用户名: 密码: 验证码:
B7shRNA质粒载体构建及其在小鼠心脏移植抗排斥作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用体外构建的B7shRNA质粒载体修饰骨髓来源树突状细胞,通过抑制其CD80、CD86表达以阻断B7/CD28协同刺激通路,从中探讨诱导T淋巴细胞无能的机理;研究经RNAi敲减CD80、CD86后的供体来源树突状细胞在异体心脏移植中对移植物的保护作用及其抗排斥机制。
     第一部分 B7shRNA质粒载体构建及其阻断共刺激通路作用体外研究
     目的:构建针对小鼠树突状细胞(dendritic cell,DC)表面B7分子的短发夹状RNA(small hairpin RNA,shRNA)质粒载体,探讨其对阻断B7/CD28共刺激通路及诱导异系T淋巴细胞无能的作用。方法:体外培养小鼠骨髓源DC;分别构建针对B7-1(CD80)、B7-2(CD86)的shRNA质粒载体pCD80shRNA、pCD861shRNA、pCD862shRNA,分别转染DC,以流式细胞术初步检测对DC表面抗原CD80、CD86表达的影响;以pCD80shRNA和pCD862shRNA共同构建同时针对CD80、CD86的pB7shRNA质粒载体,转染DC,荧光实时定量PCR及流式细胞术检测转染前后CD80、CD86mRNA及DC表面抗原CD80、CD86、CD11c、MHCⅡ表达,混合淋巴细胞培养观察pB7shRNA转染DC对刺激异系T淋巴细胞增殖能力的影响,荧光实时定量PCR测定混合淋巴细胞培养体系中IL-2mRNA表达水平。结果:pCD80shRNA转染DC,使CD80抗原表达由93.42%下降至31.05%,pCD861shRNA、pCD862shRNA,分别转染DC,使CD86抗原表达由78.70%下降至44.26%、37.90%;以pCD80shRNA和pCD862shRNA成功构建针对CD80、CD86的pB7shRNA质粒载体;B7shRNA干扰DC对CD80、
In this research project, B7 shRNA plasmid vector was constructed and was used to modify myeloid DC in that way which the CD80 and CD86 expressions on it were inhibited to block B7/CD28 co-stimulatory pathway in order to explore the mechanism of T lymphocyte anergy. The protective effect to allograft and anti-rejection mechanism in heart allo-transplantation due to donor derived DCs underwent CD80 and CD86 knock down by RNAi were investigated.Part I Construction of B7shRNA Plasmid Vector and InvitroResearch on its Effect of Blocking B7/CD28 Co-stimulatory PathwayObjective: To construct small hairpin RNA(shRNA) plasmid vector targeting B7 molecular of mice dendritic cells(DC) and analysis its effect on blocking B7/CD28 co-stimulatory pathway and inducing T lymphocytes anergy .Methods: Mice myeloid DC were cultured invitro. shRNA plasmid vector pCD80shRNA、 pCD861shRNA 、 pCD862shRNA were constructed and then transfected DC respectively, correspondly, The change of surface antigen CD80、 CD86 expression levels were measured by flowcytometry. pB7shRNA plasmid vector targeting both CD80 and CD86 was constructed using pCD80shRNA and pCD862shRNA. The mRNA expression level of CD80、 CD86 and the expression level of surface antigen CD80、 CD86、 CD11c、 MHCⅡ were measured by real time quantitative PCR and flowcytometry before and after pB7shRNA transfecting DC. The influence on DC stimulating allogenic T cell proliferation induced by pB7shRNA transfected DC was observed through MLC. IL-2 mRNA levels in MLC were determined by real time
    quantitative PCR. Results: The CD80 antigen expressing level declined from 93.42% to 31.05% after the pCD80shRNA transfecting DC, while CD86 declined from 78.70% to 44.26% and 37.90% after the pCD861shRNA and pCD862shRNA transfecting DC respectively. The pB7shRNA plasmid vector targeting both CD80 and CD86 was constructed successfully using pCD80shRNA and pCD862shRNA. After the pB7shRNA transfecting DC, the CD80> CD86 mRNA expression were inhibited at the rate of 77.5% and 61.5% respectively, companying with reducing of the surface antigen CD80+ and CD86+ from 93.42%, 78.70% to 30.05% and 34.76% respectively, but no changing in surface antigen of MHCII, CD lie. The MLC result showed that the index of stimulation to allogenic T cell was declined