用户名: 密码: 验证码:
大型海藻龙须菜化学成分及其对中肋骨条藻化感作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提取、分离和鉴定了大型海藻龙须菜(Gracilaria lemaneiformis)的化学成分,初步阐释了龙须菜对中肋骨条藻(Skeletonema costatum)化感作用机理。主要结果如下:
     利用多种吸附材料和分离方法(包括常压硅胶柱层析、反向硅胶柱层析、凝胶Sephadex LH-20柱层析、D101大孔树脂以及HPLC等),对龙须菜95%乙醇提取物进行了分离,共得到15个化合物并进行了结构鉴定。这些化合物包括3个糖脂类化合物:1-O-棕榈酸-3-O-β-D-吡半乳糖甘油酯(1-O-Palmitoyl-3-O-P-D-galactopyranosyl glycerol,1)、1-O-棕榈酸-2-O-棕榈油酸-3-O-p-D-吡喃半乳糖甘油酯(1-O-Palmitoyl-2-O-palmitoleoyl-3-O-β-D-galactopyranosyl glycerol,2)和1-O-棕榈酸-2-O-油酸-3-O-β-D-吡喃半乳糖甘油酯(1-O-Palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol,3);2个脂肪酸类化合物:棕榈酸(Palmitic acid,4)和亚油酸(Linoleic acid,5);2个核苷类化合物:尿嘧啶核苷(Uridine,6)和腺嘌呤核苷(Adenosine,7);3个酰胺类化合物:多鳞番荔枝酮(Squamolone,10)、2-亚乙基-3-甲基琥珀酰亚胺(2-ethylidene-3-methylsuccinimide,11)和N-苯乙基乙酰胺(N-Phenethylacetamide,12);2个酚类化合物:邻苯二甲酸丁酯异丁酯(Butylisobutyl phthalate,8)和1,4-二苄氧基苯酚(1,4-Dibenzoyloxybenzene,9);2个萜类化合物:黑麦草内酯(Loliolide,13)和3β-hydroxy-5α, 6a-epoxy-7-megastigmen-9-one (14);1个其他类化合物:8-羟基-4E,6E-辛二烯-3-酮(8-Hydroxy-4E,6E-octadien-3-one,15)。所有化合物均首次从龙须菜中分离得到,其中,化合物8-Hydroxy-4E,6E-octadien-3-one (15)为新化合物。
     赤潮藻活性筛选实验结果表明,在分离得到的12种化合物中,亚油酸的抑制效果最好,亚油酸对中肋骨条藻的IC50值为23.17μmol/L;2-亚乙基-3-甲基琥珀酰亚胺的抑制效果最差,在浓度330μmol/L时,其抑制率仅达到19.8%,无法得出其ICso值。
     亚油酸对中肋骨条藻细胞增值有重要影响。高浓度组细胞的生长明显受到化感物质亚油酸的胁迫,100μmol/L浓度组在72 h时,其细胞密度仅为对照组的16%。较低浓度的亚油酸对中肋骨条藻的超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量在短时间内均有促进作用,随着亚油酸暴露时间的延长和浓度增大,中肋骨条藻超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量逐渐下降。
     亚油酸对中肋骨条藻细胞亚显微结构有重要影响。亚油酸可导致中肋骨条藻细胞膜、叶绿体、线粒体、细胞核等亚显微结构受到不同程度的破坏。
Allelochemicals were extracted, isolated and identified from seaweed Gracilaria lemaneiformis. Preliminary allelopathy mechanism of the G. lemaneiformis on Skeletonema costatum was studied. The main results are as follows:
     In order to investigate the chemical constituents of G. lemaneiformis, a variety of absorbing materials and separation approaches (including pressure silica gel column chromatography, reverse silica gel column chromatography, Sephadex LH-20 gel column chromatography, D101 macroporous resin, and HPLC) were assessed. Fifteen compounds from G.lemaneiformis were isolated from the 95% ethanol extract by various column chromatographies. On the basis of various modern spectroscopic and literature data, fifteen compounds were identified, and one of them,8-Hydroxy-4E,6E-octadien-3-one was identified as a new compound. Fifteen compounds were isolated from G. lemaneiformis for the first time. Among these compounds, there are three Glycolipid compounds:1-O-Palmitoyl-3-O-β-D-galactopyranosyl glycerol (1),1-O-Palmitoyl-2-O-palmitoleoyl-3-O-β-D-galactopyranosyl glycerol (2),1-O-Palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol (3); two fatty acid compounds:Palmitic acid (4), Linoleic acid (5); two nucleosides:Uridine (6), Adenosine (7); three amides:Squamolone (10), 2-ethylidene-3-methylsuccinimide(11), N-Phenethylacetamide (12); two phenolic compounds: Butylisobutyl phthalate (8),1,4-Dibenzoyloxybenzene (9); two terpenoids:Loliolide (13), 3β-hydroxy-5α,6α-epoxy-7-megastigmen-9-one (14); one other compound: 8-Hydroxy-4E,6E-octadien-3-one (15).
