用户名: 密码: 验证码:
小麦抗纹枯病QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)在粮食安全问题中占有重要地位。小麦纹枯病在世界很多地区均有加重趋势,尤其是在我国,已被农业部全国农业技术推广服务中心列入“重大”病虫害名单中,其流行面积可与条锈病和赤霉病相提并论,我国小麦纹枯病主要由土壤习居性真菌禾谷丝核菌(Rhizoctonia cerealis)引起。生产上种植的小麦品种均感染纹枯病,没有免疫品种,有的品种则感病程度明显较轻而具有一定程度的数量抗病性。种植抗病品种可以减少杀菌剂的使用、降低生产成本、减轻环境污染。利用纹枯病抗性的途径之一是从小麦种内筛选数量抗病资源及发现抗病数量性状位点(quantitative trait locus, QTL),国内期刊上其他研究人员有6篇文章报道了小麦抗纹枯病QTL。至2014年3月,国际期刊上对小麦抗纹枯病QTL研究的报道只有一例,由本文作者于2013年发表在Theoretical and Applied Genetics上。
     本研究中首先测定了在山东和陕西2省小麦纹枯病重病区收集的47个小麦推广品种的抗病程度和采集的55个纹枯菌菌株致病力。结果表明,纹枯菌株中的大部分是R. cerealis,多数菌株表现为中等或低等致病力;小麦品种中的多数均严重感染纹枯病,只有6个可能具有中等程度抗病性,与这些推广品种同一批试验中的小麦品种(系)Luke和AQ24788-83(简称AQ)的病情最低。
     本实验室之前构建了Luke×AQ组合的1589个F8重组自交系(RIL),本文作者从中随机抽取了241个RIL用于纹枯病抗性QTL分析。在温室和田间2种条件下,采用人工接种和自然发病2种方法,共进行了5次试验,测定了这些RIL的病情表现型。与本实验室其他成员合作用这241个RIL构建了含有605个SSR和EST-SSR标记位点的染色体连锁图,是目前国内外报道的含SSR位点数目最多的小麦染色体连锁图。基于这些基因型和表现型数据,发现了11个抗纹枯病QTL,其中7个在5次试验中均稳定地表现抗病作用,根据国际上的通用规则,命名为Qse.cau-1AS, Qse.cau-2BS, Qse.cau-3BS, Qse.cau-4AL, Qse.cau-5DL, Qse.cau-6BL和Qse.cau-7BL,这7个中的4个无疑问是新的抗纹枯病QTL,另外3个也可能是新的QTL。这7个中的6个与小麦株高和抽穗期无关,应属于“抗病”而非“避病”。
     从Luke×AQ的1589个RIL中随机抽取898个,对其纹枯病病情表现型进行了试验,包括在田间条件下人工接种高致病力菌株和自然发病共4次试验,又对其中的3%极端抗和3%极端感病的共54个RIL在温室条件下人工接菌进行了2次试验,这些试验表明抗/感病性状能够在不同环境/条件下稳定遗传及出现了明显的抗/感病超亲遗传。测定了这898个RIL在7个QTL位点的基因型,分析了其中6个QTL的累加效果,共有64种(26=64)基因组合,从898个RIL中选择出来17个含有所有6个抗纹枯病QTL抗性等位基因(RRRRRR)的RIL,其它63种基因型的病情值显著地高于或不显著地低于RRRRRR的病情。通过QTL累加分析发现,Luke中可能含有尚未被鉴定出来的抗纹枯病QTL, AQ中可能含有抑制抗病QTL表达的因子。又根据用AUDPC度量的病情表现型选择了17个最抗病的RIL,结果表明根据基因型的选择结果与根据表现型的选择结果两者之间高度一致,田间试验结果与温室试验结果两者之间也高度一致。随着QTL数目的累加,AUDPC值逐渐下降。结论是:累加QTL是改良小麦抗纹枯病的一条有效途径。
Wheat(Triticum aestivum L.) provides staple food to the human population and constitutes a concern of food security. The disease of sharp eyespot has escalated into a major threat to wheat production in many regions of the world, especially in China where it has been considered by the Ministry of Agriculture as a destructive disease comparable to stripe rust and fusarium head blight. Sharp eyespot is mainly caused by the soil-borne fungus Rhizoctonia cerealis in our country, and no commercially planted wheat cultivar has yet been found to be immune fron the fungus. However, some cultivars exhibit their sharp eyespot intensity much lower than the others, or possess some degree of quantitative resistance to the disease. Wheat resistance to sharp eyespot can be a potential means to reduce the needs for application of fungicides, and thus to save the cost of wheat production and to alleviate environmental pollution. A strategy is to screen the germ plasm resources within wheat species and to map the quantitative trait locus (QTL) for the resistance. Six studies have been reported by several researchers on detection of QTL for sharp eyespot resistance in Chinese journals, while only one report is available in international journal that was reported by the present author in Theoretical and Applied Genetics in2013.
     In the present study,47wheat cultivars that have been commercially planted widely in the'hotspot' areas of sharp eyespot in the provinces of Shandong and Shanxi were collected and screened for sharp eyespot resistance, together with some wheat germ plasm resources including Luke and AQ24788-83. The results showed that none of the commercial cultivars were immune from the disease and six of them were moderately resistant to the disease, whereas Luke and AQ24788-83were significantly much less diseased in comparison with all the commercial cultivars. At the same time,55isolates of Rhizoctonia spp. were collected and tested, and it was found that the majority of the isolates were R. cerealis and they showed moderate to weak virulence.
