用户名: 密码: 验证码:
湘北桤木人工林土壤水分动态及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桤木((Alnus)作为速生用材树种和水土保持树种,在湖南省已进行大面积的推广种植。但作为水土保持树种,目前对其水土保持性能作系统研究的非常少,不能够对其作出客观评价。本研究以湖南省汨罗林业科技示范园内四川桤木(Alnus cremastogyne)人工林、台湾桤木(Alnus formosana)人工林和荒地为研究对象,以土壤水分动态变化进行对比分析为重点,定量地分析桤木人工林生态系统土壤水分的动态特征,探讨不同种桤木林土壤水分变化规律及其影响因子,为桤木的推广与经营管理提供依据。研究结果表明:
     1、0-75cm土层范围内土壤水分随土层的加深其含量基本呈现逐渐增大的趋势,土壤平均含水量从高到低排序为:四川桤木林(19.86%)>台湾桤木林(17.59%)>荒地(17.18%)。15-75cm层土壤,各分层次含水量都是四川桤木林>台湾桤木林>荒地,且同一层次不同类型林地存在显著性差异(p<0.05)。土壤含水量变异系数随土层加深逐渐减小,四川桤木林和台湾桤木林土壤含水量变化较荒地稳定。
     2、随季节变化3个类型林地土壤含水量各异,但是其变化趋势基本一致,四川桤木林土壤水分动态变化曲线一直位于台湾桤木林及荒地土壤水分变化曲线之上,台湾桤木林与荒地土壤水分含量季节差异不显著(p>0.05)。3个类型林地土壤水分含量受季节变化的影响产生较大的波动。
     3、不同类型林地由于立地特征不同土壤含水量也不同,四川桤木林林分密度高(1870株·hm-2)、郁闭度大(0.80),有较好的涵养水源功能,所以其含水量高,台湾桤木林这两个指标较小,含水量也较少。
     4、3个类型林地中根径小于1cm根系生物量随土层加深逐级减少,同一层次根系生物量大小都是四川桤木林>台湾桤木林>荒地。从根系生物量因素单独考虑其对土壤水分的影响,是呈负相关关系。
     5、降雨量越大,四川桤木林和台湾桤木林土壤含水量也随之较大,具有显著性正相关,桤木林地30cm以下土壤含水量与降雨量相关性不显著;日平均气温对四川桤木林和台湾桤木林各层土壤含水量无显著(p>0.05)影响;日平均相对湿度对四川桤木林各层次土壤含水量影响不显著,对台湾桤木林0-75cm层有显著性正相关影响。
     6、桤木林林地枯落物总量和未分解层枯落物储量随季节变化逐渐增加,半分解层枯落物随季节的变化基本呈现增加趋势。枯落物总量和未分解层储量均是四川桤木林>台湾桤木林,半分解层枯落物和枯落物层含水率均是台湾桤木林>四川桤木林,而未分解层枯落物含水率是四川桤木林最大。枯落物生物量与土壤含水量之间呈负相关,各层次枯落物含水率与土壤水分呈正相关关系。
     7、0-75cm层土壤容重大小顺序为荒地(1.43g·cm-3)>四川桤木林(1.38g·cm-3)>台湾桤木林(1.37g·cm-3),与含水量呈极显著正相关;0-75cm层土壤毛管孔隙度是四川桤木林最大(39.23%),台湾桤木林最小(37.54%),四川桤木林土壤毛管孔隙度对土壤含水量为正影响关系,台湾桤木林土壤含水量与毛管孔隙不相关;非毛管孔隙与各类型林地土壤含水量都是呈极显著负相关;0-75cm层土壤初渗速率和稳渗速率都是台湾桤木林>四川桤木林>荒地,土壤含水量与渗透速率呈极显著负相关性,相关系数为:四川桤木林-0.586,台湾桤木林-0.425,荒地-0.548。
     8、林地中土壤有机质和全氮都是随土层加深,含量减少,大小顺序是四川桤木林>台湾桤木林>荒地。四川桤木林土壤平均pH值为5.11,台湾桤木林5.03,荒地5.00,可见种植桤木能够改良土壤酸性。只有台湾桤木林中15-30cm层土壤水分与土壤有机质存在显著性关系。
     9、用影响显著的因子构建的土壤水分变化回归方程中,四川桤木林土壤水分回归方程中影响的主要因子有9个,前3位的是土壤深度、全氮和土壤容重;台湾桤木林回归方程选入的因子有10个,前3位的是未分解层落物含水率、土壤深度和半分解层枯落物含水率,在生产实践中可根据这些主要影响因子调节土壤水分。
     湘北第四纪红土红壤地区种植四川桤木和台湾桤木具有一定的生态效益,能够改变土壤的理化性质,增强土壤的蓄水能力、渗透性、保持水土、涵养水源功能,表现出较好的水土保持效益。
Alnus species (spp.), which are used as fast-growing timber and water and soil conservation tree species, are widely cultivated in Hunan province. Despite its important role in water and soil conservation, systematic researches of their capabilities are so hard to be retrieved that objective evaluations are unreachable. The experiment took the Alnus cremastogyne forest, the Alnus formosana forest and the wasteland as investigation objects, focused on comparison and analysis of the dynamic changes of soil water content (SWC). This paper quantitatively analyzed the characters of the dynamic changes of SWC in the Alnus forest, studied the rules and factors behind the changes, and provided the theory of spreading and management of Alnus spp. The results are:
     1. With the soil depth goes deeper, the water content of the soil from Ocm to 75cm showed a gradually increasing trend. The average soil water content varied in as follow:A. cremastogyne forest (19.86%)>A formosana forest (17.59%)>wasteland (17.18%). In the 15-75cm soil layer, water content levels were A cremastogyne forest > A. formosana forest> wasteland. Moreover, comparing within the layer, there had obviously difference (p<0.05). The coefficient of variation of the SWC decreased along with the soil depth emboldening. Compared to the wasteland, SWC of A.cremastogyne forest and A. formosana forest were more stably.
