用户名: 密码: 验证码:
外加小分子物质对聚(N-异丙基丙烯酰胺)在水溶液中线团—球体转变的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚(N-异丙基丙烯酰胺)是一种典型的水溶性温敏聚合物,在水溶液中305K附近具有下临界共溶温度。当温度达到下临界共溶温度时,很小的温度改变(1-2K)就可使得高分子发生从线团到球体的构象变化。由于这一转变行为,对研究许多与生命现象相关的问题具有很大的启示作用,如:蛋白质的折叠,DNA链的聚集与离解等,因此一直以来是高分子学界的重要科学前沿问题之一而外加小分子物质对这一构象转变具有很大影响,因此系统研究不同外加小分子,如表面活性剂以及无机盐等对聚(N-异丙基丙烯酰胺)在水溶液中线团—球体转变影响具有重要意义。
     本课题具体以实验室自制的聚(N-异丙基丙烯酰胺)为研究对象,分别采用粘度法、激光光散射法和核磁共振法,系统研究了一种阴离子表面活性剂——十二烷基硫酸钠对聚(N-异丙基丙烯酰胺)在水溶液中线团—球体转变的影响,并分别在不同温度及表面活性剂浓度条件下考察了十二烷基硫酸钠与聚(N-异丙基丙烯酰胺)的相互作用及形成的复合结构特征;此外,还初步研究了八种无机盐对聚(N-异丙基丙烯酰胺)在水溶液中线团—球体转变的影响以及作用机制。结果表明:
     (1)表面活性剂十二烷基硫酸钠的引入,可有效地延缓聚(N-异丙基丙烯酰胺)在水溶液中发生相转变,使得LCST升高。二维分子相关核磁谱以及扩散核磁谱结果表明,这是由于在低于相转变温度时,大约16%的十二烷基硫酸钠通过疏水作用与聚(N-异丙基丙烯酰胺)侧链作用,结合形成具有聚电解质特征的复合物。一方面由于高分子链内的静电排斥作用使得高分子链不易收缩,相转变温度升高;另一方面,高分子链间的静电排斥作用有效地阻止了高分子链间缠结作用,一定条件下,可观察到单链高分子乳液粒子。而在相转变温度以上,由于链内的静电和空间位阻作用,与聚(N-异丙基丙烯酰胺)结合的十二烷基硫酸钠会逐步解离下来形成自由的表面活性剂分子。当温度远高于相转变温度时,高分子与表面活性剂间基本已无相互作用。其不同温度下聚(N-异丙基丙烯酰胺)与十二烷基硫酸钠作用过程描述在图1上
     (2)在低于相转变温度时,十二烷基硫酸钠与聚(N-异丙基丙烯酰胺)能有效结合形成复合物。而它们间的相互作用与表面活性剂的浓度有很大关联。粘度以及核磁实验结果均表明,当表面活性剂浓度小于0.86mM(接近十二烷基硫酸钠临界聚集浓度)时,高分子与表面活性剂间几乎没有相互作用;当表面活性剂浓度在0.86mM-7.0mM时,十二烷基硫酸钠通过疏水作用与聚(N-异丙基丙烯酰胺)结合,不断聚集在聚(N-异丙基丙烯酰胺)侧链上,使得高分子流体力学体积变大;当浓度超过7.0mM时,由于链内的静电和空间位阻作用,聚集在聚(N-异丙基丙烯酰胺)上的十二烷基硫酸钠数量已达到饱和,不再增加。十烷基硫酸钠浓度分别为1.0mM与12mM时与聚(N-异丙基丙烯酰胺)形成的复合物结构如图2所示。
     (3)除了表面活性剂,无机盐对聚(N-异丙基丙烯酰胺)在水溶液中构象转变也有很大影响。粘度及动态光散射实验结果表明,在常温下绝大多数无机盐均能促进高分子构象发生转变,使得相转变温度下降;且盐浓度越高,影响程度越大。此外,无机盐中阴离子基团相比于阳离子基团,起到更为决定性作用。并且不同盐对高分子相转变影响程度的大小关系符合经典的Hofmeister序列。其中对于卤素系钠盐,NaI在较低浓度时表现出与其它盐相反的作用,使得聚(N-异丙基丙烯酰胺)链在水溶液构象伸展,高分子特性粘数及平均流体力学半径增大。进一步的核磁实验结果初步证实了无机盐对PNIPAM在水溶液中构象转变影响,主要是通过阴离子基团与溶剂分子间作用而进行的。
Poly(N-isopropylacrylamide)(PNIPAM) is a well-known thermo-sensitive polymer that exhibits a low critical solution temperature (LCST) at around305K in aqueous solutions. The coil-to-globule transition of PNIPAM can be induced by a small temperature variation (1~2K) accompanied by abrupt conformational changes. The LCST behavior of PNIPAM has been attracting research interests for several decades because of its implication in a number of living phenomena, especially on protein folding and DN A packing. However, the coil-to-globule transition of PNIPAM has been greatly affected by some additives, such as surfactants and inorganic salts. Therefore, the researches on the effects of the additives on the coil-to-globule transition of PNIPAM have gained great realistic significance.