     The recombinant inbred line (RIL) population of Luke×AQ24788-83was previously constructed in our laboratory consisting of1589F8RILs, from which241ones were sampled by the present author. The241RILs were assessed for sharp eyespot resistance by conducting field and greenhouse trials during the period from2008to2012, and were used to construct a chromosome linkage map containing605simple sequence repeat (SSR) DNA marker loci, the wheat map that has the largest number of SSR loci reported up to date in the world. Analyses based on these phenotype and genotype data found eleven quantitative trait loci (QTLs) to be associated with the sharp eyespot resistance and seven of them expressed consistently across the five trial environments. The seven were designated as Qse.cau-1AS, Qse.cau-2BS, Qse.cau-3BS, Qse.cau-4AL, Qse.cau-5DL, Qse.cau-6BL, and Qse.cau-7BL. Four of these QTLs are unequivocally novel, while it is possible that the other three might also be novel. Plant height and heading date of the241RILs were recorded in the four field trials. All of the seven disease resistant QTLs were independent of plant height and heading time except one that was significantly associated with plant heading time, suggesting that the six QTLs did confer a resistance to the disease instead of an escape from it.
     A sample of898from the1589Luke×AQ24788-83RILs were evaluated phenotypically for sharp eyespot resistance in four field trials inoculated artificially with a R cerealis isolate of strong virulence or infected with naturally occurring R. cerealis populations. In addition,3%of the898RILs were selected for either extreme resistance (i.e.,27RILs) or extreme susceptibility (another27RILs), and the54RILs were evaluated for sharp eyespot resistance in two greenhouse trials inoculated artificially with a R. cerealis isolate of strong virulenc. These trials showed that the resistance or susceptibility of the RILs was inherited readily across the different experimental environments and that trasgressive inheritance for both resistance and susceptibility occurred. The898RILs were genotyped at the seven detected QTLs, and six of the QTLs were used for examining QTLs accumulation effect. Sixty-four recombinations among the six QTLs (26=64) were compared for the aerea under the disease progress curve (AUDPC). Of the898RILs,17ones had the genotype RRRRRR (i.e., the17RILs had resistant allele at each of the six QTL loci). The mean AUDPC of RRRRRR was significantly lower than or not statistically higher than those of the other63genotypes. Analyses of QTLs accumulation suggested that Luke might harbor some QTLs that have not yet been detected, and that AQ24788-83might harbor some inhibitor or suppresser that might interfere with the expression of the four QTL resistance alleles contributed by AQ24788-83. Seventeen RILs were selected phenotypically for extremely low AUDPC from the898RILs for comparison between the selection based on QTL genotype and the selection based on AUDPC phenotype. The comparison showed a high degree of consistency between the two different selections, and a high degree of consistency between the field trial result and the greenhouse trial result. With the increasement of the number of QTLs accumulated, the AUDPC value decreased steadily. According to these results, I believe that accumulation of QTLs would constitute a strategy for improving sharp eyespot resistance in wheat.
引文
1. Abdel-Shife M. A. and Jones J. P. Differentiation of 2 Rhizoctonia isolates from wheat with sharp eyespot. Phytopathology,1981,71:856-856.
    2. Adams M. D, Kelley J. M., Gocayne J. D., et al. Complementary DNA sequencing:Expressed sequence tags and human genome project. Science,1991,252:1651-1656.
    3. Akbari M., Wenzl P., Caig V., et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet,2006,113:1409-1420.
    4. Al-Doss A. A., Moustafa K. A., Ahmed E. I., et al. Assessment of genetic diversity in Saudi wheat genotypes under heat stress using molecular markers and agronomic traits. Int J Plant Breed Global Sci Books,2011,3:103-110.
    5. Anuradha T. S., Divya K., Jami S. K., et al. Transgenic tobacco and peanut plants expression a mustard defensin show resistance to fungal pathogens. Plant Cell Rep,2008,8:1007-1017.
    6. Atsushi T., Michiya K., Keiichi M., et al. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet,2006,112(6):1042-1051
    7. Barakat M. N., Al-Doss A. A., Elshafei A. A., et al. Assessment of genetic diversity among wheat double haploid plants using TRAP markers and morpho-agronomic traits. Aust J Crop Sci,2013, 7(1):104-111.
    8. Blair I. D. Studies on the growth in soil sand the parasitic action of certain Rhizoconia solani isolates from wheat. Can J Res,1942,20:174-185.
    9. Boerema G. H. and Verhoeven A. A. Check-list for scientific names of common parasitic fungi. Neth J Plant Pathol,1977,83:165-204.
    10. Brown J. K. M. Yield penalties of disease resistance in crops. Curr Opin Plant Biol,2002,5:1-6.
    11. Bryan G. J., Collins A. J., Stephenson P., et al. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet,1997,94:557-563.
    12. Burpee L. L., Sanders P. L., Cole H. Jr., et al. Anastomosis groups among isolates of anastomosis groups among isolates of Ceratobasidium cornigerum and related fungi. Mycologia,1980a,72: 689-701.
    13. Burpee L. L., Sanders P. L., Cole H. Jr, et al. Pathogenicity of Ceratobasidium cornigerum and related fungi representing four anastomosis groups. Phytopathology,1980b,70:843-846.
    14. Chakrabortya S. and Newton A.C. Climate change, plant diseases and food security:an overview. Plant Pathol,2011,60:2-14.
    15. Chen H. G., Cao Q. G., Xiong G. L., et al. Composition of wheat rhizosphere antagonistic bacteria and wheat sharp eyespot as affected by rice straw mulching. Pedosphere,2010,20(4):505-514.
    16. Chen L., Zhang Z. Y., Liang H. X., et al. Overexpression of TiERFl enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot,2008,59(15):4195-4204.
    17. Chen S. S., Chen Y. G., Chen H., et al. Mapping stripe rust resistance gene YrSph derived from Tritium sphaerococcum Perc. with SSR, SRAP and TRAP markers. Euphytica,2012,185:19-26.