significantly after the pB7shRNA transfecting DC (P<0.0\), and the IL-2 mRNA levels in MLC was inhibited at the rate of 80.48%. Conclusion: The construction of pB7shRNA plasmid vector applied a stable vector for long-time RNAi research on B7 molecules of mice DC. With the method of pB7shRNA plasmid vector transfecting DC, B7 expression will be silenced efficiently and the B7/CD28 co-stimulatory pathway will be blocked , the ability of DC that stimulate allogenic T lymphocytes proliferation and IL-2 secreation will be knocked down ,thus the T lymphocytes will be induced anergy.Part II The Research on the Anti-rejection Effect Induced byB7shRNA Interfered DC in Mice Heart TVansplantationObjective: To observe the anti-rejection effect of B7shRNA interfered DC in mice heart transplantation and analysis the anti-rejection mechanism. Methods: At first, the heterotopic heart transplantation model in mice was established, then the B7shRNA interfered DC of donors were were transfused into recipients 7 days before operation(group 1: DC treated by shRNA), and the four control groups were:
    group2: isograft transplantation, group3: allograft transplantation, group4: treated with CsA, group5: DC none treated with shRNA. The graft survivals were individually recorded and pathological grading of graft rejection were evalued on the 7 day of post-operation. At the same time the IL-2mRNA expression level in grafts were determined by real time quantitative PCR. Results: Stable heterotopic heart transplantation model in mice was established successfully. Comparing with the group3 and group5, the graft survivals were significantly longer in the group of DC treated by shRNA (group 1),(MST: 22 vs 9 and 8 days, P<0.0\ ) companying with lower pathological grade of graft rejection( x2=36.566, PO.01 ) and lower IL-2 mRNA expression level in grafts ( 0.117 + 0. 039 vs 0.376 ±0. 068 and 0.436 ± 0. 055, P<0.0\ ) . There exists positive correlation between the IL-2 mRNA expression level and pathological grade of graft rejection (r=0.931, P <0.01) . Conclusions: Mouse heterotopic heart transplantation model is ideal and valuable for transplantation rejection research. For mice heart transplantation, transfusing donor's B7shRNA interfered DC into recipients before operation can creat anti-rejection effect and the mechanism might be: the blockade of B7/CD28 co-stimulatory pathway by B7shRNA interfered DC will induce the T lymphocytes of recipients anergy. IL-2 might be molecular makers to recognize post-transplantation reaction.
引文
1 陈实.移植免疫学.湖北科学技术出版社,1998
    2 陈佳佳 李兰娟。B7-CD28家族共刺激途径的研究进展及其临床意义。国外医学。流行病学传染病学分册,2004,31(6):334-338
    3 谢遵江,贾立敏,贺业春,等。体外培养小鼠骨髓树突状细胞的扩增、鉴定及形态学观察。解剖科学进展,2005,11(3):240~243。
    4 Marc D, Bianca O, Jan H, et al. Mature dentritic cells from human monocytes within 48 hours A novel strategy for dendritic cell differentiation from blood precursors. J Immunol 2003,170(4) :4069-4076.
    5 O' Rourke RW, Kand SM, Lower JA, et al. A dendritic cell line genetically modified to express CTLA4-Ig as a means to prolong islet allograft survival. Transplantation ,2000,69(7) : 1440-1446.
    6 范志强。RNA干扰在哺乳动物中的研究进展。天津医科大学学报,2005,11(3):503-506.