     In this work, with the applications of laser light scattering (LLS), viscosmetry as well as high-resolution nuclear magnetic resonance (NMR), the effects of the anion surfactant sodium n-dodecyl sulfate (SDS) on the coil-to-globule transition of PNIPAM under various temperatures and surfactant concentrations have been systematically studied. Besides, the effects of eight inorganic salts on the coil-to-globule transition of this polymer have been also explored. Several interesting results have been drawn:
     (1) SDS can increase LCST of PNIPAM solutions obviously for peculiar interactions with PNIPAM. Results from2D NOESY and pulsed-field gradient diffusion NMR show that a small proportion of SDS (around16%) binds to the PNIPAM chain and forms a polyelectrolyte-like complex via hydrophobic interactions below LCST. The polymer-bound SDS plays an important role in the retardation of the PNIPAM chain collapse and the inhibition of inter-chain aggregation. Interestingly, the polymer-bound SDS gradually dissociates from PNIPAM because of electrostatic repulsion and steric hindrance effects resulting from the coil-to-globule transition. Almost no cross-peak in the2D NOESY NMR spectra above the LCST is observed because of the reduced interactions between PNIPAM and SDS after the polymer chain transforms into a compact globule. The role of SDS during the coil-to-globule transition in the PNIPAM/SDS aqueous solution at various temperatures was illustrated in Figure1.
     (2) The complex structure of and interaction between PNIPAM and SDS in aqueous solutions below the LCST were investigated further. Results from viscometry and NMR have both indicated that the interactions of PNIPAM and SDS were found to exhibit strong dependences on the SDS concentration. Two critical SDS concentrations for this system were found, i.e.,0.86and7.0mM, within the current measured SDS concentration range. The former was the onset concentration of formation of the PNIPAM and SDS aggregates. The latter was the saturation concentration at which the surfactant molecules could not bound to the polymer chain. At SDS concentrations below0.86mM, the interaction between PNIPAM and SDS was very minimal, resulting in almost no change in the intrinsic viscosity and hydrodynamic size of the polymer. At SDS concentrations below7.0mM but above0.86mM, the polymer-free SDS concentration remained unchanged at around0.86mM near the critical aggregation concentration (CAC). Hence, excess SDS molecules preferred to attach onto the PNIPAM chain until saturation and formed a polyelectrolyte-like complex. Consequently, the intrinsic viscosity and hydrodynamic size of the polymer in solution increased. The amount of polymer-bound SDS and intensities of the cross-peaks in the2D NOESY NMR spectra also increased. At SDS concentrations above7.0mM, the number of polymer-bound SDS reached saturation and no more SDS molecule bound to the polymer chain due to steric hindrance. Subsequently, the amount of polymer-free SDS began to increase. The morphological structures of PNIPAM/SDS at SDS concentrations1.0mM and12mM have shown in Figure2, respectively.
     (3) Besides SDS, the additives of inorganic salts have also shown great effects on the conformational change of PNIPAM in aqueous solutions. Results from viscometry and LLS indicated that most of tested salts would accelerate the coil-to-globule transition of PNIPAM and reduce the LCST. These effects exhibited strong dependence on the salts concentrations, and the higher salts concentration, the lower of LCST. Furthermore, it was found that the anionic groups of salts played the key roles to affect the coil-to-globule transition behavior of polymer, and followed the order of classic Hofmeister sequence. However, NaI at low concentration region showed opposite effects, which could increased the hydrodynamic size of PNIPAM slightly. The NMR experiments primarily indicated that the effects of the inorganic salts on the conformational change of PNIPAM in aqueous solutions were carried on mainly through interaction between the anionic groups and solvent molecules and destroying the solvation effects of polymer.
引文
1. STOCKMAYER W H. Problems of the statistical thermodynamics of dilute polymer solutions[J]. Die Makromoleculare Chemie,1960,35(1):54-74.
    2. DOETSCH M, SCHROEDER R, FURTIG B. Transient RNA-protein interactions in RNA folding[J]. FEBS Journal,2011,278 (10):1634-1642.
    3. QIN Yong, HURLEY L. H. Structures, folding patterns, and functions of intramolecular DNAG-quadruplexes found in eukaryotic promoter regions[J]. Biochimie,2008,90 (8):1149-1171.
    4. CREIGHTON T E Protein Folding[M]. New York:W. H. Freeman & Co.,1992.
    5. STOCKMAYER W H. Chain dimensions near the Flory temperature[J]. Journal of Polymer Science,1955,15(80):595-598.
    6. Flory P. Principles of Polymer Chemistry[M]. Ithaca:Cornell Univ. Press,1953.
    7. DEGENNES P G. Scaling Concepts in Polymer Physics[M]. Ithaca:Cornell Univ. Press,1979.
    8. SCHILD H G. Poly(N-isopropylacrylamide):experiment, theory and application [J]. Progress in Polymer Science,1992,17(2):163-249.
    9. FUJISHIGE S, KUBOTA K, ANDO I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) [J]. Journal of Physics and Chemistry,1989,93(8):3311-3313.
    10. HESKINS M, GULLET J E. Solution properties of poly(N-isopropylacrylamide) [J]. Journal of Macromolecular Science:Part A-Chemistry,1968, A2(8):1441-14 55.
    11. KUBOTA K, FUJISHIGE S, ANDO I. Single-chain transition of poly(N-isopropylacrylamide) in water[J]. Journal of Physics and Chemistry,1990, 94(12):5154-5158.
    12. FUJISHIG E. Intrinsic viscosity-molecular weight relationships for poly(N-isopro-pylacrylamide) solutions[J]. Polymer Journal,1987,19(3):297-300.
    13. TAM K C, WU X Y, PELTON R H. Viscometry-a useful tool for studying conformational changes of poly(N-isopropylacrylamide) in solutions[J]. Polymer, 1992,33(2):436-438.