    18. Chen X. M. Epidemiology and control of stripe rust (Puccinia striiformis f.sp.tritici) on wheat. Can J Plant Pathol,2005,27:314-337
    19. Chu C. G., Friesen T. L., Xu S. S., et al. Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theor Appl Genet,2009,119:263-269.
    20. Chu C. G., Xu S. S., Friesen T. L., et al. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breeding,2008,22(2):251-266.
    21. Chu C. G., Friesen T. L., Xu S. S., et al. Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theor Appl Genet,2009,119:263-269.
    22. Clarkson J. D. S. and Cook R. J. Effects of sharp eyespot on yield loss in winter wheat. Plant Pathol,1983,32:421-428.
    23. Colbach N., Lucas P., Cavelier N., et al. Infuence of cropping system on sharp eyespot in winter wheat. Crop Prot,1997(16):415-422.
    24. Cooper R. M., Longman D., Campbell A., et al. Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall. Physiol Mol Plant Pathol,1988,32(1):33-47.
    25. Cromey M. G., Butler R. C., Boddington H. J., et al. Effects of sharp eyespot on yield of wheat (Triticum aestivum) in New Zealand. New Zeal J Crop Hort,2002,30(1):9-17.
    26. Cromey M. G., Butler R. C., Munro C. A., et al. Susceptibility of New Zealand wheat cultivars to sharp eyespot. New Zeal Plant Prot,2005,58:268-272.
    27. Cromey M. G., Parkes R. A. and Fraser P. M. Factors associated with stem base and root diseases of New Zealand wheat and barley crops. Aust Plant Pathol,2006,35(4):391-400.
    28. Daamen R. A. and Stol W. Surveys of cereal disease and pests in the Netherlands.2. Stem-base disease of winter wheat. Neth J Plant Pathol,1990,96:251-260.
    29. Dawson W. A. J. M. and Baterman G. L. Fungal communities and disease symptoms on stem bases of wheat and barley and effects of seed treatments containing fluquinconazole and prochloraz. J Phytopathol,2001,149(11-12):665-671.
    30. Demirci E. Rhizoctonia species and anastomosis groups isolated from barley and wheat in Erzurum, Turkey. Plant Pathol,1998,47(1):10-15.
    31. DeVicente M. C. and Tanksley S. D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics,1993,134(2):585-596.
    32. Devos K. M., Bryan G. J., Cillins A. J., et al. Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet,1995,90:247-252.
    33. Dintinger J., Verger D., Caiveau S., et al. Genetic mapping of maize stripe disease resistance from the Mascarene source. Theor Appl Genet,2005,111:347-359.
    34. Eshed Y., Gera G. and Zamir D. A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet,1996,93:877-886.
    35. Etheridge J. V, Davey L. and Christian D. G. First report of Rhizoctonia cerealis causing sharp eyespot in Panicum virgatum in the UK. Plant Pathol,2001,50(6):807.
    36. Eujayl I., Sorrells M. E., Baum M., et al. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet,2002,104(23):399-407.
    37. Fu D., Chen L., Yu G., et al. QTL mapping of sheath blight resistance in a deep-water rice cultivar. Euphytica,2011,180:209-218.
    38. Fufa H., Baenziger P. S., Beecher B. S., et al. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica,2005,145:133-146.
    39. Fukuoka S, Saka N., Koga H., et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science,2009,235:998-1001.
    40. Gao A. G., Hakimi S. M., Mittanck C. A. et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol,2000,18:1307-1310.
    41. George M.L.C., Prasanna B.M., Rathore R.S., et al. Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor Appl Genet,2003,107:544-551.
    42. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol,2005.43:205-227.
    43. Glynne M. D. Sharp eyespot as a severe disease of oats. Nature,1950,166:232.
    44. Glynne M. D. and Ritchie W. M. Sharp eyespot of wheat caused by Corticium(Rhizoctonia) solani. Nature,1943,152:161.
    45. Grandillo S. and Tanksley S. D. QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet,1996,92: 935-951.
    46. Grant V. Genetics of flowering plants,2nd edn. New York:Columbia University Press.1975.
    47. Grosch R., Schneider J. H. M., Peth A., et al. Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-1B using SCAR primers. J Appl Microbiol,2007,102(3): 806-819.
    48. Guo Y. P., Li W., Sun H. Y., et al. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. J Gen Plant Pathol,2012,78:247-254.
    49. Guyomarc'h H., Sourdille P., Charmet G., et al. Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet,2002,104:1164-1172.
    50. Hamada M. S., Yin Y. N., Chen H. G., et al. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Manag Sci,2011,67:1411-1419.
    51. Hammouda A. M. First report of sharp eyespot of wheat in Egypt. Plant Dis,2003,87:598.
    52. Han Y. P., Xing Y. Z., Chen Z. X., et al. Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui63. Acta Genet Sinica,2002,29:565-570.
    53. He P., Friebe B. R., Gill B. S., et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol,2003,52(2):401-414.
    54. Hollins T. W., Jellis G. J. and Scott P. R. Infection of potato and wheat by isolates of Rhizoctonia solani and R.cerealis. Plant Pathol,1983,32:303-310.
    55. Hollins T. W. and Scott P. R. Difference between wheat cultivars in resistance to sharp eyespot caused by Rhizoctonia cerealis. Tests Agrochem Cult,1985,6:166-167.
    56. Hu J. and Vick B. A. Target region amplified polymorphism:A novel marker technique for plant genotyping. Mol Biol Rep,2003,21:289-294.
    57. Innocenti G., Roberti R., Montanari M., et al. Efficacy of microorganisms antagonistic to Rhizoctonia cerealis and their cell wall degrading enzymatic activities. Brit Mycol Soc,2003, 107(4):421-427.