    7 W5 Haegel-Kronenberger H, Haanstra K, Ziller-Remy C,et al.Inhibition ofcostimulation allows for repeated systemic administration of adenoviral vector in rhesus monkeys.Gene Ther.2004,11 (3):241-52.
    8 Rochelea CE, Downs WD, Lin R, etal.Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos.Cell,1997,90(4):707
    9 任颖,银平章,孔令非等。树突状细胞的制备及生物学特性的研究.实用诊断与治疗杂志,2004,18(3):183-185
    10 鄂征.组织培养和分子细胞学技术.北京出版社,1995
    11 Tuschl T. 哺乳动物中的RNAi.见:Hanoon GJ主编.RNAi—基因沉默指南.第一版.化学工业出版社,2004,266-297
    12 [R12]Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. Journal of Molecular Endocrinology, 2004,33:545-557
    13 cotransfecting plasmid DNA and RNAi into mammalian cells using lipofectamine 2000说明书.invitrogen 公司,2005.
    14 朱立平,陈学清.免疫学常用实验方法.人民军医出版社,2000
    15 Mouse T Cell Enrichment Columns说明书R&D SYSTEMS公司(catalog number:MTCC-5/10/25)
    16 J.萨姆布鲁克.分子克隆实验指南第三版.科学技术出版社,1998.
    17 Bell D,Young JW, Banchereau J. Dendritic cells. Adv Immunol,1999,72(3):255-322.
    18 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998,392(3):245-252.
    19 林苹,张洁,陆燕蓉,等.体外诱导成熟树突状细胞的研究.中国免疫学杂志,2001,17(3):132-1341
    20 蔡大川,李用国,任红,等.人脐血来源的树突状细胞的体外培养扩增.免疫学杂志,2002,18(3):26-291
    21 Chowdhury NC,Saborio DV ,Garrovillo M,et al. Comparative studies of specific acquired systemic tolerance induced by intrathymic inoculation of a single synthetic Wistar-Furth (RT1U) allo-MHC class I (RT1 .AU) peptide or WAG (RT1U)-derived class I peptide. Transplantation ,1998,66 (8) :1059-1066.
    22 Garrovillo M, AliA, Depaz HA ,et al. Induction of Transplant Tolerance with Immunodominant Allopeptide-pulsed Host Lymphoid and Myeloid Dendritic Cells. Am J Transplant ,2001,1(2) :129-137.
    23 Oluwole OO, Depaz HA, Gopinathan R ,et al. Indirect Allomcognition in Acquired Thymic Tolerance Induction of Donor-Specific Permanent Acceptance of Rat Islets by Adoptive Transfer of Allopeptide-Pulsed Host Myeloid and Thymic Dendritic Cells.Diabetes ,2001,50(7) :1546-1552.
    24 FuF, LiY, QianS, et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class Ⅱ+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation. 1996;62(5):659~65
    25 BonhamCA, LuL, BanasRA, et al. TGF-beta 1 pretreatment impairs the allostimulatory function of human bone marrow-derived antigen-presenting cells for both naive and primed T cells.Transpl Immunol, 1996;4(3): 186~91
    26 Lu L,Thomson AW. Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease. Transplantation, 2002;73(1Suppl):S 19~22
    27 Giannoukakis N,Bonham CA,Qian S, Prolongation of Cardiac Allograft Survival Using Dendritic Cells Treated with NF-kB Decoy Oligodeoxyribonucleotides.et al. Mol Ther,2000;1 (5Pt1):430~7
    28 Min WP ,Gorczynski R ,Huang XY, et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival.J Immune1,2000,164:161-167. J Immunol ,2000,164(1) : 161-167.
    29 Min W, Huang X, Gorczynski R ,et al. Fas ligand-transfected dendritic cells induce apoptosis of antigen-specific T cells. Transplant Proc ,2001,33(1-2) :234.
    30 Buonocore S ,Meirvenne SV ,Demoor FX,et aI. Dendritic ceils transduced with viral interleukin 10 or Fas ligand: no evidence for induction of allotolerance in vivo. Transplantation, 2002,73 (1 Suppl) :S27-30.