     2. Though by the seasons changed, there had differences among the SWC of the 3 types of forest land, they were the same trend basically. The dynamic changes of soil water curve of A. cremastogyne forest was always above that of the A. formosana forest and the wasteland. The variation of SWC was not distinct between A. formosana forest and the wasteland within seasons (p>0.05). SWCs of three lands were affected by the seasonal changes greatly.
     3. Because of the different characters of the sites, the three types of forestland had different SWCs. Due to a greater stand density of 2115 plant·hm-2 and large canopy density (0.80), which could result in better water conservation performance, the A. cremastogyne forest had a higher SWC compared to A. formosana forest.
     4. Among the three types of forestland, the biomass of<1cm diameter root decreased by the soil depth emboldening. Within the layer, weight of the root biomass were A. cremastogyne forest> A. formosana forest> wasteland. Examine the root biomass only, there showed a negative correlation between its effect and SWC.
     5. With the rainfall increasing, the SWC of A. cremastogyne forest and A. formosana forest became bigger, which was significantly positive correlated. Under soil depth of 30cm, there was no such significant association between the SWC and precipitation of two types of A. forestland. The daily average temperature had no significant effect (p>0.05) on the SWC of the A. cremastogyne forest and the A. formosana forest. Furthermore, the daily average air relative humidity had no significant effect on the SWC of A. cremastogyne forest, but significantly positive associated with the SWC in the 0-75 cm soil of the A. formosana forest.
     6. When seasons changed, the gross litter and the reserved amount of undecomposed litter of the A. formosana forest were gradually increasing. And basically, the semi-decomposed litter increased along with the season change. The gross litter and the reserved amount of undecomposed litter were A. cremastogyne forest> A. formosana forest; the SWC of semi-decomposed litter and litter were A. formosana forest> A. cremastogyne forest. However, the largest water content of the semi-decomposed litter layer was found in A. cremastogyne forest. There had a negative correlation between the litter biomass and the SWC, and the water content of all litter layers had a positive correlation with the SWC.
     7. In soil depth of 0-75cm, soil bulk densities were:wasteland (1.43g·cm-3)> A. cremastogyne forest (1.38g·cm3)> A. formosana forest (1.37g·cm-3), which showed a significantly positive correlation with water content. The biggest soil capillary porosity was found in A. cremastogyne forestland (39.23%), and the smallest one in A. formosana forestland (37.54%). In the A. cremastogyne forestland, the soil capillary porosity and the SWC had a positive relationship, but there was no such correlation could be found in A. formosana forestland. There was an extremely negative relationship between non-capillary porosity and SWC. The initial and stable water infiltration speeds were A. formosana forest> A. cremastogyne forest> wasteland. The SWC and infiltration speed had a distinctly negative association. The correlation coefficient were:A. cremastogyne forest-0.586, A. formosana forest-0.425, and wasteland-0.548.