    58. Jaccoud D., Peng K., Feinstein D., et al. Diversity arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Res,2001,29(4):25.
    59. Johanson A., Helen C., Turner, et al. A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae. FEMS Microbiol Lett, 1998,162,289-294.
    60. Kahia, A., Alhaj Koko A. B. A. and Wang Q. Screening antagonistic bacteria from the rhizosphere for the biological control of wheat sharp eyespot caused by Rhizoctonia cerealis. Egypt J Biol Pest Co,2008,18(1):257-263.
    61. Kalberer N and Gisi U. Effect of soil matric potential on sharp eyespot in germinating wheat following seed treatment. J Plant Nutr Soil Sc,1997,160(2):195-199.
    62. Kim S. C. and Riereberg L. H. Genetic architecture of species differences in annual sunflowers: Implications for adaptive trait introgression. Genetics,1999,153:965-977.
    63. Kolmer J. A. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol,1996,34:435-55
    64. Kosellek C., Klaus P., Nelson J. C., et al. Inheritance of field resistance to Septoria tritici bloch in the wheat doubled-haploid population Solitar×Mazurka. Euphytica,2013, DOI 10.1007/s10681-013-0898-y.
    65. Kuczynska A., Maria S. and Tadeusz A. Methods to predict transgressive segregation in barley and other self-pollinated crops. J Appl Genet,2007a,48(4):321-328.
    66. Kuczynska A., Surma M., Kaczmarek Z., et al. Relationship between phenotypic and genetic diversity of parental genotypes and the frequency of transgression effects in barley (Hordeum vulgare L.). Plant Breeding,2007b,126:361-368.
    67. Kunihiro Y., Qian Q., Sato H., et al. QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta Genet Sin,2002,29:50-55.
    68. Lander E. S., Green P., Abrahamson J., et al. MAPMAKER:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181.
    69. Lee T. S. and Shaner G. Transgressive segregation of length of latent period in cross between slow leaf-rusting wheat cultivars. Phytopathology,1985,75(6):636-643.
    70. Lelley T., Stachel M., Grausgruber H., et al. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome,2000,43(4):661-668.
    71. Lemanczyk G. Occurrence of sharp eyespot in spring cerealis grown in some regions of Poland. J Plant Prot Res,2010,50(4):505-512.
    72. Lemanczyk G. and Kwasna H. Effect of sharp eyespot(Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol,2013,135:187-200.
    73. Li G. and Quiros C. F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application on mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461.
    74. Li M., Sun P., Zhou H., et al. Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice (Oryza sativa L.). Theor Appl Genet,2011, 123(3):411-420.
    75. Li L. Z., Wang J. J., Guo Y., et al. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Prog Nat Sci-Mater,2008,1485-1490.
    76. Li S. S., Jia J. Z., Wei X. Y., et al. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breeding,2007,20:167-178.
    77. Li W., Sun H. Y, Deng Y. Y, et al. The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Curr Genet,2014,60(1):1-9.
    78. Li Z. K., Pinson S. R. M., Marchetti M. A., et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contribution to field resistance to sheath blight(Rhizoctonia solani). Theor Appl Genet,1995,91:382-388.
    79. Li Z. K., Xie Q. G., Zhu Z. L., et al. Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agronomica Sinica,2010,36(5):771-778.
    80. Li Z. K., Peng T., Xie Q. G., et al. Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 population. J Genet,2010,89(4):409-415.
    81. Li Z., Zhou M.P., Zhang Z.Y., et al. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics, 2011,11:63-70.
    82. Lin F., Xue S. L., Zhang Z. Z., et al. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419×Wangshuibai population. Ⅱ:type Ⅰ resistance. Theor Appl Genet,2006, 112(2):528-535.
    83. Lin H. J., Tan D. F., Zhang Z. M., et al. Analysis of digenic epistatic and QTL×environment interactions for resistance to banded leaf and sheath blight in maize (Zea mays L.). Int J AgricBiol, 2008,10(6):605-611.
    84. Liu G., Jia Y., Correa-Victoria F. J., et al. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology,2009,99:1078-1084.
    85. Liu G., Jia Y., Correa-Victoria F., et al. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology,2009,99:1078-1084.
    86. Liu T. G. and Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. Ⅱ. Linkage maps of the RFLP sites in common wheat. JPN J Genet,1991,66(5):617-633.
    87. Liu Z. H., Anderson J. A., Hu J., et al. A wheat intervarietal genetic linkage map based on micrsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet,2011,111:782-794.
    88. Lu C., Shen L., Tan Z., et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet,1996,93:1211-1217.
    89. Ma Z. Q., Zhao D. M., Zhang C. Q., et al. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 population. Mol Genet Genomics,2007,277(1):31-42.
    90. Mace E. S., Xia L., Jordan D. R., et al. DArT markers:diversity analysis and mapping in Sorghum bicolor. BMC Genomics,2008,9:26.
    91. Mackay T. F. C., Stone E. A. and Ayroles J. F. The genetics of quantitative traits:challenges and prospects. Nat Rev Genet,2009,10:565-577.
    92. Mallard S., Gaudet D., Aldeia A., et al. Gentic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet,2005,110:1401-1409.
    93. Mallard S., Negre S., Pouya S., et al. Adult plant resistance-related gene expression in 'CampRemy'wheat inoculated with Puccinia striiformis. Mol Plant Pathol,2008,9(2):213-225.
    94. Marshall D. S. and Rush M. C. Infection cushion formation on rice sheath by Rhizoctonia solani. Phytopathology,1980,70:947-950.
    95. Martin B. Rapid tentative identification of Rhizoctonia spp. associated with diseased turfgrasses. Plant Dis,1987,71:47-49.
