nakayama, Studies on impact fatigue[C], Part Ⅰ. Bull.J.S.M.E.16, 1973:1814-1828
    [29]T. Tanaka. H. Nakayama, Studies on impact fatigue[C], Part Ⅰ. Bull.J.S.M.E.17, 1974:1379-1388
    [30]T. Tanaka. H. Nakayama, Studies on impact fatigue[C], Part Ⅰ. Bull.J.S.M.E.18, 1975:1365-1374
    [31]T. Tanaka. H. Nakayama, Studies on impact fatigue[C], Part Ⅰ. Bull.J.S.M.E.19, 1976:1391-1400
    [32]T. Tanaka. H. Nakayama, Studies on impact fatigue[C], Part Ⅰ. Bull.J.S.M.E.19, 1976:1401-1408
    [33]Ludwik. P., Z. VDI[S],1930:1861
    [34]R.Murakami, K.Akizono, The influence of impact loading and stress ratio on fatigue crack growth rate in aluminum alloy[J], J.Japan Soc.Strength Fract.Mater.16, 1981:47-58
    [35]F. T. Stanton and L. Bairstow, The Resistance of Materials to Impact[J]. Proc. Inst. Mech. Engrs.,1908:889-919
    [36]John. M. Lesells, Strength and Resistance of Metals[C],1954:159
    [37]H.Nakayama, Study on crack growth behavior in impact fatigue[C], Part Ⅰ Bull.J.S.M.E.26,1983:1453-1460
    [38]周惠久,黄明志.在多次重复冲击载荷下钢的断裂抗力的研究[J].西安交通大学学报,1962(1):1-20
    [39]Jianfu Hou. An investigation of fatigue failures of turbine blades in gas turbine engine by mechanical analysis[J]. Engineering Failure Analysis.2002(9):201-211
    [40]K. Dai. Analysis of fatigue resistance improvements via surface severe plastic deformation[J]. International Journal of Fatigue.2008(30):1398-1408
    [41]P. Hansson. Crack growth rates for short fatigue cracks simulated using a discrete dislocation technique[J]. International Journal of Fatigue.2009(31):1346-1355
    [42]M. T. Milan. Failure analysis of a SAE 4340 steel locking bolt[J]. Engineering Failure Analysis.2004(915-924)
    [43]Marino Quaresimin. Fatigue behaviour and life assessment of composite laminates under multiaxial loadings[J]. International Journal of Fatigue.2010(32):2-16
    [44]D. T. Rusk. Fatigue life prediction of corrosion-damaged high-strength steel using an equivalent stress riser(ESR) model. Part Ⅱ:Model development and results[J]. International Journal of Fatigue.2009(31):1464-1475
    [45]Y. Y Zhang. Impact simulation using simplified meshless method[J]. International Journal of Impact Engineering.2009(36):651-658
    [46]黄明志,石德珂等.金属力学性能[M],西安:西安交通大学出版社,1986
    [47]J.T.Burwell. Wear[J],1957(1):119
    [48]G.P.Tilly. Treatise on Materials Science and Technology[J]. Wear, Vol.13,1979:287-319
    [49]仝健民,李明义.材料的冲击磨料磨损而磨性及其疲劳磨损机制[J].机械工程材料,1993(3):10-16
    [50]任廷鸿.冲击载荷下疲劳损伤力学及锻锤基础的疲劳损伤分析[D].浙江大学,2006
    [51]张萌.冲击疲劳载荷下的损伤行为及微观机制[D],西安交通大学,1999
    [52]S.R.斯旺森.疲劳实验[M].上海:上海科学技术出版社,1981
    [53]杨平生,张奇凤.冲击拉压疲劳实验机及实验方法[J].南昌大学学报,1994(3):41-49
    [54]张金平,傅戈雁等.多冲碰撞疲劳实验系统的研制[J].苏州大学学报,2006(2):29-32
    [55]V.M.Radhakrishnan, R.C.Prasad. An impact fatigue testing machine[J]. Int Journ of Fracture,1974(10):435-438
    [56]V.P.Pershin. Apparatus for testing specimens for impact fatigue with local high-velocity deformation[C]. Constructional Institute,1977:341-344
    [57]什科利尼克.疲劳实验方法手册[M].北京:机械工业出版社,1978
    [58]K. Azouaoui, Modelling of damage and failure of glass/epoxy composite plates subject to impact fatigue[J]. International Journal of Fatigue,2001(23):877-885
    [59]王献超.多冲碰撞实验机研制及其系统动力学响应分析[D].苏州大学,2007
    [60]仇雪琴.一种新颖的冲击实验设备[J].环境技术,1997(3):6-9
    [61]张磊,汪玉等.舰载设备冲击实验系统研制现状和发展趋势[J].科技导报,2007(27):96-101
    [62]GB/T14123-93.冲击台的特性描述[S].1993
    [63]吴嵩,刘波等.冲击实验机的力脉冲发生器应用现状与发展[J].机械工程师,2004(2): 11-14