    14. YANG Hu, YAN Xiaohu, CHENG Rongshi. Investigation of solution properties of poly(N-isopropylacrylamide) in water with its thermohistory[J]. Journal of Polymer Science:Part B:Polymer Physics,2000,38:1188-1192.
    15. IYER N P, HOURDET D, BADIGER M V, et al. Synthesis and swelling behaviour of hydrophobically modified responsive polymers in dilute aqueous solutions[J].Polymer,2005,46:12190-12199.
    16. LIANG Liang, LIU Jun, GONG Xiaoyi. Thermosensitive poly(N-isopropylacryla-mide) clay nanocomposites with enhanced temperature response[J]. Langmuir 2000,16(25):9895-9899.
    17. ZHANG Chi, EASTEAL A J. Thermoanalytical, Spectroscopic, and morpholog-ical study of poly(ethylene glycol)/poly(2-acrylamido-2-methylpropanesulfonic-acid-co-N-isopropylacryl-amide) semi-interpenetrating network gels[J]. Journal of Applied Polymer Science,2007,104:1723-1731.
    18. ZHAO Dongyu, CHEN Xi, LIU, Yang, et al. Thermosensitive and pH-sensitive Au-Pd bimetallic nanocomposites[J]. Journal of Colloid and Interface Science, 2009,331(1):104-112.
    19. SPEVACEK J. NMR investigations of phase transition in aqueous polymer solutions and gels [J]. Current Opinion in Colloid & Interface Science,2009, 14:184-191.
    20. TOKUHIRO T, AMIYA T, MAMADA A, et al. NMR Study of poly(N-isopropy-lacrylamide) gels near phase transition[J].Macromolecules,1991,24(10):2936-2943.
    21.RUSU M, WOHLRAB S, KUCKLING D, et al. Coil-to-globule transition of PNIPAM graft copolymers with charged side chains:a 1H and 2H NMR and spin relaxation study[J].Macromolecules 2006,39(21):7358-7363.
    22. OHTA H, ANDO I, FUJISHIGE S, et al. A 13C PST/MAS NMR study of poly (N-isopropylacrylamide) in solution and in the gel phase[J]. Journal of Molecular Structure 1991,245(3-4):391-397.
    23.FRIEDRICH T, TIEKE B, MEYER M, et al. Thermoresponsive copolymer hydrogels based on N-Isopropylacrylamide and cationic surfactant monomers prepared from micellar solution and microemulsion in a one-step reaction[J]. Journal of Physical Chemistry B,2010,114(17):5666-5677.
    24. SHIBAYAMA M, TANAKA T, HAN C C. Small-angel neutron-scattering study on poly(N-isopropylacrylamide) gels near their volume-phase transition-tempera-ture[J]. Journal of Chemical Physics,1992,97(9):6829-6841.
    25. BERNDT I, PEDERSEN J S, LINDNER P, et al. Influence of shell thickness and crosslink density on the structure of temperature-sensitive Poly-N-isopropylacryla-mide-poly-N-isopro-pylmethacrylamide core-shell microgels investigated by small-angle neutron scattering[J]. Langmuir,2006,22(1):459-468.
    26. MUSCH J, SCHNEIDER S, LINDNER P. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix[J]. Journal of Physical Chemistry B,2008,112(20):6309-6314.
    27. SCHILD H G, TIRRELL D A. Interaction of poly (N-isopropylacrylamide) with sodium normal-alkyl sulfates in aqueous solution[J]. Langmuir,1991,7(4): 665-671.
    28. WINNIK F M. Quenching of fluorescence from pyrene-labeled poly (N-isopropylacrylamide) solutions heated above their lower critical solution temperature[J]. Macromolecules,1990,23(6):1647-1649.
    29. DENG Lin, SHI Keyu, ZHANG Yuying, et al. Synthesis of well-defined poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) by a versatile approach and micellization[J] Journal Colloid and Interface Science,2008,323(1):169-175.
    30. LI Guiying, GUO Lei,MA Songmei. Self-assembly and drug delivery behaviors of thermo-sensitive poly(t-butylacrylate)-b-poly(N-isopropylacrylamide) micelles [J]. Journal of Applied Polymer Science,2009,113(2):1364.
    31. STAROVOYTOVA L, SPEVACEK J, TRCHOVA M. H-1 NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions[J]. European Polymer Journal,2007,43(12):5001-5009.
    32. SPEVACEK J, HANYKOVA L, STAROVOYTOVA L. H-1 NMR relaxation study of thermotropic phase transition in poly(vinyl methyl ether)/D2O solutions[J]. Macromolecules,2004,37(20):7710-7718.
    33. SPEVACEK J, HANYKOVA L, LABUTA J. Behavior of water during temperature-induced phase separation in poly(vinyl methyl ether) aqueous solutions. NMR and optical microscopy study[J]. Macromolecules,2011, 44(7):2149-2153.
    34. WU Chi, ZHOU Shuiqin. Thermodynamically stable globule state of a single poly(N-isopropylacrylamide) chain in water[J]. Macromolecules,1995, 28(15):5388-5390.
    35. RICKA J, MEEWES M, NYFFENEGGER R, et al. Intermolecular and intramolecular solubilization:collapse and expansion of a polymer chain in surfactant solutions[J]. Physical Review Letters,1990,65(5):657-660.
    36. YANG Hu, YAN Xiaohu, CHENG Rongshi. Single-chain-particles of poly(N-isopropylacrylamide)[J]. Macromolecular Rapid Communications,2002, 23(17):1037-1040.