    96. McBeath J. H. and McBeath J. Plant diseases, pests and food security. In:Martin B (ed) Environmental Change and Food Security in China. Springer Technology & Engineering, Springer, Dordrecht/Heidelberg/London/New York,2010, p136.
    97. McCouch S. R., Cho Y. G., Yano M., et al. Report in QTL nomenclature. Rice Genet Newslett, 1997,14:11-13.
    98. Meng F. R., Li Y. C., Yin J., et al. Analysis of DNA methylation during the germination of wheat seeds. Biologia Plantarum,2012,56(2):269-275.
    99. Monforte A. J., Asins M. J. and Carbonell E. A. Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet,1997,95: 284-293.
    100. Nelson J. C., Singh R. P., Autrique J. E., et al. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci,1997,37:1928-1935.
    101. Nicholson P. and Parry D. W. Development and use of a PCR assay to detect Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Plant Pathol,1996,45 (5):872-883
    102. Nicholson P., Turner A. S., Edwards S. G., et al. Development of stem-base pathogens on different cultivars of winter wheat determined by quantitative PCR. Eur J Plant Pathol,2002,108:163-177.
    103. O'sullivan E. and Kavanagh J. A. Damping-off of sugar beet caused by Rhizoctonia cerealis. Plant Pathol,1990,39(1):202-205.
    104. Otto C. D., Kianian S. F., Elias E. M., et al. Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol,2002,48:625-632.
    105. Paillard S., Schnurbusch T., Winzaler M., et al. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet,2003,107:1235-1242.
    106. Paillard S., Trotoux-Verplancke G., Perretant M. R., et al. Durable resistance to stripe rust is due to three specific resistance genes in French bread wheat cultivar Apache. Theor Appl Genet,2012, 125:955-965.
    107. Parry D. Diseases of small-grain cereals in Plant Pathology in Agriculture. Cambridge University Press, CambridgeUK,1990, Ch.6 pp.171-174.
    108. Pasquini M. The principal fungi disease of wheat in Italy in 1995-1996. Inform a tout Agratio, 1996,52(35):47-54.
    109. Paterson A. H., Damon S., Hewitt J. D., et al. Mendelian factors underlying quantitative traits in tomato:comparisona cross species, generations and environments. Genetics,1991,127:181-197.
    110. Pestsova E., Ganal M. W. and Roder M. S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome,2000,43:689-697.
    111. Pinson S. R. M., Capdevielle F. M. and Oard J. H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice (Oryza sativa L.) using recombinant inbred lines. Crop Sci,2005,45:503-510.
    112. Pitt D. Studies on sharp eyespot disease of cereals, Ⅰ. Disease symptoms and pathogenicity of isolates of Rhizoctonia solani Kiihn and the influence of soil factors and temperature on disease development. Ann Appl Biol,1964,54:77-89.
    113. Polly R. W. and Thomas M. R. Survey of disease of wheat in England and Wales (1986-1988). Ann Appl Biol,1991,119(1):1-20.
    114. Price A. H., Townend J., Jones M. P., et al. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol,2002,48(5):683-695.
    115. Rick C. M. and Smith P. G. Novel variation in tomato species hybrids. Am Nat,1953,87:359-375.
    116. Rieseberg L. H., Archer M. A. and Wayne R. K. Transgressive segregation, adaptation and speciation. Heredity,1999,83:363-372.
    117. Rieseberg L. H., Widmer A., Arntz A. M., et al. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. PhilosT R Soc B,2003, B, DOI 10.1098/rstb.2003,1283.
    118. Roder M. S., Korzun V, Wandehake K., et al. A microsatellite map of wheat. Genetics,1998,149: 2007-2023.
    119. Rogers S. O. and Bendich A. J. Extraction of DNA from milligram amounts of fresh herbarium and mummified plant tissues. Plant Mol Biol,1985,5:69-76.
    120. Sato H., Ideta O., Audo I., et al. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breed Sci,2004,54:265-271.
    121. Semagn K., Bjornstad A., Skinnes H., et al. Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double-haploid hexaploid wheat population. Genome,2006,49:545-555.
    122. Shan J. X., Zhu M. Z., Shi M., et al. Fine mapping and candidate gene analysis of spd6 responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff). Theor Appl Genet,2009,119: 827-836.
    123. Sharma A., McClung A. M., Pinson S. R. M., et al. Genetic mapping of sheath blight resistance QTLs within tropical japonica rice cultivars. Crop Sci,2009,49:256-264.
    124. Singh P. J., Nagra P., Mehrotra R. S. Effect of organic amendments on root rot of gram (Cicer arietinum L.) and their influence on plant growth. Plant and Soil,1981,63(2):199-207.
    125. Singh R. P. and Huerta-Espino J. Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Sci,1997,37:390-395
    126. Somers D. J., Fedak G, and Savard M. Molecular mapping of novel genes controlling Fusarium heat blight resistance and deoxynivalenol accumulation in spring wheat. Genome,2003,46: 555-564.
    127. Somers, Daryl J., Isaac P., et al. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet,2004,109:1105-1114.
    128. Song Q. J., Ficus E. W. and Cregan P. B. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet,2002,104:286-293.
    129. Sourdille P., Tavaud M., Charmet G., et al. Transferabilty of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet,2001,103:346-352.
    130. Sourdille P., Cadalen T., Guyamarc'h H., et al. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet,2003,106(3):530-538.
    131. Srinivasachary, Willocquet L., and Savary S. Resistance to rice sheath blight (Rizoctonia solani Kuhn) [teleomorph:Thanate-phorus cucumeris (A. B. Frank) Donk] disease:current status and perspectives. Euphytica,2011,178:1-22.
    132. Steiner B., Lemmens M., Griesser M., et al. Molecular mapping of resistance to Fusaruim head blight in the spring wheat cultivar Frontana. Theor Appl Genet,2004,109:215-224.