    [64]Robert S. Brich. Design of a pulse generator and shock tube for measuring hearing protector attenuation of high-amplitude impulsive noise[J]. Applied Acoustics 64(2003):269-286
    [65]E. Ercolani. Design and prototyping of a large capacity high frequency pulse tube[J]. Cryogenics.2008 (48):439-447
    [66]Military standard MIL-STD-810D Environmental Testing Methods and Engineering Guidelines[S].1983
    [67]胡小弟.采用电动振动台实施冲击实验的若干问题探讨[J].环境技术,1995(3):12-15
    [68]尤小锋.冲击作用与冲击模拟环境在电磁振动台上的实现[J].环境技术.1996(4):16-18
    [69]周惠久等.金属材料强度学[M].北京:科学出版社.1989
    [70]Mcadam. D. J., Proe. Amer. Soc. Test[C]. Mater.28 Ⅱ,1928:56-85
    [71]Yoshida Seiki CO.LTD. Shock Testing System Data Sheet[S],2000
    [72]Harris, C.M., Crede. Shock and Vibration Handbook[M]. Me Gnaw-hill Book Conpay, 1976
    [73]曾春华等.疲劳分析方法及应用[M].北京:国防工业出版社,1991
    [74]航空工业部科学技术委员会编.应变疲劳分析手册[M].北京:科学出版社,1987
    [75]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003
    [76]甘高才.自动武器动力学[M].南京:南京理工大学,1990
    [77]于道文.自动武器学(自动机设计分册)[M].北京:国防工业出版社,1992
    [78]步兵自动武器及弹药设计手册编写组编.步兵自动武器及弹药设计手册[M].北京:国防工业出版社,1977
    [79]褚家廉.某手枪自动机动力学仿真研究[J].产品开发与设计.2006(3):48-50
    [80]张高明.某型高射机枪自动机动力学仿真[J].四川兵工学报.2008(29):79-81
    [81]葛藤.某自动机械关重件动态应力分析研究[D].南京理工大学,2003
    [82]张海涛.某自动机械系统动力学分析研究[D].南京理工大学,2003
    [83]樊黎霞.新12.7高射机枪闭锁片撞击强度的理论分析和实验研究[D].南京理工大学,1987
    [84]黄伟等.自动武器运动构件的疲劳寿命分析[J].兵工学报.1989(3):60-64
    [85]王学颜等.枪机闭锁凸笋的冲击疲劳强度设计与寿命估算方法探讨[J].兵工学报.1993(2):2-9
    [86]Bowles. Floyd Ecerett. Impact strength analysis of a riveted joint the M240 machine gun[J].AD-A154894,1985(4):90
    [87]黄伟等.武器运动构件材料应变疲劳寿命的研究[J].华东工学院学报.1989(1):82-89
    [88]樊黎霞.自动武器构件弯曲撞击强度问题的理论分析和实验研究[D].南京:南京理工大学,1990
    [89]孙权.某自动武器关键构件的动应力及疲劳分析研究[D].南京理工大学.2008
    [90]黄伟.枪炮中杆形击针的应力分析与寿命估算[J].力学与实践.45-47
    [91]丁树模.液压传动[M].北京:机械工业出版社.2006
    [92]沈向东.气压传动[M].北京:机械工业出版社,2009
    [93]MDI. Building Models in ADAMS/View[M].2002
    [94]闻邦椿等.机械振动理论及应用[M].北京:高等教育出版社,2009
    [95]Harold A. Rothbart. Cam design handbook. The McGraw-Hill Companied[M], Inc,2004
    [96]张文元ABAQUS动力学有限元分析指南[M].哈尔滨:哈尔滨工业大学出版社,2005
    [97]祖景平ABAQUS 6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008
    [98]安雪斌.多体系统动力学仿真中的接触碰撞模型分析[J].计算机仿真.2008.10:98-101
    [99]庄茁ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005
    [100]ABAQUS/Explicit User's Manual[M]. ABAQUS, Inc.2007
    [101]ABAQUS Theory Manual[M]. ABAQUS, Inc.2007
    [102]ABAQUS Analysis User's Manual[M]. ABAQUS, Inc.2007
    [103]王勖成.有限单元法[M].北京:清华大学出版社,2002
    [104]Chuan-yu Wu. Rebound behaviour of spheres for plastic impacts[J]. International Journal of Impact Engineering.2003(28):929-946
    [105]B. Imre. A coefficient of restitution of rock materials[J]. Computers & Geosciences. 2008(34):339-350
    [106]Xiang Zhang. A method to extract the mechanical propertier of particles in collision based on a new elasto-plastic normal force-displacement model[J]. Mechanics of materials.2002(34):779-794
    [107]Xiang Zhang. An accurate elasto-plastic frictional tangential force-displacement model for granuar-flow simulations:Displacement-driven formulation[J]. Journal of Computational Physics.2007(225):730-752
    [108]C.-Y. WU. Coefficients of restitution for elastoplastic oblique impacts[J]. VSP and Society of Powder Technology.2003(14):435-448
    [109]A. B. Stevens. Comparison of soft-sphere models to measurements of collision properties during normal impacts[J]. Powder Technology.2005(154):99-109
    [110]Eric Biesen. Descibing the plastic deformation of aluminum softball bats[J]. Sports Engineering.2007(10):185-194