     The inhibition of activity screening of allelochemicals on Skeletonema costatum showed that the strongest inhibitory allelochemical was Linoleic acid, and the lowest 2-ethylidene-3-methylsuccinimide. According to inhibition rate of different concentrations of linoleic acid on S. costatum, ICso value was 23.17μmol/L. While the inhibitory effect of 2-ethylidene-3-methylsuccinimide on S. costatum was only 19.8% at the concentration of 330μmol/L.
     The chloroplast, SOD, MDA and intracellular organelles of S. costatum were tested under external stress of linoleic acid. The result showed that when exposure to linoleic acid, the inhibition effect of linoleic acid on S. costatum increased at low concentration (1μmolL-1) and gradually decreased with the increase of the concentration and the extend of exposure time. After 72 h, the cell densities of S. costatum exposed to 100μmolL-1 of linoleic acid were 16% of the controls. The results showed that the SOD and MDA level were rapidly increased after a short exposure, and gradually decreased with the increase of the concentrations and culture time.
     The ultrastructure of algal cells was observed with transmission eletron microscopy (TEM). The results showed that linoleic acid damaged the cell membrane, chloroplast, mitochondria and nucleolus of S.costatum.
引文
[1]Abou-Elela, G.M., Abd-Elnaby, H., Ibrahim, H.A.H., et al. Marine Natural Products and Their Potential Applications as Anti-Infective Agents [J]. World Applied Sciences Journal,2009,7(7):872-880.
    [2]Abrahim, D., Braguini, W.L., Kelmer-Bracht, A.M., et al. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize [J]. Journal of Chemical Ecology,2000,26(3):611-624.
    [3]Alamsjah, M.A., Hirao, S., Ishibashi, F., et al. Isolation and structure determination of algicidal compounds from Ulva fasciata [J]. Bioscience Biotechnology and Biochemistry, 2005,69(11):2186-2192.
    [4]Alamsjah, M.A., Hirao, S., Ishibashi, F., et al. Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton [J]. Journal of Applied Phycology,2009,2:263-270.
    [5]Ali, M. S., Saleem, M., Ahmad, V.U., et al. Phytol and glycerol derivatives from the marine green alga Codium iyengarii of the Karachi coast (Arabian Sea) [J]. Zeitschrift fuer Naturforschung, B:Chemical Sciences,2001,56(8):837-841.
    [6]An, M., Johnson, I.R. and Lovett, J.V. Mathematical modelling of residue allelopathy:the effects of intrinsic and extrinsic factors [J]. Plant and Soil,2002,246(1):11-22.
    [7]An, M., Pratley, J.E. and Haig, T. Phytotoxicity of vulpia residues:Ⅲ. Biological activity of identified allelochemicals from Vulpia myuros [J]. Journal of Chemical Ecology 2001, 27(2):383-394.
    [8]Anderson, D.M. Turning back the harmful red tide [J]. Nature,1997,388(6642):513-514.
    [9]Balke, N.E. Effects of allelochemicals on mineral uptake and associated physiological processes [M], ACS Publications,1985.
    [10]Baziramakenga, R., Leroux, G.D. and Simard, R.R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots [J]. Journal of Chemical Ecology,1995, 21(9):1271-1285.
    [11]Baziramakenga, R., Simard, R.R. and Leroux, G.D. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean [J]. Journal of Chemical Ecology,1994,20(11):2821-2833.
    [12]Beninger, C.W. and Hall, J.C. Allelopathic activity of luteolin 7-O-[beta]-glucuronide isolated from Chrysanthemum morifolium L [J]. Biochemical Systematics and Ecology, 2005,33(2):103-111.
    [13]Blum, U. Allelopathic interactions involving phenolic acids [J]. Journal of nematology, 1996,28(3):259-167.
    [14]Booker, F.L., Blum, U.D.O. and Fiscus, E. L. Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings [J]. Journal of Experimental Botany, 1992,43(5):649-655.
    [15]Callaway, R.M. Positive interactions among plants [J]. The Botanical Review,1995, 61(4):306-349.
    [16]Cangiano, T., DellaGreca, M., Fiorentino, A., et al. Lactone diterpenes from the aquatic plant Potamogeton natans [J]. Phytochemistry,2001,56(5):469-473.
    [17]Chang, Y.C., Chen, C.Y., Chang, F.R., et al. Alkaloids from Lindera glauca [J]. Journal of the Chinese Chemical Society,2001,48(4):811-815.
    [18]Chattaraj, M. and Sinha, N.K. Isolation and characterization of chemical constituent from the leaves of Cestrum nocturnum [J]. Journal of Metallurgy and materials Science,2004, 46(4):243-245.