    133. Tautz D. Hypervariability of simple sequence as general source for polymorphic DNA markers. Nucleic Acids Res,1989,17(16):6463-6467.
    134. Theis T. and Stahl U. Antifungal proteins:targets, mechanisms and prospective applications. Cell Mol Life Sci,2004,61:437-455.
    135. Tomaso-Peterson M. and Trevathan L. E. Characterization of Rhizoctonia-like fungi isolated from agronomic crops and turfgrasses in Mississippi. Plant Dis,2007,91(3):260-265.
    136. Toriyama K. Breeding for resistance to major rice disease in Japan. IRRI Los Banos Philippines, 1972,253-281.
    137. Van der Hoeven E. P. and Bollen G. J. Effect of benomyl on soil fungi associated with rye. I.Effect on the incidence of sharp eyespot caused by Rhizoctonia cerealis. NethJ Plant Pathol.1980, 86(3):163-180.
    138. Vasil V, Castillo A. M., Fromm M. E., et al. Herbicide resistance fertile transgenic wheat plants obtained by microprojectile. Nat Biotechnol,1992,10:667-674.
    139. Vega U. and Frey K. J. Transgressive segregation in inter and intraspecific crosses of barley. Euphytica,1980,29:585-594.
    140. Vilich-Meller V. Pseudocercosporella herpotrichoid.es, Fusarium spp. and Rhizoctonia cerealis stem rot in pure stands and interspecific mixtures of cereals. Crop Prot,1992, 11(1):45-50.
    141. Voigt P. W. and Tischler C. R. Leaf characteristic variation in hybrid lovegrass populations. Crop Sci,1994,34(3):679-684.
    142. Von Korff M., Wang H., Leon J., et al. AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet, 2005,111:583-590.
    143. Vos P., Hogers R., and Bleeker M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23(21):4407-4414.
    144. Wallwark H. and Johnson R. Transgressive segregation for resistance to yellow rust in wheat. Euphytica,1984,33(1):123-132.
    145. Wang G. L., Mackill D. J., Bonman J. M., et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistance rice cultivar. Genetics,1994,136:1421-1434.
    146. Wang S., Basten J. C. and Zeng Z. B. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm),2010, Accessed March 10,2013.
    147. Wang Y. Y., Sun X. Y, Zhao Y, et al. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci,2011,181:65-75.
    148. Wenzl P., Carling J., Kudrna D., et al. Diversity arrays technology (DArT) for whole-genome profiling of barley. P Natl Acad Sci USA,2004,101(26):9915-9920.
    149. Wenzl P., Raman H., Wang J., et al. A DArT platform for quantitative bulked segregant analysis. BMC Genomics,2007,8:196.
    150. Wittenberg A. H. J., Lee T. V. D., Cayla C., Kilian A., et al. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics,2005, 274:30-39.
    151. Xia L., Peng K., Yang S. Y, et al. DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet,2005,110:1092-1098.
    152. Yang H., Yang J., Rong T., et al. QTL mapping of resistance to sheath blight in maize (Zea mays L.). Chinese Sci Bull,2005,50(8):782-787.
    153. Zadoks J. C., Chang T. T., and Konzak C. F. A decimal code for the growth stages of cereals. Weed Res,1974,14:415-421
    154. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468.
    155. Zhang H., Zhang C. Q., Sun Z. Z., et al. A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indicajapinica rice hybrid. Theor Appl Genet,2011, 123(7):1247-1256.
    156. Zhang Y. S., Luo L. J., Xu G. G, et al. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice(Oryzae sativa). Theor Appl Genet,2006,113:361-368.
    157. Zhang Y., Liu Z., Liu C, et al. Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. J Sci Bull,2010,37(11):737-748.
    158. Zhang Z. J., Yang G. H., Li G. H., et al. Transgressive segregation, heritability and number of genes controlling durable resistance to stripe rust in one Chinese and two Italian wheat cultivars. Phytopathology,2001,91:680-685.
    159. Zhao M., Zhang Z., Zhang S., et al. Quantitative trait loci.mapping of resistance to banded leaf and sheath blight. Chinese High Technol Lett,2005,15(5):71-76.
    160. Zhao M., Zhang Z., Zhang S., et al. Quantitative trait loci for resistance to banded leaf and sheath blight in maize. Crop Sci,2006,46(3):1039-1045.
    161. Zoltanska E. Rhizoctonia on wheat. Ochrona Roslin,1997,4(4):8.
    162. Zou J. H., Pan X. B., Chen Z. X., et al. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars(Oryza sativa L.). Theor Appl Genet,2000,101:569-575.
    163. Zuo S. M., Yin Y. J., Zhang L., et al. Breeding value and further mapping of a QTL qSB-11 conferring the rice sheath blight resistance. Chin J Rice Sci,2007,21:136-142.
    164. Zuo S. M., Zhang L., Wang H., et al. Prospect of the QTL qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genomics,2008,35:499-505.
    165.蔡士宾,曹肠,方先文.小麦纹枯病种质的筛选鉴定.见:江苏省遗传学会编.江苏省遗传学会第五届第二次学术讨论会论文摘要汇编.南京:江苏科学技术出版社,1999,17
    166.蔡士宾,李斯深,颜伟,等.小麦纹枯病种质创新及QTL定位的初步研究.中国农业科学,2006,39(5):928-934.
    167.陈厚德,倪桂花,王彰明.7种除草剂对小麦纹枯病菌生长及致病力的影响.扬州大学学报,2005,26(3):66-69.
    168.陈怀谷,陈利锋,王裕中,等.禾谷丝核菌胞外产物对小麦抗病性的诱导作用.江苏农业学报,2002,18(4):213-217.