     8. In forestland, the content of soil organic matter and total nitrogen decreased along with the soil depth went deeper. The order was A. cremastogyne forest> A. formosana forest> wasteland. The average pH value of the A. cremastogyne forestland was 5.11, the A. formosana forest was 5.03, and the wasteland was 5.00, showedthat planting A. could improve soil acidity. In A. formosana forest, the SWC and soil organic matter had a significant relationship in 15-30cm layer only.
     9. For A cremastogyne forest, the regression equation of changes of SWC, which was established using the significant factors, had 9 main factors, and the upper end three factors were the soil deepth, the total nitrogen conteng, the soil bulk density. There were 10 main factors which were selected by the regression equation for A. formosana forest; the upper end of three factors were water content of undecomposed litter layer, the soil depth, the water content of semi-decomposed litter layer. We can regulate the SWC using those main factors in practice.
     In the red deceloped that derive from quaternary red clay area of northern Hunan, plant A. cremastogyne and A. formosana has many ecological benefits. For examples: amend the physicochemical properties of soil, improve water holding capacity and osmosis, and protect water sources. It showed preferable water and soil conservation benefits.
引文
[1]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [2]田大伦,陈书军.樟树人工林土壤水文-物理性质特征分析[J].中南林学院学报,2005,22(2):1-6.
    [3]张保华,何毓蓉,周红艺,等.贡嘎山东坡亚高山不同林地土壤水分特性与生态环境效应[J].山地学报,2004,22(22):207-211.
    [4]赵秀兰.黑龙江省土壤水分常数的空间分布特征[J].黑龙江气象,2001,(4):8-11.
    [5]安和平.盘江中游地区土壤持水量预测模型[J].农业系统科学与综合研究,2001,17(3):167-170.
    [6]何其华,何永华,包维楷.旱半干旱区山地土壤水分动态变化[J].山地学报,2003,21(2):149-156.
    [7]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(6):945-950.
    [8]任青山.西藏冷杉原始森林土壤物理性质特征分析[J].林业科学,2002,38(3):57-62.
    [9]USSR. National committee for the international hydrological decade. In:world water resource balance and water resources of the earth. Printed in the USSR, Leningrad,1978, P.49.
    [10]刘昌明.中国水量平衡与水资源储量的分析[A].见:中国地理学会水文专业委员会.中国地理学会第三次全国水文学术会议论文集[C].北京:科学出版社,1986.113-118.
    [11]陈存及,陈伙法.阔叶树种栽培[M].北京:中国林业出版社,2000.255-258.
    [12]汪志荣,张兴昌,李军,等.农田生态系统中的物质迁移研究进展[J].干旱地区农业研究,2004,22(1):156-165.
    [13]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.1-10.
    [14]石声汉.汜胜之书今释[M].北京:科学出版社,1956.
    [15]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [16]张北,徐学选,李贵玉,等.土壤水分基础理论及其应用研究进展[J].中 国水土保持科学,2007,22(1):122-129.
    [17]Richards L A. Capillary conduction of liquids through porous mediums [J]. Physics,1931,1:318-333.
    [18]Philip J R. Plantwater relations:some physical aspects[J]. Annual Review of Plant Physiology,1966,17:245-268.
    [19]Western A W, Rodger B G.. The Tarrawarra data set:soil moisture patterns, soil characteristics, and hydrological fluxmeasurements[J]. Water Resources Research,1998,34 (10):2765-2768
    [20]Western A W, Gunter Blschl, Rodger B. Geostatistical characterizations of soil moisture patterns in Tarrawarra catchment[J]. Journal of Hydrology,1998,205: 20-37.
    [21]郭择德,程金茹,邓安.黄土包气带土壤水特征曲线研究[J].辐射防护,2000,20(1):101-106.
    [22]刘亚平,陈川.土壤非饱和带中的优先流[J].水科学进展,1996,7(1):85-89.
    [23]朱祖祥.土壤水分的能量概念及其意义[J].土壤学进展,1979(1):1-5.
    [24]庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,26(3):241-247.
    [25]王兴鹏,张维江,周丽娜.风蚀沙化过渡地带沙地水分动态的研究进展[J].农业科学研究,2005,26(1):68-88.
    [26]刘启慎,李建新,王鹏伟,等.太行山林业研究[M].河南:河南科学技术出版社,1991.62-91.
    [27]贺康宁.林地土壤水分运动的数学模型[J].北京林业大学学报,1992,(1):77-86.
    [28]杨诗秀,雷志栋.匀质土壤一维非饱和流动通用程序[J].土壤学报,1985,(1):24-34.