    37. KOKUFUTA E, ZHANG Yongqing, TANAKA T. et al. Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) gel[J].Macromolecules,1993, 26(5):1053-1059.
    38. WALTER R, RICKA J, QUELLET R, et al. Coil-globule transition of poly(N-isopropylacrylamide):a study of polymer-surfactant association[J]. Macromolecules,1996,29(11):4019-4028.
    39. DHARA D, CHATTERJI P R. Phase transition in linear and cross-Linked poly(N-Isopropylacrylamide) in water:effect of various types of additives[J]. Polymer Reviews,2000,40:51-68.
    40. Hofmeister F. Zur Lehre von der Wirkung der Salze[J]. Aarchiv Fur Experimentelle Pathologie Und Pharmakologie,1888,24(4-5):247-260
    41. ZHANG Yanjie, FURYK S, BERGBREITER D E, et al. Specific ion effects on the water solubility of macromolecules:PNIPAM and the hofmeister series[J]. Journal of American Chemical Society,2005,127(41):14505-14510.
    42. ZHANG Yanjie, CREMER P S. Chemistry of hofmeister anions and osmolytes[J]. Annual Review Physical Chemistry,2010,61:63-83.
    43. DU Hongbo, WICKRAMASINGHE R, QIAN Xianghong. Eeffects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide)[J]. Journal of Physical Chemistry B,2010,114(49):16594-16604.
    44. WINNIK F M, OTTAVIANI M F, BOSSMANN S H, et al. Cononsolvency of poly(N-isopropylacrylamide) in mixed water-methanol solutions—a look at spinlableled polymers[J]. Macromolecules,1992,25(22):6007-6017.
    45. GROSBERG A Y, KUZNETSOV D V. Single chain collapse or precipitation kinetic diagram of the states of a polymer solution[J]. Macromolecules 1993, 26(16):4249-4251.
    46. DEGENNES P G. Kinetics of collapse for a flexible coil[J]. Journal De Physique Letters,1985,46(14):L639-642.
    47. CHU B, YING Qicong, GROSBERG A Y. Two-stage kinetics of single-chain collapse, polystyrene in cyclohexane[J]. Macromolecules,1995,28(1):180-189.
    48. XU Jian, ZHU Zhiyuan, LIU Shiyong, et al. First observation of two-stage collapsing kinetics of a single synthetic polymer chain[J]. Physical Review Letter, 2006,96(2):0278021-0278024.
    49. SUN Pingchuan, LI Baohui, WANG Yinong, et al. 1H NMR studies of poly(N-isopropylacrylamide) gels near the phase transition[J]. European Polymer Journal,2003,39(5):1045-1050.
    50. YUSHMANOV P V, FURO I, ILLIOPOULOS I. Kinetics of demixing and remixing transitions in aqueous solutions of poly(N-isopropylacrylamide):A temperature-jump H-1 NMR study[J]. Macromolecular Chemistry Physics,2006, 207(21):1972-1979.
    51. PLUMMER R, HILL D J T, WHITTAKER A K. Solution properties of star and linear poly(N-isopropylacrylamide)[J]. Macromolecules,2006, 39(24):8379-8388.
    52. MURPHY K P, PRIVALOV P L, GILL S J. Common features of protein unfolding and dissolution of hydrophobic compounds[J]. Science,1990, 247(4942):559-561.
    53.程镕时,杨琥,严晓虎,等.聚N-异丙基丙烯酰胺水溶液在线团-球体转变过程中的溶剂化-去溶剂化效应[J].高等学校化学学报,2001,22(7):1262-1264.
    54. WANG Xiaohui, QIU Xingping, WU Chi. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water[J]. Macromolecules,1998,31(9):2972-2976.
    55. WU Chi, QIU Xingping. Single chain core-shell nanostructure[J].Physical Review Letters,1998,80(3):620-622.
    56. YANG Hu, CHENG Rongshi, WANG Zhiliu. A quantitative analyses of the viscometric data of the coil-to-globule and globule-to-coil transition of poly(N-isopropylacrylamide) in water [J]. Polymer,2003,44:7175-7180.
    57. SAITO S, KONNO M, INOMATA H. Volume phase-transition of n-alkylacrylami-de gels[J]. Advances In Polymer Science,1993,109:207-232.
    58. ZHANG G Z, WU Chi. The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution[J]. Journal of the American Chemical Society,2001,123(7): 1376-1380.
    59. ZHANG G Z, WU Chi. Reentrant coil-to-globule-to-coil transition of a single linear homopolymer chain in a water/methanol mixture[J]. Physical Review Letters,2001,86:822-825.
    60. KUBOTA K, FUJISHIGE S, ANDO I. Solution properties of poly(N-isopropylacr-ylamide) in water[J]. Polymer Journal,1990,22(1):15-20.
    61. XIA Yan, BURKE N A, STOVER H D. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules,2006,39(6):2275-2283.
    62. FRANCOIS G, MICHAEL J M, ROBERT G G, et al. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization[J]. Macromolecules,2000,33(18):6738-6745.
    63. ZHOU Shuiqin, FAN Shiyan, STEVE C F, et al. Light-scattering studies of poly(N-isopropylacrylamide) in tetrahydrofuran and aqueous solution[J]. Polymer 1995,36(7):1341-1346.
    64. WU Chi, ZHOU Shuiqin. First observation of the molten globule state of a single homopolymer chain[J]. Physical Review Letters,1996,77(14):3053-3055.