    [19]D'Abrosca, B., Dellagreca, M., Fiorentino, et al. Chemical constituents of the aquatic plant Schoenoplectus lacustris:Evaluation of phytotoxic effects on the green alga Selenastrum capricornutum [J]. Journal of Chemical Ecology,2006,32(1):81-96.
    [20]Dembitskii, V.M. and Rozentsvet, O.A. Lipids of macrophyte marine algae. I. Fatty-acid and phospholipid composition of Rhodophyceae [J]. Chemistry of Natural Compounds, 1990,26(1):92-93.
    [21]DellaGreca, M., Fiorentino, A., Monaco, P., et al. New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination and antialgal activity [J]. Tetrahedron, 2003,59(13):2317-2324.
    [22]Duan, H., Takaishi, Y., Momota, H., et al. Immunosuppressive constituents from Saussurea medusa [J]. Phytochemistry,2002,59(1):85-90.
    [23]Erosa-Rejon, G., Pea-Rodriguez, L.M. and Sterner,O. Secondary Metabolites from Heliotropium angiospermum [J]. Journal of the Mexican Chemical Society,2009,53(2): 44-47.
    [24]Fitter, A. Making allelopathy respectable [J]. Science,2003,301(5638):1337-1338.
    [25]Filzgerald, G.P. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds [J]. Journal of Phycology,1969,5(4):351-359.
    [26]Franklin, N.M., Stauber, J.L., Lim, R.P., et al. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.):The effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake [J]. Environmental Toxicology and Chemistry, 2002,21(11):2412-2422.
    [27]Fries, L.L.M., Pacovsky, R.S., Safir, G.R., et al. Plant growth and arbuscular mycorrhizal fungal colonization affected by exogenously applied phenolic compounds [J]. Journal of Chemical Ecology,1997,23(7):1755-1767.
    [28]Gao, Z., Ali, Z. and Khan, I.A. Glycerogalactolipids from the fruit of Lycium barbarum [J]. Phytochemistry,2008,69(16):2856-2861.
    [29]Geoffroy, L., Frankart, C. and Eullaffroy, P. Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin [J]. Environmental Pollution,2004,131(2):233-241.
    [30]Geohab. Global Ecology and Oceanography of Harmful Algal Blooms science plan [J]. Baltimore and Paris:SCOR and IOC,2001.
    [31]Gossauer, A. and Weller, J.P. Chemical total synthesis of (+)-(2R,16R)-and (+)-(2S, 16R)-phycoerythrobilin dimethyl ester [J]. Journal of the American Chemical Society, 1978,100(18):5928-5933.
    [32]Gross, E.M., Hilt, S., Lombardo, et al. Searching for allelopathic effects of submerged macrophytes on phytoplankton—state of the art and open questions [J]. Hydrobiologia,2007,584:77-88.
    [33]Guella, G., Frassanito, R. and Mancini, I. A new solution for an old problem:the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry,2003,17(17):1982-1994.
    [34]Guillard, R.R. and Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran [J]. Canadian Journal of Microbiology, 1962,8:229-239.
    [35]Hagmann, L. and Juttner, F. Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity [J]. Tetrahedron Letters,1996,37(36):6539-6542.
    [36]Hejl, A.A.M., Einhellig, F.A. and Rasmussen, J.A. Effects of juglone on growth, photosynthesis, and respiration [J]. Journal of Chemical Ecology,1993,19(3):559-568.
    [37]Hejl, A.M. and Koster, K.L. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays) [J]. Journal of Chemical Ecology,2004,30(2):453-471.
    [38]Hong, Y., Hu, H.Y. and Li, F.M. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety,2008,71(2):527-534.
    [39]Hong, Y., Hu, H.Y., Xie, X., et al. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa [J]. Aquatic Toxicology,2009,91(3):262-269.
    [40]Inderjit and Callaway, R.M. Experimental designs for the study of allelopathy [J]. Plant and Soil,2003,256:1-11.
    [41]Iwasa, Y., Nakamaru, M. and Levin, S.A. Allelopathy of bacteria in a lattice population: competition between colicin-sensitive and colicin-producing strains [J]. Evolutionary Ecology,1998,12(7):785-802.
    [42]Jeong, J. H., Jin, H. J., Sohn, C. H., et al. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae [J]. Journal of Applied Phycology,2000,12(1): 37-43.
    [43]Jose, S., Gillespie, A.R. and Pallardy, S. G. Interspecific interactions in temperate agroforestry [J]. Agroforestry Systems,2004,61(1):237-255.
    [44]Jung, J.H., Lee, H. and Kang, S.S. Diacylglycerylgalactosides from Arisaema amurense [J]. Phytochemistry,1996,42(2):447-452.