    31 Gorczynski RM,BransomJ, Synergy in Induction of Increased Renal Allograft Survival after Portal Vein Infusion of Dendritic Cells Transduced to Express TGFβ and IL-10, along with Administration of CHO Cells Expressing the Regulatory Molecule OX-2. Cattral M,et al. Clin Immune1,2000,95(3) : 182-189.
    32 Kulkami AB, Thyagarajan T ,Letterio JJ ,et al. Function of Cytokines within the TGF-β Superfamily as Determined from Transgenic and Gene Knockout Studies in Mice. Curt Mol Med ,2002,2 (3) :303-327.
    33 Curreli S ,Romerio F ,Mirandola P ,et al. Human Primary CD4+ T Cells Activated in the Presence of IFN-α2b Express Functional Indoleamine 2,3-Dioxygenase. J Interferon Cytokine Res ,2001,21 (6) :431-437
    34 Munn DH ,Sharma MD ,Lee JR ,et al. Potential Regulatory Function of Human Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Science ,2002,297(5588) : 1867-1870.
    35 Gonzalo JA, Delaney T, Corcoran J, et al. Cutting Edge: The Related Molecules CD28 and Inducible Costimulator Deliver Both Unique and Complementary Signals Required for Optimal T Cell Activation. J Immunol,2001,166(1):125.
    36 Salomon B, Bluestone JA. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001,19(1):225-252.
    37 Carrreno BM, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune response. Annu Rev Immunol,2002,20:29-53.
    38 Takayama T, Morelli AE, Robbins PD ,et al. Feasibility ofCTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-speeific T cell anergy in vitro. Gene Ther ,2000,7(15) :1265-1273.
    39 王晶,克晓燕,贾丽萍.抗B7分子抗体诱导T细胞免疫耐受研究.中华血.液学杂志,2002,23(7):341-344
    40 李红卫,孟自力,张卫民,等.阻断B7/CD28途径诱导异种免疫耐受的体外研究.同济大学学报(医学版),2004,25(2):108-111.
    41 吴晓剑,兰平,王东平,等.无能T淋巴细胞的建立及其免疫生物学特性的研究.中华器官移植杂志,2005,26(1):40-43.
    42 Lina Lu,Wei Li, Fumin Fu,et al.Blockade of the CD40-CD401igand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival.Transplantation, 1997,64(12): 1808-1815.
    43 Liang, XY;Lu L;Chen ZY, et al. Administration of dendritic ceils transduced with antisense oligodeoxyribonucleotides targeting CD80 or CD86 prolongs allograft survival. Transplantation. 2003,76(4):721-729.
    44 杨吉成.2002年世界十大科学成就之首—siRNA和RNAi.苏州大学学报(医学版),2003,23(3):253-256
    45 Guo S, Kemphues KJ.par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asyrmnetrically distributed. Cell, 1995,81 (4): 611
    46 Fire A, Xu S, Montgomery MK, etal. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391 (6669): 806
    47 Hannon GJ. RNA interference. Nature, 2002, 418(4894): 244
    48 Cerutti H. RNA interference: traveling in the cell and gaining functions? Trends Genet, 2003, 19(1): 39
    49 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21 and 22nt RNAs. Genes Dev, 2001, 15(2): 188
    50 Brummelkamp TR, Bemards R, Agami R, et al. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296(5567): 550-553
    51 刘明,刘国庆.RNA干扰的应用及意义.生物学通报,2005,40(6):1-3.
    52 Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836):494-498
    53 Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient KNAi in Drosophila melanogaster embryo lysate. EMBO J, 2001,20: 6877~6888.