    65. WU Chi, WANG Xiaohui. Globule-to-coil transition of a single homopolymer chain in solution[J]. Physical Review Letters,1998,80(18):4092-4094.
    66. WANG Xiaohui, QIU Xingping, WU Chi. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopoly-mer chain in water[J]. Macromolecules,1998,31(9):2972-2976.
    67. ZHOU Kejin, LU Yijie, LI Junfang, et al. The coil-to-globule-to-coil transition of linear polymer chains in dilute aqueous solutions:effect of intrachain hydrogen bonding[J]. Macromolecules,2008,41(22):8927-8931.
    68. ELIASSAF J. Aqueous solutions of poly(N-isopropylacrylamide)[J]. Journal of Applied Polymer Science,1978,22(3):873-874.
    69. MEEWES M, RICKA J, DE SILVA M, et al. Coil-globule transition of poly (N-isopropylacrylamide). A study of surfactant effects by light scattering[J]. Macromolecules,1991,24(21):5811-5816.
    70. YANG Hu, YIN Weisi, KONG Xuxin. Preparation of the individual compact single-chain globular particulates of poly(N-isopropylacrylamide)[J].Colloid Polymer Science,2006,284:935-940.
    71. YIN Weisi, YANG Hu, CHENG Rongshi. Glass transition of the two distinct single-chain particles of poly(N-isopropylacrylamide)[J]. The European Physical Journal E,2005,17:1-5.
    72. SAKAI M, SATOH N, TSUJII K, et al. Effects of surfactants on the phase transition of a hydrophobic polymer gel[J]. Langmuir,1995,11(7):2493-2495.
    73. CHARI K, KOWALCZYK J, LAI J. Conformation of poly(ethylene oxide) in polymer-surfactant aggregates[J]. Journal of Physical Chemistry B,2004, 108(9):2857-2861.
    74. SULIMAN B, ANAND Y. An NMR study of macromolecular aggregation in a model polymer-surfactant solution[J]. Journal of Chemical Physics,2010,132: 0249091-0249099.
    75. PHILIP J, GNANAPRAKASH G, JAYAKUMAR P, et al. Three distinct scenarios under polymer, surfactant, and colloidal interaction[J]. Macromolecules, 2003,36(24):9230-9236.
    76. NAMBAM J S, PHILIP J. Competitive adsorption of polymer and surfactant at a liquid droplet interface and its effect on flocculation of emulsion[J]. Journal of Colloid and Interface Science,2012,366(1):88-95.
    77. DAN A, GHOSH S, MOULIK S P, et al. The solution behavior of poly(vinylpyrrolidone):Its clouding in salt solution, solvation by water and isopropanol, and interaction with sodium dodecyl sulfate[J]. Journal of Physical Chemistry B,2008,112(12):3617-3624.
    78. GRIFFITHS P C, HIRST N, PAUL A, et al. Effect of ethanol on the interaction between poly(vinylpyrrolidone) and sodium dodecyl sulfate[J]. Langmuir,2004, 20(16):6904-6913.
    79. LEE L T, CABANE B. Effects of surfactants on thermally collapsed poly(N-isopropylacrylamide) macromolecules[J]. Macromolecules,1997,30(21): 6559-6566.
    80. KOKUFUTA E, SUZUKI H, SAKAMOTO D. On the local binding of ionic surfactants to poly(N-isopropylacrylamide) gels[J]. Langmuir,1997, 13(10):2627-2632.
    81. WU Chi, ZHOU Shuiqin. Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) in water[J]. Journal of Polymer Science:Part B, 1996,34:1597-1604.
    82. KOKUFUTA E, NAKAIZUMI S, ITO S, et al. Uptake of sodium dodecyl benzene sulfate by poly(N-isopropylacrylamide) gel and effect of surfactant uptake the volume phase transition[J]. Macromolecules,1995,28(5):1704-1708.
    83. VON HIPPEL P H, SCHLEICH T. Ion effects on the solution structure of biological macromolecules[J].Accounts of Chemical Research,1969,2(9): 257-265.
    84. LONG F A, MCDEVIT W F. Activity coefficients of nonelectrolyte solutes in aqueous salt solutions[J]. Chemical Reviews,1952,51:119-169.
    85. DEB YE P. The electrical ion field and fission by salting[J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-STOCHIOMETRIE UND VERWANDTSCHAFT-SLEHRE,1927,130:56-64.
    86. STILLINGER FH, KIRKWOOD J G, WOJTOWICZ P J. Theory of fused salts[J]. Journal of Chemical Physics,1960,32(6):1837-1846.
    87. COLLINS K D, WASHABAUGH M W. The Hofmeister effect and the behaviour of water at interfaces[J]. Quarterly Reviews of Biophysics,1985,18(4):323-422.
    88. JENKINS H D B, MARCUS Y. Viscosity B-coeff icients of ions in solution[J]. Chemical Review,1995,95(8):2695-2724.
    89. RUTH F, FREDERIC G F. Salt Effects on the thermoprecipitation of poly(N-isopropylacrylamide) oligomers from aqueous solution[J]. Langmuir, 2002,18(9):3434-3440.
    90. CHRISTOPHER M B, SHAWN M C, KEVIN J M, et al. Salt effects on poly(N-isopropylacrylamide) phase transition thermodynamics from NMR spectroscopy[J]. Journal of Physical Chemistry B,2008,112(34):10399-10404.