    [45]Kakisawa, H., Asari, F., Kusumi, T., et al. An allelopathic fatty acid from the brown alga Cladosiphon okamuranus [J]. Phytochemistry,1988,27(3):731-735.
    [46]Khotimchenko, S. V., Vaskovsky, V. E. and Titlyanova, T. V. Fatty acids of marine algae from the Pacific coast of North California[J]. Botanica Marina,2002,45:17-22.
    [47]Kim, J.S., Shim, S.H., Chae, S., et al. Saponins and other constituents from the leaves of Aralia elata [J]. Chemical and Pharmaceutical Bulletin,2005,53(6):696-700.
    [48]Kong, C.H., Wang, P. and Xu, X.H. Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum) [J]. Agriculture, Ecosystems and Environment,2007,119: 416-420.
    [49]Konig, G.M., Wright, A.D. and Linden, A. Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga[J]. Phytochemistry, 1999,52(6):1047-1053.
    [50]Lee, I.K., Kim, K.H., Choi, S.U., et al. Phytochemical Constituents of Thesium chinense TURCZ and Their Cytotoxic Activities In Vitro [J]. Natural Product Sciences,2009, 15(4):246-249.
    [51]Li, F.M. and Hu, H.Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis[J]. Applied and Environmental Microbiology,2005,71(11): 6545-6553.
    [52]Li, X., Fan, X., Han, L., et al. Fatty acids of some algae from the Bohai Sea [J]. Phytochemistry,2002,59(2):157-161.
    [53]Liang, S., Shen, Y.H., Feng, Y., et al. Terpenoids from Daphne aurantiaca and Their Potential Anti-inflammatory Activity [J]. Journal of Natural Products,2010,73(4): 532-535.
    [54]Liu, D.L. and Lovett, J.V. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals [J]. Journal of Chemical Ecology,1993,19(10): 2231-2244.
    [55]Liu, L.L., Wang, R., Yang, J.L., et al. Diversity of Sesquiterpenoids from Carpesium cernuum [J]. Helvetica Chimica Acta,2010,93(3):595-601.
    [56]Lynch, J.M. Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw [J]. Journal of Applied Microbiology,2008,42(1):81-87.
    [57]Macias, F.A., Torres, A. and Molinllo, J.M. Potential allelopathic sesquiterpene lactones from sunflower leaves [J]. Phytochemistry,1996,43(6):1205-1215.
    [58]Marshall, J.A., Ross, T., Pyecroft, S., et al. Superoxide production by marine microalgae [J]. Marine Biology,2005,147(2):541-549.
    [59]Mas, N.H. Mineral Substance Nourishment of Higher Plant:Soil and Plant Nutrition [M]. beijing, Beijing Agricultural University Press,,1991.
    [60]Mata, R., Macias, M.L., Rojas, I.S., et al. Phytotoxic compounds from Esenbeckia yaxhoob [J]. Phytochemistry,1998,49(2):441-449.
    [61]May, F.E. and Ash, J.E. An assessment of the allelopathic potential of Eucalyptus [J]. Australian Journal of Botany,1990,38(3):245-254.
    [62]Murakami, A., Nakamura, Y., Koshimizu, K., et al. Glyceroglycolipids from Citrus hystrix, a traditional herb in Thailand, potently inhibit the tumor-promoting activity of 12-O-tetradecanoylphorbol 13-acetate in mouse skin [J]. Journal of Agricultural and Food Chemistry,1995,43(10):2779-2783.
    [63]Naldi, M. and Viaroli, P. Nitrate uptake and storage in the seaweed Ulva rigida C. Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon (Sacca di Goro, Po River Delta, Italy) [J]. Journal of Experimental Marine Biology and Ecology,2002,269(1):65-83.
    [64]Nan, C, Zhang, H., Lin, S., et al. Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures[J]. Aquatic Botany,2008,89: 9-15.
    [65]Newman, E.I. The possible relevance of allelopathy to agriculture [J]. Pest Management Science,2006,13(6):575-582.
    [66]Okada, N., Shirata, K., Niwano, M., et al. Immunosuppressive activity of a monoterpene from Eucommia ulmoides [J]. Phytochemistry,1994,37(1):281-282.
    [67]Oncel, I., Yurdakulol, E., Keles, Y, et al. Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants [J]. Acta Oecologica,2004,26(3):211-218.
    [68]Park, Y.H., Moon, B.H., Yang, H.J., et al. Spectral assignments and reference data [J]. Magnetic Resonance in Chemistry,2007,45(9):1072-1075.
    [69]Percot, A., Yaln, A., Aysel, V., et al. Loliolide in marine algae [J]. Natural Product Research,2009,23(5):460-465.
    [70]Politycka, B. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids [J]. Acta Physiologiae Plantarum 1996,18(4):365-370.