    54 10张爱宏,刘国庆.应用RNA干扰技术抑制哺乳动物体内基因表达.生理学进展, 2004,35(2):125-129
    55 Holen T, Amarzguioui M, Wiiger MT, et al.Positional effects of short interfering RNAs targeting the human coagulation trigger TissueFactor. NucleicAcids Res, 2002, 30(8): 1757
    56 Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci, 2001, 114(Pt24): 4557
    57 Yang D,Buchholz F, Huang Z, et al. Short RNA duplexes produced by hy-drolysis with Escherichia coli RNaselⅡ mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA,2002,99(15):9942.
    58 Elbashir SM, Harvorth J,Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,26(2): 199
    59 Bohula EA, Salisbury A J, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor(IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem, 2003, 278(18):15991
    60 Kumiko Ui-Tei,Yuki naito, Fuitaka Takahashi, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Research, 2004, 32 (3): 936-948
    61 Hirohiko Hohjoh. Enhancement of RNAi activity by improved siRNA d, uplexes. FEBS Letters, 2004, 557(1-3):193-198.
    62 Bingbing Yuan, Robert Latek, Markus Hossbach, et al. siRNA selection server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Reserch,2004,32:130-134
    63 Kisielow M, Kleiner S, Nagasawa M, et al. Isoform-speeific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem J, 2002,363(ptl): 1.
    64 Wang W, Wang CY, Dong JH, et al. Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol, 2005, 11(13): 2026.
    65 Sui GC,Soohoo C, Affar EB, et al. A DNA vector based RNAi technology to suppress gene expression in mammalian cells. PNAS, 2002, 99:5515-5520
    66 Yu JY, De Ruiter SL, Tumer DL. RNA interference by expression of short interfering and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA, 2002,99(9): 6047-6052.
    67 Paddison PJ, Silva JM, Conklin DS,et al. A resource for large-scale RNA-interference-based screens in mammals. Nature, 2004 Mar 25;428(6981):427-31
    68 Hill JA, Ichim TE, Kusznieruk KP, et al. Immune modulation by silencing IL 12 production in dendritic cells using small interfering RNA. J Immunol, 2003,171:691-696.
    69 Sato Y, Ajiki T, Inoue S, et al. Gene silencing in rat liver and limb grafts by rapid injection of small interference RNA. Transplantation, 2005,79:240-243.
    70 Susan Stewart, FRCPath. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant, 2005;24(11):1710-1720.
    71 李书隽.器官移植医学的发展.北京大学学报(医学版),2001,33(1):2-5.
    72 莫晓云,施焕中.B7/CD28/CTLA-4协同刺激通路与T淋巴细胞的活化.国外医学免疫学分册,2003,26(2):63-66
    73 陈忠华.免疫耐受的现状与展望冲国实用外科杂志,1999,19(5):313-314
    74 倪一鸣,冯强,梁宏立小鼠异位心脏移植模型的建立.中华器官移植杂志,2002,23(6):339
    75 金钟大,陈江华.大鼠腹腔心脏移植技术的改良.局解手术学杂志,2004,13(3):162-164
    76 Ono K, Lindsey S. Improved technique of heart transplantation. J ThoracCardiovascSurg, 1969,57:225-229.
    77 Corry RJ, WirmHJ,RusselPS.Primarily vascularized allograft of hearts in mice.Transplantation, 1973,16(4):343-350.
    78 Timmermarm W, Gassel HJ,Urichs K, et al. Organ transplantation in Rat and Mice[M]. Microsurgical Technique and Immunological Principles,1998.185-192.
    79 吴蔚,杨康,姜恒等.小鼠异位心脏移植模型的建立.局解手术学杂志,2003,12(3):209
    80 宋光民,宋惠民,张振国,等.大鼠心脏移植与心肌细胞坏死.中华器官移植杂志,1999,,20(4):227-228
    81 Waldmarm TA, O'Shea J.The use of antibodies against the IL-2 receptor in transplantation. Curr Opin Immunol, 1998, 10(5):507-12.
    82 李岩,陈宝田,邱长春.白细胞介素2及其受体mRNA早期诊断心脏移植免疫排斥反应冲华医学杂志,1996,76:505-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700