    91. OMTA A W, KROPMAN M F, WOUTERSEN S, et al. Negligible effect of ions on the hydrogen-bond structure in liquid water[J]. Science,2003, 301(5631):347-349.
    92. SMITH J D, SAYKALLY R J, GEISSLER P L. The Effects of Dissolved Halide Anions on Hydrogen Bonding in Liquid Water[J]. Journal of the American Chemistry Society,2007,129(45):13847-13856.
    93. VONHIPPE P H, PETICOLA V, SCHACK L, et al. Model studies on effects of neutral salts on conformational stability of biological marcomolecules.1.Ion binding to polyacrylamide and polystyrene columns[J]. Biochemistry 1973,12(7): 1256-1264.
    94. ZHANG Yanjie, CREMER P S. Interactions between macromolecules and ions: the Hofmeister series[J].Current Opinion in Chemical Biology,2006,10:658-663.
    95. FU Hui, HONG Xiaoting, Wan A, et al. Parallel effects of cations on PNIPAM graft wettability and PNIPAM Solubility [J]. Applied Materials& Inerfaces,2010, 2(2):452-458.
    96. WANG Tao, LIU Guangming, ZHANG Guangzhao, et al. Insights into ion specificity in water-methanol mixtures via the reentrant behavior of polymer[J]. Langmuir,2012,28(3):1893-1899.
    97. OTAKE K, INOMATA H, KONNO M, et al. Therm-analysis of the volume phase-transition with N-isopropylacrylamide gels[J]. Macromolecules,1990, 23(1):283-289.
    98. DHARA D, CHATTERJI P R. Effect of hydrotropes on the volume phase transition in poly(N-isopropylacrylamide) hydrogel[J]. Langmuir,1999,15(4): 930-935.
    99. PANAYIOTOU M, GARRET-FLAUDY F, FREITAG R. Co-nonsolvency effects in the thermoprecipitation of oligomeric polyacrylamides from hydro-organic solutions[J]. Polymer,2004,45(9):3055-3061.
    100. WINNIK F M, RINGSDORF H, VENZMER J. Methanol water as a co-nonsolvent system for poly(N-isopropylacrylamide)[J]. Macromolecules, 1990,23(8):2415-2416.
    101. SCHILD H G, MUTHUKUMAR M, TIRRELL D A. Cononsolvency in mixed aqueous-solutions of poly(N-isopropylacrylamide)[J]. Macromolecules,1991, 24(4):948-952.
    102. WINNIK F M, OTTAVIANI M F, BOSSMANN S H, et al. Cononsolvency of poly(N-isopropylacrylamide) in mixed water-methanol solutions-a look at spin-labeled polymers[J]. Macromolecules,1992,25(22):6007-6017.
    103.龚珍,李象远,李泽荣.水和甲醇混合溶剂氢键相互作用及对高分子链溶解能力的理论研究[J].高等学校化学学报,2004,25(3):539-54.
    104. PANG Juan, YANG hu, Ma Jing, et al. Solvation behaviors of N-isopropylacrylamide in water/methanol mixtures revealed by molecular dynamics simulations [J]. Journal of Physical Chemistry B,2010,114(26): 8652-8658.
    1. ELIASSAF J. Aqueous solutions of poly(N-isopropylacrylamide)[J]. Journal of Applied Polymer Science,1978,22(3):873-874.
    2. WU Chi, ZHOU Shuiqin. Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) in water[J]. Journal of Polymer Science:Part B,1996, 34:1597-1604.
    3. MEEWES M, RICKA J, DE SILVA M, et al. Coil-globule transition of poly (N-isopropylacrylamide). A study of surfactant effects by light scattering[J]. Macromolecules,1991,24(21):5811-5816.
    4. WU X Y, PELTON R H, TAM K C, et al. Poly(N-isopropylacrylamide).1. Interaction with sodium dodecyl-sulfate measured by conductivity[J]. Journal of Polymer Science Part A-Polymer Chemistry,1993,31(4):957-962.
    5. ANDERSSON M, MAUNU S L. Volume phase transition and structure of poly(N-isopropylacrylamide) microgels studied with H-1-NMR spectroscopy in D2O[J]. Colloid and Polymer Science,2006,285(3):293-303.
    6. HSU Yuanhung, CHIANG Wenhsuan, CHEN Muchin, et al. Effects of SDS on the thermo- and pH-sensitive structural changes of the poly(acrylic acid)-based copolymer containing both poly(N-isopropylacrylamide) and monomethoxy polyethylene glycol) grafts in water[J]. Langmuir,2006,22(16):6764-6770.
    7. WALTER R, RICKA J, QUELLET R, et al. Coil-globule transition of poly(N-isopropylacrylamide):a study of polymer-surfactant association[J]. Macromolecules,1996,29(11):4019-4028.
    8. LEE L T, CABANE B. Effects of surfactants on thermally collapsed poly(N-isopropylacrylamide) macromolecules[J]. Macromolecules,1997, 30(21):6559-6566.
    9. KOKUFUTA E, ZHANG Yongqing, TANAKA T. et al. Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) gel[J]. Macromolecules,1993, 26(5):1053-1059.
    10. YANG Hu, YIN Weisi, KONG Xuxin. Preparation of the individual compact single-chain globular particulates of poly(N-isopropylacrylamide)[J]. Colloid Polymer Science,2006,284:935-940.
    11. CAVANAGH J, FAIRBROTHER W J, PALMER A G, et al. Protein NMR Spectroscopy:Principles and Practice[M]. Academic Press:Amsterdam,2007.