    [111]Werner Schiehlen. Elastoplastic phenomena in multibody impact dynamics[J]. Comput. Methods Appl. Mech. Engrg.2006(195):6874-6890
    [112]Wenli Yao. Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction[J]. International Journal of Impact Engineering.2005(31):255-265
    [113]Chuna-Yu Wu. Energy dissipation during normal impact of elastic and elastic-plastic spheres[J]. International Journal of Impact Engineering.2005(32):593-604
    [114]Jaroslav Mackerle. Finite element and boundary element simulations of indentation problems[J]. Finite elements in analysis and design.2001 (37):911-819
    [115]A. J. Piekutowski. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s[J]. International Journal of Impact Engineering.2008(35):1716-1722
    [116]Loc Vu-Quoc. Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres[J]. International Journal of Solids and Structures. 2001(38):6455-6489
    [117]C. T. Lim. Normal elastic-plastic impact in plane strain. Mathl[J]. Comput. Modelling. 1998(28):323-340
    [118]Olle Skrinjar. On the local contact behaviour in regular lattices of composite powders[J]. Journal of materials processing technology.2007(184):312-318
    [119]M. Wojtkowski. Rapeseed impact against a flat surface:physical testing and DEM simulation with two contact model [J]. International Journal of Impact Engineering. 2010(198):61-68
    [120]Bertil Storakers. Similarity analysis of inelastic contact[J]. Int. J. Solids Structures. 1997(34):3061-3083
    [121]Z. S. Liu. Structural intensity study of plates under low-velocity impact[J]. International Journal of Impact Engineering.2005(31):957-975
    [122]Chia-Lung Chang. Simulation of wheel test using finite element method[J]. Engineering failure analysis,2009(16):1711-1719
    [123]S. Pashah. Prediction of structural response for low velocity impact[J]. International Journal of Impact Engineering.2008(35):119-132
    [124]S. Heimbs. Low velocity impact on CFRP with compressive preload:test and modeling[J]. International Journal of Impact Engineering.2009(36):1182-1193
    [125]S. Bernhardt. Low-velocity impact response characterization of a hybrid Titanium composite laminate[C]. ASME 2007:220-226
    [126]Robert Paul Taylor. Finite element analysis of the application of synthetic fiber ropes to reduce seismic response of simply supported single span bridges[D]. Virginia,2005
    [127]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1979
    [128]房加志.铁道车辆碰撞以及结构优化的仿真研究[D].中国农业大学,2005
    [129]彭英.冲击载荷下加筋板结构的非线性动力响应及屈曲研究[D].武汉理工大学,2007
    [130]陈丽华.带有沙漏控制的有限元冲击动力问题并行计算[D].中国农业大学,2001
    [131]陈宝义.地下穿孔液压冲击器的研究与设计[D].吉林大学,2005
    [132]姜久红.二自由度包装系统跌落冲击动力学特性研究[D].江南大学,2009
    [133]董杰.复杂结构在冲击和振动加载下动态响应分析[D].中国科学技术大学,2006
    [134]张志兵.气动冲击锤的计算机模拟研究[D].中南大学,2001
    [135]凌邦国.碰撞过程的研究[J].物理实验.2004(6):10-12
    [136]陈卫东.工程优化方法[M].哈尔滨:哈尔滨工业出版社,2006
    [137]雷德明.多目标智能优化算法及其应用[M].北京:科学出版社,2009
    [138]玄光男.遗传算法与工程优化[M].北京:清华大学出版社,1999
    [139]吴永海.速射武器身管现代设计理论研究[D].南京理工大学,2010
    [140]易平.概率结构优化设计的高效算法研究[D].大连理工大学,2007
    [141]陆海燕.基于遗传算法和准则法的高层建筑结构优化设计研究[D].大连理工大学,2009
    [142]刘霞.结构优化设计的遗传演化算法研究[D].湖南大学,2007
    [143]陈开峰.改进的遗传算法及其在多目标优化中的应用研究[D].安徽大学.2006
    [144]魏锋涛.基于改进遗传算法的机械多目标优化设计方法的研究[D].西安理工大学.2006
    [145]李倩.基于Pareto遗传算法的机翼多目标优化设计研究[J].西北工业大学学报.2010(28):134-137
    [146]王向慧.基于多种群的多目标遗传算法研究[J].廊坊师范学院学报.2010(10):42-44
    [147]朱灿.一种多精英保存策略的遗传算法[J].计算机应用.2008(4):939-941
    [148]张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005
    [149]银泰科技.滚珠螺杆/线性滑轨综合技术型录[S].