    169.陈怀谷,王裕中,陈利锋,等.禾谷丝核菌的次生代谢产物.江苏农业学报,2001,17(3):167-171.
    170.陈丽华,张爱香,朱韬,等.禾谷丝核菌拮抗细菌的鉴定及其拮抗产物的分析.植物病理学报,2008,38(1):88-95.
    171.陈荣振,王奎荣,冯国华.小麦纹枯病抗原的筛选与利用.麦类作物,1999,19(3):27-28.
    172.陈延熙,唐文华,张敦华.我国小麦纹枯病病原学的初步研究.植物保护学报,1986,13(1):39-44.
    173.陈莹,李伟,张晓祥,等.中国北纬33度地区小麦纹枯病的群体组成及致病力研究.麦类作物学报,2009,29(6):1110-1114.
    174.陈宗祥,邹军煌,徐敬友,等.对水稻纹枯病抗源的初步研究.中国水稻科学,2000,14(1): 15-18.
    175.方正,陈怀谷,陈厚德,等.江苏省小麦纹枯病病原组成及其致病力研究.麦类作物学报,2006,26(1):117-120.
    176.管延安,楚秀生,付文词,等.不同类型小麦品种(系)纹枯病抗性的初步研究.山东农业科学,2004,2:62-63.
    177.何文兰,宋玉立,张忠山.小麦品种资源抗纹枯病性鉴定.作物品种资源,1998,39(4):27-28.
    178.黄承彦,杨平平,楚秀生,等.我国小麦纹枯病研究现状及建议.见:庄巧生,杜振华,主编.中国小麦育种研究进展.北京:农业出版社,1996,274-279.
    179.霍纳新.小麦纹枯病、白粉病抗性QTL分析.博士学位论文.北京:中国农业科学院,2002.
    180.冷苏凤,张爱香,李伟,等.江苏省小麦新品种(系)对纹枯病的抗性分析.江苏农业学报,2010,26(6):1176-1180.
    181.李洪连,张学君,王金生.麦丰宁B3诱导小麦抗纹枯病生化基础的初步研究.南京农业大学学报,1994,17(增刊):67-71.
    182.李华荣,林桂芸,吴帮承,等.小麦纹枯病病情消长与气象因子研究.西南农业大学学报,1993,15(3):247-251.
    183.李强,王保通,金欣藻,等.小麦新品种(系)及中间材料抗纹枯病调查.陕西农业科学,2001,1:12-14.
    184.李清铣.江苏几种作物病原丝核菌生物学特性研究.江苏农学院学报,1988,9(3):23-26.
    185.李斯深,李安飞,李宪彬,等.小麦种质对纹枯病抗性鉴定初报.作物品种资源,1997,4:31-33.
    186.李斯深,王洪刚,刘爱新,等.小麦种质抗纹枯病的鉴定和遗传分析.西北植物学报,2001,21(5):1001-1008.
    187.刘朝晖,张旭,李浩兵,等.小麦品种纹枯病抗性遗传的初步研究.南京农业大学学报,1999,22(3):5-8.
    188.刘文娟,金志高,陈国华,等.玉米纹枯病发生规律及综合防治措施.江苏农业科学,1993,2:32-34.
    189.刘旭.种质创新的由来与发展.作物品种资源,1999,1:1-4.
    190.刘雪梅,肖建国.小麦纹枯病菌侵染过程的组织病理学研究.菌物系统,1999,18(3):288-293.
    191.路兴波.小麦品种抗纹枯病鉴定.植物病理学报,1999,26(3):283-284.
    192.倪桂花.非杀菌剂农药对小麦纹枯病菌生长及致病力的影响.硕士学位论文.扬州:扬州大学,2002.
    193.任丽娟,蔡士宾,汤颋,等.小麦纹枯病抗性QTL的SSR标记研究.扬州大学学报,2004,25(4):16-19.
    194.任丽娟,陈佩度,陈怀谷,等.小麦抗纹枯病种质资源筛选.植物遗传资源学报,2010,11(1):108-111.
    195.任丽娟,姚金保,陈萍,等.一种新的小麦纹枯病抗性苗期鉴定评价方法.江苏农业科学,2009,5:131-133.
    196.任丽娟,颜伟,陈怀谷,等.小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报,2010,26(6):1156-1161.
    197.任丽娟,张旭,周淼平,等.小麦抗纹枯病和赤霉病QTL定位研究.麦类作物学报,2007,27(3):416-420.
    198.石明旺,徐明富,茹正刚,等.小麦纹枯病的田间流行动态模糊聚类分析.植物病理学报,1997,27(1):23-27.
    199.史建荣,王裕中,陈怀谷,等.江苏农业科学(麦类纹枯病专辑),1993:109-111.
    200.史建荣,王裕中,陈怀谷,等.小麦纹枯病品种抗性鉴定技术及抗病资源的筛选与分析.植物保护学报,2000,27(2):107-112.
    201.史建荣,王裕中,陈怀谷,等.小麦纹枯病的菌丝融合群及其致病力测定.江苏农业科学,1993,(麦纹枯病专辑):25-29.
    202.史建荣,王裕中,方中达.三唑类杀菌剂控制小麦纹枯病的机理研究——对小麦苗期生长的病菌附着的影响.江苏农业学报,1992,8(1):35-42.
    203.史建荣,王裕中,杨建宁.小麦纹枯病产量损失研究.江苏农业科学,1989,5(3):44-45.
    204.孙炳剑,雷小天,袁虹霞,等.小麦纹枯病化学防治药剂的筛选.麦类作物学报,2007,27(5):914-918.
    205.檀根甲,丁克坚,季伯衡,等.小麦纹枯病氮素营养的研究.应用生态学报,1997,8(4):196-398.
    206.檀根甲,季伯衡.小麦纹枯病的研究进展.安徽农业大学学报,1998,25(1):38-40.