    12. CHEN Yan, PANG Yan, WU Jieli, et al. Controlling the particle size of interpolymer complexes through host-Guest interaction for drug delivery[J]. Langmuir,2010,26(11):9011-9016.
    13. SPEVACEK J. NMR investigations of phase transition in aqueous polymer solutions and gels [J]. Current Opinion in Colloid & Interface Science,2009, 14:184-191.
    14. STAROVOYTOVA L, SPEVACEK J, TRCHOVA M. H-1 NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions[J]. European Polymer Journal,2007,43(12):5001-5009.
    15. SPEVACEK J, HANYKOVA L, STAROVOYTOVA L. H-1 NMR relaxation study of thermotropic phase transition in poly(vinyl methyl ether)/D2O solutions [J]. Macromolecules,2004,37(20):7710-7718.
    16. DESHMUKH M V, VAIDYA A A, KULKARNI M G, et al. LCST in poly(N-isopropylacrylamide) copolymers:high resolution proton NMR investigat-ions[J]. Polymer,2000,41 (22):7951-7960.
    17. TZENG Jungkai, HOU Shengshu. Interactions between poly(N-vinylformamide) and sodium dodecyl sulfate as studied by fluorescence and two-dimensional NOE NMR spectroscopy[J]. Macromolecules,2008,41,1281.
    18. ZHOU Shuiqin, FAN Shiyan, STEVE C F, et al. Light-scattering studies of poly(N-isopropylacrylamide) in tetrahydrofuran and aqueous solution[J]. Polymer 1995,36(7):1341-1346.
    19.谢小莉,曾钫,童真.聚(N-异丙基丙烯酰胺)的分级和表征[J].华南理工大学学报,1998,26(3):64-67.
    20.程镕时.粘度数据的外推和从一个浓度的溶液粘度计算特性粘数[J].高分子通讯,1960,4:159-163.
    21.何曼君,陈维孝,董西侠.高分子物理[M].复旦大学出版社,2007.
    22. SCHILD H G, TIRRELL D A. Interaction of poly (N-isopropylacrylamide) with sodium normal-alkyl sulfates in aqueous solution[J]. Langmuir,1991,7(4): 665-671.
    23. WANG Xiaohui, QIU Xingping, WU Chi. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water[J]. Macromolecules,1998,31(9):2972-2976.
    24. YANG Hu, YAN Xiaohu, CHENG Rongshi. Investigation of solution properties of poly(N-isopropylacrylamide) in water with its thermohistory[J]. Journal of Polymer Science:Part B:Polymer Physics,2000,38:1188-1192.
    25. ZHOU Kejin, LU Yijie, LI Junfang, et al. The coil-to-globule-to-coil transition of linear polymer chains in dilute aqueous solutions:effect of intrachain hydrogen bonding[J]. Macromolecules,2008,41(22):8927-8931.
    26. JOHNSON C S, GABRIEL D A.Laser Light Scattering[M]. New York:Dover Publications,1994.
    27. BURCHARD W, SCHMIDT M, STOCKMAYER W H. Information on polydispersity and branching from combined quasi-elastic and integrated scattering[J]. Macromolecules,1980,13(5):1265-1272.
    28. KEELER J. Understanding NMR Spectroscopy[M]. Wiley:Cambridge,2002.
    29. ZHANG Shanming. Pivotal steps towards quantification of molecular diffusion coefficients by NMR[J]. ChemPhysChem.2007,8(5):635-642.
    30. HSU Yuanhung, CHIANG Wenhsuan, CHEN Muchin, et al. Effects of SDS on the thermo- and pH-sensitive structural changes of the poly(acrylic acid)-based copolymer containing both poly(N-isopropylacrylamide) and monomethoxy poly(ethylene glycol) grafts in water[J]. Langmuir,2006,22(16):6764-6770.
    31. RICKA J, MEEWES M, NYFFENEGGER R, et al. Intermolecular and intramolecular solubilization:collapse and expansion of a polymer chain in surfactant solutions[J]. Physical Review Letters,1990,65(5):657-660.
    32. YANG Hu, YAN Xiaohu, CHENG Rongshi. Single-chain-particles of poly(N-isopropylacrylamide)[J].Macromolecular Rapid Communications,2002, 23(17):1037-1040.
    33. SULIMAN B, ANAND Y. An NMR study of macromolecular aggregation in a model polymer-surfactant solution[J]. Journal of Chemical Physics,2010,132: 0249091-0249099.
    34. STEJSKAL E O, TANNER J E. Spin diffusion measurements:spin echoes in the presence of a time-dependent field gradient[J]. Journal of Chemical Physics,1965, 42(1):288-292.
    1. CHEN Jiangqiang, GONG Xiaoliang, YANG Hu, et al. NMR Study on the effects of sodium n-dodecyl sulfate on the coil-to-globule transition of poly(N-isopropylacrylamide) in aqueous solutions[J]. Macromolecules,2011,44(15):6227-6231.
    2. MYLONAS Y, STAIKOS G, LIANOS P. Investigation of the poly(N-isopropylacrylamide)-sodium dodecyl sulfate complexation with viscosity, dialysis, and time-resolved fluorescence-quenching measurements[J]. Langmuir 1999, 15(21):7172-7175.
    3. SULIMAN B, AN AND Y. An NMR study of macromolecular aggregation in a model polymer-surfactant solution[J]. Journal of Chemical Physics,2010,132: 0249091-0249099.