    [150]朱耀祥.现代夹具设计手册[M].北京:机械工业出版社,2010
    [151]肖继德.机床夹具设计[M].北京:机械工业出版社,2009
    [152]李昌年.机床夹具设计与制造[M].北京:机械工业出版社,2007
    [153]吴拓.现代机床夹具设计[M].北京:化学工业出版社,2007
    [154]吴三灵等.强冲击试验与测试技术[M].北京:国防工业出版社.2010
    [155]王永华.现代电气控制PLC应用技术[M].北京:北京航空航天大学出版社.2008
    [156]王阿根.PLC控制程序精编108例[M].北京:电子工业出版社,2009
    [157]祝常红.数据采集与处理技术[M].北京:电子工业出版社,2008
    [158]干利强.计算机测控系统与数据采集卡应用[M].北京:机械工业出版社,2007
    [159]李念强.数据采集技术与系统设计[M].北京:机械工业出版社,2009
    [160]龙华伟Labview 8.2.1与DAD数据采集[M].北京:清华大学出版社,2008
    [161]陶红艳.传感器与现代检测技术[M].北京:清华大学出版社,2009
    [162]李晓颖.传感器与测试技术[M].北京:高等教育出版社,2009
    [163]秦志英.基于恢复系数的碰撞过程模型分析[J].动力学与控制学报.2006(12):294-298
    [164]陈鹿民.多柔体系统动力学中的间隙接触内碰撞[J].机械动力学专集.2003(增):65-68
    [165]李得洋.干摩擦激励下含间隙碰撞振动系统的动力学行为研究[J].兰州交通大学学报.2009(28):95-99
    [167]张蕾.含间隙运动副的汽车转向机构碰撞接触分析[J].现代设计与先进制造技术.2010(39):33-36
    [168]郑明军.压缩状态下橡胶件大变形有限元分析[J].北方交通大学学报.2001(2):76-80
    [169]宋黎.考虑间隙移动副碰撞影响的一种动力学分析方法[J].机械设计与研究.2001(6):36-39
    [170]王国庆.考虑碰撞和阻尼的弹性机械动力学分析[J].长安大学学报.2007(28):99-102
    [171]尉立肖.圆柱铰间隙运动学分析及动力学仿真[J].北京大学学报.2005(9):679-687
    [172]G. Caprino, A simple mechanistic model to predict the macroscopic response of fiberglass-aluminium laminates under low-velocity impact[M], Composites:Part A 38(2007):290-300
    [173]郑明军.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工业.2003(50):462-465
    [174]王伟.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品.2004(25):8-10
    [175]Using the ADAMS/View function builder[M]. Mechanical dynamics, Incorporated, 2002
    [176]Basic ADAMS full simulation training guide[M]. Mechanical dynamics, Incorporated, 2002
    [177]Basic ADAMS full simulation package training guide[M]. Mechanical dynamics, Incorporated,2002
    [178]MDI. Building Models in ADAMS/View[M].2002
    [179]朱来义.微积分[M].北京:高等教育出版社,2004
    [180]叶慈南.应用数理统计.北京:机械工业出版社,2004
    [181]Klesnil M, Lukas P. Fatigue of metallic materials. Amsterdam[M]:Elsevier Scientific Publishing Company,1980
    [182]Suresh S. Fatigue of materials[M]. Cambridge:Cambridge University Press,1991
    [183]Hwang W, Han K S. Cumulative damage models and multi-stress fatigue life prediction[J]. Journal of Composite Materials,1986(20):125-151
    [184]雷冬.疲劳寿命预测若干方法的研究[D].中国科学技术大学.2006
    [185]Giovanni Belingardi. Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates[J]. International Journal of Impact Engineering. 2002(27):213-229
    [186]P. Landrein. Influence of some test parameters on specimen loading determination methods in instrumented Charpt impact tests[J]. Engineering Fracture Mechanics. 2001(68):1631-1645
    [187]N. Kishi. Prototype impact tests on ultimate impact resistance of PC rock-sheds[J]. International Journal of Impact Engineering.2002(27):969-985
    [188]王国军Msc.Fatigue疲劳分析指导教程[M].北京:机械工业出版社,2009
    [189]阳光武.机车车辆零部件的疲劳寿命预测仿真[D].西南交通大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700