    [29]Constable G A, Hearn A B. Irrigation for crops in a subhumind environment [J]. Irrigation Science,1981,3:17-28.
    [30]Belman S C, Wesseling J G, Feddes R A. Simulation of water balance of a cropped soil:SWATRE[J]. Hydrology,1983,63:271-286.
    [31]Van Genuchten M Th, Leij F J. On estimating the hydraulic properties of unsaturated soils[A]In:van Genuchten M Th.et al. (ed.) Proc.Int.Worksh.on Indirect Methods of Estimating the Hydraulic Properties of Unsaturated Soils. University of California, Riverside, California,1992.1-14.
    [32]Kiefer E M. A conceptual-stochastic of unsaturated flow in heterogencus soil [J]. Hydrology,1993,143:3-18.
    [33]汪潇,张增祥,赵晓丽,等.遥感监测土壤水分研究综述[J].土壤学报,2007,44(1) :157-163.
    [34]Liu W D, Frederic B, Zhang B, et al. Extraction of soil moisture information by hyperspectral emote sensing [J]. Acta Pedologica Sinica,2004,41(5):700-706.
    [35]贺康宁.林地土壤水分运动的数学模型[J].北京林业大学学报,1992,(1):77-86.
    [36]张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究:叶保水力及维持膨压[J].河北林学院学报,1995,10(3):157-193.
    [37]高人,周广柱.辽宁东部山区几种主要森林植被类型土壤矿质层蓄水能力分析[J].沈阳农业大学学报,2003,34(1):31-34.
    [38]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,11(6):14-22.
    [39]何东宁,王占林,张洪勋.青海乐都地区森林涵养水源效能研究[J].植物生态学报,1991,15(1):71-78.
    [40]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995.63-88.
    [41]周重光.浙江山地森林及其生态经济效益[A].见:杨玉波,张江陵主编.国际林联山地森林保护与管理学术会议论文集[C].北京:科学出版社,1992.40-43.
    [42]马良清,张毓锐.重庆地区森林水文作用的初步研究[J].北京林业大学学报,1998,20(1):14-19.
    [43]周择福.太行山低山区不同立地土壤水分生态及综合评价研究[A].见:林业部科学技术司主编.林业部青年学术讨论会论文集[C].北京:中国林业出版社,1997.267-274.
    [44]Kalma J D, Boulet G M. Measurement and prediction of soil moisture in a medium-sized catchment [J]. Hydrological Science,1998,43(4):597-610.
    [45]Wester A W, Rodger B G. The Tarrawarflux data set:soil moisture patterns, soil characteristies, and hydrological flux measurements [J]. Water Resources Researcher,1998,34(10),2765-2768.
    [46]Familglietti J S, Rudnicki J W, Rodell M. Vaiability in surface moisture content along a hillslope transect:Rattlesnake Hill, Texas[J]. Journal of Hydrology, 1998,21(10):259-281.
    [47]喻荣岗,左长清,杨洁,等.红壤侵蚀区几种水土保持林水文效应研究[J].水土保持通报,2007,27(6):194-198.
    [48]王治国,张云龙,刘徐师,等.林业生态工程学[M].北京:中国林业出版社,2000.79-97.
    [49]杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究,2001,18(1):8-13.
    [50]车克钧,傅辉恩,王金叶.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,3(5):29-37.
    [51]赵文智.河北坝上半干旱、半湿润过渡带土壤水分状况研究[J].中国沙漠,1996,16(2):105-111.
    [52]王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究[J].水土保持通报,1990,10(6):85-90[J].
    [53]魏天兴,朱金兆,张学培,等.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4):36-40.
    [54]田大伦,项文化.杉木林地土壤水分动态规律的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993:209-215.
    [55]魏天兴,朱金兆.黄土区人工林地水分供耗特点和林分生产力研究[J].水土保持学报,1999,5(4):45-51.
    [56]Coronato F R, Bertiller M B. Precipitation and landscape related effects on soil moisture in semi-arid range lands of Patagonia[J]. Journal of Arid Environments, 1996,34:1-4.
    [57]苏敏,卢宗凡,李够霞.陕北丘陵沟壑区主要农作物水分利用与平衡[J].水土保持研究,1996,3(2):36-45.
    [58]Qiu Y, Fu B, Wang J, et al. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau [J]. Journal of Arid Environments,2001,49:723-750.
    [59]赵晓光,吴发启,刘秉正,等.黄土高原坡耕地土壤水分主要受控因子研究[J].水土保持通报,1999,19(1):10-14.