    [71]Prashar, A., Hili, P., Veness, R.G., et al. Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae [J]. Phytochemistry,2003,63(5): 569-575.
    [72]Qian, H., Xu, X., Chen, W., et al. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris [J]. Chemosphere,2009,75(3): 368-375.
    [73]Reddy, K.R. and Tucker, J.C. Productivity and nutrient uptake of water hyacinth, Eichhornia crassipes I. Effect of nitrogen source [J]. Economic Botany,1983,37(2): 237-247.
    [74]Rho, M.C., Matsunaga, K., Yasuda, K., Ohizumi, Y. A Novel monogalactosylacylglycerol with inhibitory effect on platelet aggregation from the cyanophyceae Oscillatoria rosea [J]. Journal of Natural Products,1996,59(3):308-309.
    [75]Rice, E.L. Allelopathy [M]. Orlando, London,1974.
    [76]Rice, E.L. Allelopathy [M]. Orlando, London,1984.
    [77]Ridenour, W.M. and Callaway, R.M. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass [J]. Oecologia,2001,126(3): 444-450.
    [78]Rohmer, T., Lang, C, Bongards, C., et al. Phytochrome as Molecular Machine:Revealing Chromophore Action during the Pfr→ Pr Photoconversion by Magic-Angle Spinning NMR Spectroscopy [J]. Journal of the American Chemical Society,2010,132(12): 4431-4437.
    [79]Romagni, J.G., Allen, S.N. and Dayan, F.E. Allelopathic effects of volatile cineoles on two weedy plant species [J]. Journal of Chemical Ecology,2000,26(1):303-313.
    [80]Sajiki, H. and Hirota, K. Pd/C-Catalyzed chemoselective hydrogenation in the presence of a phenolic MPM protective group using pyridine as a catalyst poison [J]. Chemical and Pharmaceutical Bulletin,2003,51(3):320-324.
    [81]Sanina, N.M., Goncharova, S.N. and Kostetsky, E.Y. Fatty acid composition of individual polar lipid classes from marine macrophytes [J]. Phytochemistry,2004,65(6):721-730.
    [82]Saravanakumar, D.E.M., Folb, P.I., Campbell, B.W., et al. Antimycobacterial Activity of the Red Alga Polysiphonia virgata [J]. Pharmaceutical Biology,2008,46(4):254-260.
    [83]Shao, J., Wu, Z., Yu, G., et al. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria):From views of gene expression and antioxidant system [J]. Chemosphere,2009,75(7):924-928.
    [84]Sinkkonen, A. A model describing chemical interference caused by decomposing residues at different densities of growing plants[J]. Plant and Soil,2003,250(2):315-322.
    [85]Srivastava, A., Juttner, F. and Strasser, R. J. Action of the allelochemical, fischerellin A, on photosystem II [J]. Biochimicaet Biophysica Acta,1998,1364(3):326-336.
    [86]Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., et al. The effect of Cd2+on the biosynthesis of chlorophyll in leaves of barley [J]. Physiologia Plantarum,1985,63(3): 293-298.
    [87]Sun, J., Shi, D.Y., Li, S., et al. Chemical constituents of the red alga Laurencia tristicha [J]. Journal of Asian Natural Products Research,2007,9(8):725-734.
    [88]Sung, P.J., Chen, B.Y., Chen, Y.H., et al. Loliolide:Occurrence of a carotenoid metabolite in the octocoral Briareum excavatum (Briareidae) [J]. Biochemical systematics and ecology 2010,38(1):116-118.
    [90]Tang, C.S. and Young, C.C. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima) [J]. Plant Physiology,1982,69(1):155-160.
    [91]Wang, H.B., Chu, W.J., Li, G.R., et al. Chemical constituents of Saussurea laniceps [J]. Zhongguo Tianran Yaowu,2008,6(5):357-361.
    [92]Wang, Y., Yu, Z., Song, X., et al. Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates [J]. Aquatic Botany,2007,86:139-147.
    [93]Weir, T.L., Bais, H.P. and Vivanco, J.M. Intraspecific and interspecific interactions mediated by a phytotoxin,(-)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed) [J]. Journal of Chemical Ecology,2003,29(11):2397-2412.
    [94]Weston, L.A. Are laboratory bioassays for allelopathy suitable for prediction of field responses? [J]. Journal of Chemical Ecology,2000,26(9):2111-2118.
    [95]Whitehead, D.C., Dibb, H. and Hartley, R.D. Bound phenolic compounds in water extracts of soils, plant roots and leaf litter [J]. Soil Biology and Biochemistry,1983,15(2): 133-136.
    [96]Xian, Q., Chen, H., Liu, H., et al. Isolation and Identification of Antialgal Compounds from the Leaves of Vallisneria spiralis L. by Activity-Guided Fractionation [J]. Environmental Science and Pollution Research,2006,13(4):233-237.