    207.汤颋,任丽娟,蔡士宾等.小麦ARz抗纹枯病的QTL定位研究.麦类作物学报,2004,25(4):11-16.
    208.滕康开.小麦纹枯病发病规律及防治技术.河北农业科学,2008,12(5):41-42.
    209.汪敏,吕柏林,邢小萍,等.河南省小麦纹枯病菌的群体组成及其致病力分化研究.植物病理学报,2011,41(5):556-560.
    210.王怀训,王开运,姜兴印,等.小麦纹枯病的研究进展.山东农业大学学报(自然科学版),2001,32(2):267-270.
    211.王金凤,李钊,杜丽璞,等.转PvPGIP2基因小麦的获得与纹枯病抗性鉴定.植物遗传资源学报,2013,14(1):179-183.
    212.王力华,戴晓枫.棉花黄萎病抗性的分子研究进展.分子植物育种,2003,1(1):97-102.
    213.王玉正,原永兰,赵百灵,等.山东省小麦纹枯病为害损失及防治指标研究.植物保护学报,1997,24(1):44-48.
    214.王裕中,吴志凤,史建荣,等.江苏省小麦纹枯病发生规律与病害消长因素分析.植物病理学报,1994,21(2):109-114.
    215.王裕中,吴志凤,史建荣,等.小麦纹枯病流行规律研究.江苏农业科学(麦类纹枯病专辑),1993:48-53.
    216.王裕中,杨新宇,史建荣,等.麦类纹枯病防治研究,Ⅰ.大小麦及其轮作物丝核菌的生物学特性与致病力比较.江苏农业学报,1986,2(4):29-35.
    217.王裕中.纹枯病及其抗性研究.见:庄巧生,杜振华,主编.中国小麦育种研究进展.北京: 农业出版社,1996,266-274.
    218.吴帮承.四川省小麦纹枯病菌系研究.西南农业大学学报,1993,15(2):125-129.
    219.吴纪中,颜伟,蔡士宾,等.小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报,2005,21(1):6-11.
    220.吴仕梅.小麦纹枯病菌与寄主互作及粉锈宁对病菌影响的超微结构与细胞化学研究.硕士学位论文,泰安:山东农业大学,2002.
    221.夏正俊,李清铣.江苏省大、小麦纹枯病病原学初步研究.植物病理学报,1989,19(3):134-140.
    222.肖建国,李华荣.小麦纹枯病抗性鉴定.西南农业大学学报,.1989,8(4):340-342.
    223.邢小萍,汪敏,刘春元,等.不同小麦品种(系)对小麦纹枯病抗性动态研究.河南农业科学,2008,12:85-88.
    224.颜伟,吴纪中,蔡士宾.小麦抗纹枯病种质资源的鉴定与创新.福建稻麦科技,2004,22(3):12-16.
    225.颜伟,吴纪中,蔡士宾,等.小麦纹枯病抗性的配合力分析.江苏农业科学,2006,6:46-48.
    226.于汉寿,张兰明.壳聚糖拌种对小麦生长及纹枯病发生的影响.江苏农业科学,1997,6:9-10.
    227.喻修道,徐兆师,陈明,等.小麦转基因技术研究及其应用.中国农业科学,2010,43(8):1539-1553.
    228.袁红霞,李洪连,王守正,等.小麦近缘种属纹枯病的抗性鉴定.华北农学报,1998,13(4):26-29.
    229.岳红宾,王守正,袁虹霞,等.用非致病丝核菌株防治小麦纹枯病的初步研究.江苏农业学报,1992,8(3):30-35.
    230.张怀琼,任正隆.小麦纹枯病抗性及抗性遗传的初步研究.植物病理学报,1999,29(3):199-202.
    231.张明,张大乐,苏亚蕊,等.粗山羊草(Aegilops tauschii)抗纹枯病的鉴定.河南大学学报(自然科学版),2010,40(1):58-61.
    232.张穗,刘卫群,陈汝梅,等.不同小麦品种对纹枯病的抗性机理的初步研究.中国农学通报,1994,10(6):9-12.
    233.张穗,宋万昌,傅伟,等.河南省小麦纹枯病发生动态关键因素的研究.华北农业报,1995,10(增刊):104-109.
    234.张小村,李斯深,赵新华,等.15个小麦重组自交系群体抗纹枯病性的遗传分析.麦类作物学报,2004,21(3):13-16.
    235.张小村,李斯深,赵新华,等.小麦纹枯病的QTL分析和抗病基因的分子标记.植物遗传学报,2005,6(3):276-279.
    236.张学君,刘焕利,潘小玖,等.小麦纹枯病生防菌株B3产生抗菌物质条件研究.南京农业大学学报,1995,18(1):26-30.
    237.张跃进,王建强,姜玉英,等.2008年全国农作物重大病虫害发生趋势预测.中国植保导刊,2008,28(3):38-40.
    238.张正斌,徐萍.小麦QTL研究进展.世界科技研究与发展,2002,24(1):52-58.
    239.赵洪义,王翠菊,郭凤芝,等.小麦纹枯病发生规律和防治技术.河南农业科学,1998,1:12-14.
    240.周凯南,刘焕庭,范永华.小麦纹枯病研究初报.山东农业科学,1982,(3):33-36.
    241.周淼平,任丽娟,张旭,等.小麦赤霉病抗性QTL分析.作物学报,2004,30(8):739-744.
    242.朱芳芳Niavt14/徐州25重组自交系群体小麦纹枯病抗性QTL分析.硕士学位论文.南京:南京农业大学,2011.
    243.朱明德,刘心安.河南省小麦纹枯病病原鉴定及其生物学特性的初步研究.河南农业大学学报,1988,22(3):332-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700