    [60]Gomez P A, Martinez M M, Albaladejo J, et al. Factors regulating spatial distribution of soil water content in small semi-arid catchments [J]. Journal of Hydrology,2001,253:221-226.
    [61]Qiu Y, Fu B, Wang J, et al. Soil moisture variation in relation to topography and use in a hill-slope catchment of the Loess Plateau [J]. Journal of Hydrology, 2001,240(3):242-245.
    [62]Singh J S, Milchunas D G, Lauenroth W K. Soil water dynamics and vegetation patterns in a semiarid grassland[J]. Plant Ecology,1998,134:76-80.
    [63]侯喜禄,白岗栓,曹清玉.黄土丘陵区湾塌地乔灌林土壤水分动态监测[J].水土保持研究,1996,3(2):57-65.
    [64]Millikil C S, Bledsoe C S. Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii)trees in the northern Sierra Nevada foothills of California[J]. Plant Soil,1999,214:25-29.
    [65]黄志刚,曹云,欧阳志云,等.南方红壤丘陵区油桐人工林土壤水分动态[J].应用生态学报,2007,18(2):242-247.
    [66]黄志宏,周国逸,JimMorris,等.用典型相关法分析桉树人工林干季土壤水分影响因子[J].林业科学,2003,39(5):10-17.
    [67]蒋太明.贵州喀斯特山区黄壤水分动态及其影响因素[D].重庆:西南大学,2007.1-12.
    [68]柳云龙,吕军,王人潮.低丘红壤作物易旱与土壤持水供水特性的关系[J].浙江大学学报(农业与生命科学版),2002,28(1):42-46.
    [69]姚贤良.红壤水问题及其管理[J].土壤学报,1996,33(1):13-20.
    [70]郭志强,何英豪,肖庆元.湘北红壤丘岗区旱地土壤水分性质与变化规律的研究[J].湖南农业科学,1995,5:31-33.
    [71]李文庆.红壤的水分状况及其与物理性质的关系[J].水土保持研究.1995,2(1):15-17.
    [72]黄志刚,李锋瑞,曹云,等.南方红壤丘陵区杜仲人工林土壤水分动态[J].应用生态学报,2007,18(9):1937-1944.
    [73]何圆球.红壤农业生态系统水分循环、平衡及其调控研究[J].土壤,1998,(1):20-26.
    [74]谢小立,王凯荣.湘北红壤坡地雨水过程的水土流失及其影响[J].山地学报,2003,21(4):466-472.
    [75]朱红霞,姚贤良.红壤丘陵区桔园土壤的水分特点及其管理[A].见:王明珠,张桃林,何圆球,等编.红壤生态系统研究.北京:中国农业科技出 版社.1993:277-282.
    [76]刘荣乐,张马祥.湘南丘陵红壤持水特征及水分状况的研究[J].中国农业科学,1992,32(2):235-240.
    [77]张斌,张桃林.不同耕作制度下红壤缓坡地水土流失及土壤水分研究[A].见:中国科学院红壤生态实验站主编.红壤生态系统研究(第三集).北京:中国农业科技出版社.1995.121-129.
    [78]骆伯胜,张秉刚,钟继红,等.南亚热带丘陵土壤水分循环及其有效性的研究[J].降雨入渗与地表径流[J].热带亚热带土壤科学,1998,7(2):116-120.
    [79]谢小立,王凯荣.湘北红壤坡地雨水过程的水土流失及其影响[J].山地学报,2003,21(4):466-472.
    [80]石培礼,钟章成,李旭光.四川桤柏混交林生物量的研究[J].植物生态学报,1996,20(6):524-533.
    [81]杨志成.优良阔叶树种——桤木的分布、生长和利用[J].林业科学与研究,1991,4(6):643-648.
    [82]杨玉坡.四川森林[M].北京:中国林业出版社,1992.645-662.
    [83]李邀夫,吴际友.四川桤木的丰产性能及栽培技术[J].湖南林业科技,2004,31(1):18-19.
    [84]LIN X H, ZHANG J B. A study on vegetation characteristics across dilapidation land and its physiological responseof middle dominant plants[J]. Chinese Journalof Soiland Water Conservation,1995,26(1):1-6.
    [85]ZHANG J B, LIN X H. A study on characteristics of root force for dominant plants across middle dilapidationland[J]. Chinese Journal of Soiland Water Conservation,1995,26(4):235-244.
    [86]周小玲,田大伦,许忠坤,等.中亚热带四川桤木与台湾桤木幼林的光合生态特性[J].中南林业科技大学学报(自然科学版),2007,27(1):41-49.