    [97]Xie, H., Wang, T., Matsuda, H., et al. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from saussurea medusa [J]. Chemical and Pharmaceutical Bulletin,2005,53(11): 1416-1422.
    [98]Xie, W.D., Weng, C.W., Gao, X., et al. A New Farnesene Derivative and Other Constituents from Senecio cannabifolius [J]. Journal of the Chinese Chemical Society, 2010,57(3A):436-438.
    [99]Yang, Y.L., Chang, F.R. and Wu, Y.C. Annosqualine:a Novel Alkaloid from the Stems of Annona squamosa [J]. Helvetica Chimica Acta,2004,87(6):1392-1399.
    [100]Yu, J.Q. and Matsui, Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings [J]. Journal of Chemical Ecology, 1997,23(3):817-827.
    [101]Zhan, Z.J., Li, C.P. and Shan, W.G. A new sesquiterpene from the seeds of Physalis alkekengi L. var. franchi [J]. Journal of Chemical Research 2007, (1):38-39.
    [102]Zhao, G.X., Rieser, M.J., Hui, Y.H., et al. Biologically active acetogenins from stem bark of Asimina triloba [J]. Phytochemistry,1993,33(5):1065-1073.
    [103]Zhou, Y, Yang, H., Hu, H., et al. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China[J]. Aquaculture,2006,252(2-4):264-276.
    [104]Zingone, A. and Enevoldsen, O. The diversity of harmful algal blooms:a challenge for science and management [J]. Ocean & Coastal Management,2000,43(8-9):725-748.
    [105]崔磊,赵秀海和张春雨.化感作用研究动态及展望[J].浙江林业科技,2006,26(1):65-70.
    [106]董立尧,王鸣华,武淑文,等.小麦对直播稻田千金子的化感作用及化感物质分离鉴定[J].中国水稻科学,2005,19(6):551-555.
    [107]杜玲和曹光球.杉木根际土壤提取物对杉木种子发芽的化感效应[J].西北植物学报,2003,23(2):323-327.
    [108]方成武,陈佳佳和刘守金.凤丫蕨根茎化学成分研究[J].中药材,2010,33(4):557-559.
    [109]方旭燕,俞慧娜,刘鹏,等.Fe2+对大豆幼苗生理特性的影响[J].生态环境,2006,15(2):341-344.
    [110]韩文菊,卢小玲,许强芝,等.海洋芽孢杆菌次生代谢产物的分离,鉴定及生物学活性的初步研究[J].第二军医大学学报,2008,29(10):1234-1238.
    [111]黄京华和曾任森.植物化感作用研究动态[J].佛山科学技术学院学报(自然科学版),2001,19(4):61-65.
    [112]黄志群,廖利平,汪思龙,等.杉木根桩和周围土壤酚含量的变化及其化感效应[J].应用生态学报,2000,11(2):190-192.
    [113]惠永正和陈耀全.化学与生命科学[M],化学工业出版社,1992:225-269
    [114]江贵波和曾任森.化感物质及其收集方法综述[J].河南农业科学,2006:24-27.
    [115]孔垂华,黄寿山和胡飞.胜红蓟化感作用研究V.挥发油对真菌,昆虫和植物的生物活性及其化学成份[J].生态学报,2001,21(04):584-587.
    [116]孔垂华,徐涛和胡飞.胜红蓟化感作用研究Ⅱ.主要化感物质的释放途径和活性[J].应用生态学报,1998,9(3):257-260.
    [117]雷光英.大型海藻龙须菜实验生态学的初步研究[D].暨南大学,2007.
    [118]李锋民,胡洪营,种云霄,等.2-甲基乙酰乙酸乙酯对藻细胞膜和亚显微结构的影响[J].环境科学,2007,28(7):1534-1538.
    [119]李锋民,胡洪营,种云霄,等.芦苇化感物质EMA对铜绿微囊藻生理特性的影响[J].中国环境科学,2007,27(3):377-381.
    [120]李静会,高伟,张衡,等.除藻剂应急治理玄武湖蓝藻水华实验研究[J].环境污染与防治,2007,29(1):60-62.[123] 李合生,孙群,赵世杰,章文化.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [121]李建,李彬,陈立,等.八仙草化学成分研究[J].军事医学科学院院刊,2010,34(3):269-271.
    [122]李桂娇,尹华和彭辉.赤潮研究现状与动向[J].重庆环境科学,2001,23(3):38-41.
    [123]李寿田,周健民,王火焰,等.植物化感作用机理的研究进展[J].农村生态环境,2001,17(4):52-55.
    [124]李天磊,殷献华,潘卫东,等.葎草化学成分研究[J].中药材,2010,33(1):55-57.
    [125]李婷,廖小建和徐石海.丛柳珊瑚的化学成分研究[J].中国药学杂志,2010,45(6):420-422.