    4. TZENG Jungkai, HOU Shengshu. Interactions between poly(N-vinylformamide) and sodium dodecyl sulfate as studied by fluorescence and two-dimensional NOE NMR spectroscopy[J]. Macromolecules,2008,41,1281.
    5. HSU Yuanhung, CHIANG Wenhsuan, CHEN Muchin, et al. Effects of SDS on the thermo- and pH-sensitive structural changes of the poly(acrylic acid)-based copolymer containing both poly(N-isopropylacrylamide) and monomethoxy poly(ethylene glycol) grafts in water[J]. Langmuir,2006,22(16):6764-6770.
    6.程镕时.粘度数据的外推和从一个浓度的溶液粘度计算特性粘数[J].高分子通讯,1960,4:159-163.
    7. KOKUFUTA E, ZHANG Yongqing, TANAKA T. et al. Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) gel[J]. Macromolecules,1993, 26(5):1053-1059.
    8. ZHANG Shanming. Pivotal steps towards quantification of molecular diffusion coefficients by NMR[J]. ChemPhysChem.2007,8(5):635-642.
    9. WALTER R, RICKA J, QUELLET R, et al. Coil-globule transition of poly(N-isopropylacrylamide):a study of polymer-surfactant association[J]. Macromolecules,1996,29(11):4019-4028.
    10. WU CHI, ZHOU Shuiqin. Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) in water[J]. Journal of Polymer Science:Part B,1996,34: 1597-1604.
    11. MEEWES M, RICKA J, DE SILVA M, et al. Coil-globule transition of poly (N-isopropylacrylamide). A study of surfactant effects by light scattering[J]. Macromolecules,1991,24(21):5811-5816.
    12. YANG Hu, YAN Xiaohu, CHENG Rongshi. Single-chain-particles of poly(N-isopropylacrylamide)[J]. Macromolecular Rapid Communications,2002,23(17): 1037-1040.
    13. STEJSKAL E O, TANNER J E. Spin diffusion measurements:spin echoes in the presence of a time-dependent field gradient[J]. Journal of Chemical Physics,1965,42(1):288-292.
    1. CHEN Jiangqiang, GONG Xiaoliang, YANG Hu, et al. NMR Study on the effects of sodium n-dodecyl sulfate on the coil-to-globule transition of poly(N-isopropylacrylamide) in aqueous solutions[J]. Macromolecules,2011,44(15):6227-6231.
    2. CHEN Jiangqiang, XUE Hongjuan, YANG Hu, et al. Effect of surfactant concentration on the complex structure of poly(N-isopropylacrylamide)/sodium n-dodecyl sulfate in aqueous solutions [J]. Macromolecules, DOI:10.1021/ma301003r.
    3. Hofmeister F. Zur Lehre von der Wirkung der Salze[J]. Aarchiv Fur Experimentelle Pathologie Und Pharmakologie,1888,24(4-5):247-260.
    4. ZHANG Yanjie, FURYK S, BERGBREITER D E, et al. Specific ion effects on the water solubility of macromolecules:PNIPAM and the hofmeister series[J]. Journal of American Chemical Society,2005,127(41):14505-14510.
    5. ZHANG Yanjie, CREMER P S. Chemistry of hofmeister anions and osmolytes[J]. Annual Review Physical Chemistry,2010,61:63-83.
    6. ZHANG Yanjie, CREMER P S. Interactions between macromolecules and ions:the Hofmeister series[J].Current Opinion in Chemical Biology,2006,10:658-663.
    7. FU Hui, HONG Xiaoting, Wan A, et al. Parallel effects of cations on PNIPAM graft wettability and PNIPAM Solubility[J]. Applied Materials & Inerfaces,2010, 2(2):452-458.
    8. DU Hongbo, WICKRAMASINGHE R, QIAN Xianghong. Eeffects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide)[J]. Journal of Physical Chemistry B,2010,114(49):16594-16604.
    9. SPEVACEK J, HANYKOVA L, STAROVOYTOVA L. H-1 NMR relaxation study of thermotropic phase transition in poly(vinyl methyl ether)/D2O solutions[J]. Macromolecules,2004,37(20):7710-7718.
    10. OHTA H, ANDO I, FUJISHIGE S, et al. Molecular motion and 1H NMR relaxation of aqueous poly(N-isopropylacrylamide)solution under high pressure[J]. Journal of Polymer Science:Part B:Polymer Physics,1991,29,963-968.
    11.程镕时.粘度数据的外推和从一个浓度的溶液粘度计算特性粘数[J].高分子通讯,1960,4:159-163.
    12. SAITO S, KONNO M, INOMATA H. Volume phase-transition of n-alkylacrylamide gels[J]. Advances In Polymer Science,1993,109:207-232.
    13.严宣申无机化学[M].北京大学出版社,1991.
    14. RUTH F, FREDERIC G F. Salt Effects on the thermoprecipitation of poly(N-isopropylacrylamide) oligomers from aqueous solution[J]. Langmuir,2002, 18(9):3434-3440.
    15. ZHANG Shanming. Pivotal steps towards quantification of molecular diffusion coefficients by NMR[J]. ChemPhysChem.2007,8(5):635-642.
    16. FARRAR T C, BECEKER E D. Pulse and Fourier Transform NMR[M]. Academic Press: New York,1971; 2729.
    17. CHRISTOPHER M B, SHAWN M C, KEVIN J M, et al. Salt effects on poly(N-isopropylacrylamide) phase transition thermodynamics from NMR spectroscopy[J]. Journal of Physical Chemistry B,2008,112(34):10399-10404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700