    [87]Zwolinski J B. Characteristics and wood properties of Alnus formosana successfully introduced into South Africa[J]. South Africa Forestry,1992,163: 31-35.
    [88]邹高顺.台湾桤木引种造林及其培肥能力的研究[J].福建林学院学报,1995,16(2):112-117.
    [89]徐世凤,吴立勋.江南桤木的光合特性研究[J].湖南林业科技,1994,21(4):10-14.
    [90]卿汰明,赵志奎.桤柏混交林和半封禁草坡区保持水土效益的研究[J].四川林业科技,1992,13(2):52-56.
    [91]郑兆飞.桤木杉木混交林水源涵养能力研究[J].西南林学院学报,2008,28(3):8-10.
    [92]喻武.四川桤木在洞庭湖滩地植被恢复的应用研究[D].重庆:西南大学,2007.10-11.
    [93]石培礼,钟章成,李旭光.桤柏混交林根系的研究生态学报[J].1996,116(6),623-630.
    [94]谭凯文,王军辉,顾万春,等.桤木栽培区区划和栽培区适生种源的综合选择[J].福建林学院学报,2005,25(3):269-273.
    [95]刘贤词,文仕知,冯汉华,等.四川桤木人工林不同年龄段生物量的研究[J].中南林业科技大学学报(自然科学版),2007,27(2):83-84.
    [96]杨丽丽,文仕知,王珍珍,等.不同立地条件下桤木人工幼林生物量和生产力的比较[J].中南林业科技大学学报(自然科学版),2007,28(1):122-126.
    [97]王启和,干少雄,龚毅红,等.恺木家系选择的初步研究[J].四川林业科技,1997,18(2):29-32.
    [98]吴际友,龙应忠,童方平,等.桤木优树选择研究[J].湖南林业科技,2004,31(6):10-12.
    [99]李红云,杨吉华,夏江宝,等.济南市南部山区森林涵养水源功能的价值评价[J].水保持学报,2004,18(1):89-92.
    [100]黄庆丰,高健,吴泽民.不同森林类型土壤肥力状况及水源涵养功能的研究[J].安徽农业大学学报,2002,29(1):82-56.
    [101]张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社,1986.30-45.
    [102]文仕知,何炳飞.杉木人工林生态系统不同干扰条件下径流规律的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993:221-227.
    [103]田大伦.杉木林生态系统定位研究方法[M].北京:科学出版社2004.201-226.
    [104]王勤,张宗应,徐小牛.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3):59-62.
    [105]Kleb H R, Wilson S D. Scales of heterogeneity in prairie and forest [M]. Canadian Journal of Botany,1999,77(3):370-376.
    [106]Zhao W Z. Impact of plantation on spatial heterogeneity of soil moisture in Horqin sandy land[J]. Acta Pedologica Sinica,2002,39(1):113-119.
    [107]Jackson R B, Caldwell M M. Geostatistical patterns of soil heterogeneity around individual Perennial plants[J]. Journal of Eeology,1993,81(4):683-692.
    [108]王红梅,谢应忠,陈来祥. 黄土高原坡地土壤水分动态特征及影响因素[J].宁夏农学院学报,2004,25(4):62-66.
    [109]张宇清,朱清科,齐实,等.梯田埂坎立地植物根系分布特征及其对土壤水分的影响[J].生态学报,2005,25(3):501-507.
    [110]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2):178-184.
    [111]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    [112]林波,刘庆.川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能[J].应用与环境生物学报,2002,8(3):234-238.
    [113]Stephen H S, Burton V B. Forest Ecology [M]. New York:John Willy &Sons, 1980.207-250.
    [114]贾守信,梁志广,梁淑兰,等.长白山北坡原始林采伐对土壤性质影响的研究[J].土壤学报,1984,21(4):426-433.
    [115]李景文.森林生态学(第2版)[M].北京:中国林业出版社,1994.110-133.
    [116]湖南农业厅.湖南土壤[M].北京:农业出版社,1989.90-92.
    [117]吴长文,王礼先.林地土壤的人渗及其模拟分析[J].水土保持研究,1995,2(1):71-75.
    [118]Gardner I C. Ultrastruetural studies of non-legleminous root nodules [A]. Nutman P S. Symbiotic nitrogen fixation in plants [C]. Cambridge:Cambridge University Press,1976.485-496.
    [119]黄昌勇.土壤学[M].北京:中国农业出版社,2000.187-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700