    [126]李占军,薛培凤,解红霞,等.蒙药河柏的化学成分研究[J].中国中药杂志,2010,35(7):865-868.
    [127]梁迪.核苷类化合物FUGA及其类似物的合成研究[D].吉林大学,2006.
    [128]梁文举,张晓珂,姜勇,等.根分泌的化感物质及其对土壤生物产生的影响[J].地球科学进展,2005,20(3):330-337.
    [129]林文雄和何华勤.水稻化感作用及其生理生化特性的研究[J].应用生态学报,2001,12(6):871-875.
    [130]柳碧晗.黄蒿水溶物对几种植物化感作用的研究[D].东北师范大学,2007.
    [131]刘婷婷,杨宇峰,叶长鹏,等.大型海藻龙须菜对两种海洋赤潮藻的生长抑制效应[J].暨南大学学报(自然科学版),2006,27(5):754-759.
    [132]刘朝阳和孙晓庆.龙须菜的生物学作用及应用前景[J].养殖与饲料,2007,5(5).
    [133]刘瑞义.海带与龙须菜轮养模式[J].齐鲁渔业,2006,23(11):11-12.
    [134]吕国凯.海洋糖脂glycolipids simplexides和系列鞘糖脂类化合物的合成及其生物活性研究[D].中国海洋大学,2009.
    [135]马瑞霞和刘秀芬.小麦根区微生物分解小麦残体产生的化感物质及其生物活性的研究[J].生态学报,1996,16(6):632-639.
    [136]毛玉泽,杨红生,周毅,等.龙须菜(Gracilaria lemaneiformis)的生长,光合作用及其对扇贝排泄氮磷的吸收[J].生态学报,2006,26(10):3225-3231.
    [137]南春容和董双林.大型海藻与海洋微藻间竞争研究进展[J].海洋科学,2004,28(11):64-66.
    [138]聂呈荣和曾任森.三裂叶蟛蜞菊对花生化感作用的生理生化机理[J].花生学报,2002,31(3):1-5.
    [139]彭长连,温学,林植芳,等.龙须菜对海水氮磷富营养化的响应[J].植物生态学报,2007,31(3):505-512.
    [140]彭喜春,杨维东和刘洁生.赤潮期间藻类的化感效应[J].海洋科学,2007,31(2):84-88.
    [141]钱树本,刘东艳和孙军.海藻学[M].2005,青岛:中国海洋大学出版社.
    [142]秦铭俐,李晓明,殷帅文,等.鼠尾藻的化学成分研究[J].海洋科学,2007,31(10):47-50.
    [143]申小霞.酰胺类化合物的合成研究[D].兰州大学,2009.
    [144]沈慧敏.黄花蒿(Artemisia annua L.)化感物质释放途径及化感作用机理研究[D].甘肃农业大学,2006.
    [145]史雪凤,唐旭利,李国强,等.中国南海高领类尖柳珊瑚Muriceides collaris化学成分研究[J].中国海洋药物杂志,2009,28(2):18-21.
    [146]舒任庚,徐昌瑞和刘庆华.青钱柳化学成分的研究[J].中国中药杂志,1995,20(11):678-681,704.
    [147]孙启祥,彭镇华和张齐生.自然状态下杉木木材挥发物成分及其对人体身心健康的影响[J].安徽农业大学学报,2004,31(2):158-163.
    [148]孙文浩.相生相克效应及其应用[J].植物生理学通讯,1992,28(2):81-87.
    [149]孙文浩,余叔文,杨善元,等.凤眼莲根系分泌物中的克藻化合物[J].植物生理学报,1993,19(1):92-96.
    [150]谭仁祥.植物成分功能[M].北京,科学出版社,2003.
    [151]汤坤贤,游秀萍,林亚森,等.龙须菜对富营养化海水的生物修复[J].生态学报,2005,25(11):3044-3051.
    [152]田志佳.大型海藻化感物质对短裸甲藻的抑制作用[D].2009,中国海洋大学.
    [153]王大力和祝心如.豚草的化感作用研究[J].生态学报,1996,16(1):11-19.
    [154]王峰,张琪和蔡崇法.生化他感物质的收集与分离[J].科技进步与对策,2000,17(12):198-199.
    [155]王仁君.大型海藻对有害赤潮微藻克生效应的实验生态学研究[D].2007,中国海洋大学.
    [156]王宪楷.天然药物化学[M].北京:人民卫生出版社,1986:391-460.
    [157]王悠,俞志明,宋秀贤,等.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究[J].环境科学,2006,27(2):274-280.
    [158]韦宏,文东旭,刘晓松,等.广西血竭石油醚和醋酸乙酯部位中的化学成分(Ⅱ)[J].中国中药杂志,1998,23(10):616-618.
    [159]吴晓辉,张兵之,邓平,等.马来眼子菜化感作用对斜生栅藻同工酶的影响[J].武汉植物学研究,2007,25(5):479-483.
    [160]吴志平,陈雨,王鸣,等.葱莲的化学成分研究[J].中药材,2008,31(10):1508-1510.
    [161]夏邦美和张峻甫.中国海藻志[M].北京:科学出版社.2004.
    [162]严志洪.龙须菜南移栽培技术[J].海水养殖,2003,(8):62-63.
    [163]杨斌,董俊德,吴军,等.浮游植物的化感作用[J].生态学报,2007,27(4):1619-1626.
    [164]杨岚,赵玉英和屠呦呦.荚果蕨贯众化学成分的研究[J].中国中药杂志,2003,28(3):278-279.
    [165]杨小茹,苏建强和郑天凌.化感作用在赤潮调控中的意义及前景[J].环境科学学报,2008,28(002):219-226.
    [166]杨宇峰,宋金明,林小涛,等.大型海藻栽培及其在近海环境的生态作用[J].海洋环境科学,2005,24(3):77-80.
    [167]杨宇峰和费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(1):53-57.
    [168]杨维东,张信连和刘洁生.酚酸类化感物质对塔玛亚历山大藻生长的影响[J].中国环境科学,2005,25(004):417-419.
    [169]尹玉丽.两类植物化感物质对赤潮藻生长的影响研究[D].暨南大学,2007.
    [170]岳文洁.氯氰菊酯农药对海洋微藻和大型海藻的毒性效应研究[D].暨南大学,2009.
    [171]袁兆慧,韩丽君,范晓,等.红藻小珊瑚藻化学成分研究[J].中国中药杂志,2006,31(21):1787-1790.
    [172]曾呈奎.经济海藻种质种苗生物学[M].山东科技出版社,1999.
    [173]曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报,1999,10(1):123-126.
    [174]曾任森和李蓬为.窿缘桉和尾叶桉的化感作用研究[J].华南农业大学学报,1997,18(1):6-10.
    [175]曾任森,林象联,谭惠芬,等.蟛蜞菊根分泌物的异种克生作用及初步分离[J].生态学杂志,1994,13(1):51-56.
    [176]曾任森和曾强.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定[J].生态学报,1996,16(1):20-27.
    [177]张宝琛,自雪芳,顾立华,等.生化他感作用与高寒草甸上人工草场自然退化现象的研究[J].生态学报,1989,9(2):115-120.
    [178]张俊英,徐永利,李富平,等.植物化感作用研究进展[J].安徽农业科学,2007,35(21):6357-6358.
    [179]张庭廷,郑春艳,何梅,等.脂肪酸类物质的抑藻效应及其构效关系[J].中国环境科学,2009,29(3):274-279.
    [180]张培玉,蔡恒江,肖慧,等.孔石莼与2种海洋微藻的胞外滤液交叉培养研究[J].海洋科学,2006,30(5):1-4.
    [181]张敏,唐旭利和李国强.滨海湿地耐盐植物二色补血草化学成分研究[J].中国海洋大学学报,2010,40(5):89-92.
    [182]张善东,宋秀贤,王悠,等.大型海藻龙须菜与锥状斯氏藻间的营养竞争研究[J].海洋与湖沼,2005,36(6):56-61.
    [183]张守仁,高荣孚和王连军.杂种杨无性系的光系统Ⅱ放氧活性,光合色素及叶绿体超微结构对光胁迫的响应[J].植物生态学报,2004,28(2):143-149.
    [184]张学成,王永旭,仵小南,等.不同产地龙须菜光合色素的比较研究[J].海洋湖沼通报,1993,1:52-59.
    [185]张艳丽,芦鹏和吴晓芙.植物化感作用在抑藻方面的研究进展[J].环境科学与管理,2006,31(7):50-52.
    [186]张燕军,郑建旭,张爱军,等.植物化感作用研究方法综述[J].安徽农学通报,2008,14(21):66-67.
    [187]张维库,张晓琦和叶文才.对叶大戟地上部分的化学成分[J].中国药科大学学报,2007,38(4):315-319.
    [188]邹宁,魏丕伟,肖波,等.扁藻细胞电镜观察的制样技术[J].烟台教育学院学报,2004,10(3):73-75.
    [189]周名江和于仁成.有害赤潮的形成机制,危害效应与防治对策[J].自然杂志,2007,29(2):72-77.
    [190]周名江,朱明远和张经.中国赤潮的发生趋势和研究进展[J].生命科学,2001,13(2):54-59.
    [191]朱红梅和宋福.藻类生长抑制实验[J].生物学通报,2002,37(8):34-35.
    [192]祝心如.植物他感作用研究-化学生态的重要领域[M].北京:科学出版社,1990,244-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700