用户名: 密码: 验证码:
长江中游地区双季早稻超高产形成特征及精确定量栽培关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双季稻作是我国南方稻区重要的种植制度,对我国粮食安全与社会经济具有独特的作用。在双季稻作中,早稻生产最易波动,稳步推进早稻高产与超高产,不仅是生产上亟需解决的重大课题,而且对于稳定双季稻面积、提高全年稻谷综合生产能力和促进稻农增收均具有十分重要的意义。近年来,随着我国惠农措施的加强与落实,超级早稻品种的不断推出,双季早稻产量逐年提高,并涌现出一批高产与超高产典型。但与中、晚稻相比,早稻产量低而不稳,高产尤其是超高产特征与规律缺乏深入研究,技术定量化程度不高,栽培技术不够规范,超高产重演性差。为此,本研究于2006~2009年在长江中游江西双季稻地区的赣州、袁州、奉新、鄱阳等地,以主推品种金优463、先农31、新丰优22、陆两优28、优I458为材料,通过不同播期、基本苗、施肥等技术组合,塑造中产(6000~7500Kg.hm-2)、高产(7500~9000Kg.hm-2)、超高产(≥9000Kg.hm-2)多种类型群体,并结合大面积定点跟踪调查,研究双季早稻超高产形成、物质生产与氮素吸收利用特征;通过不同秧龄、基本苗、施氮量及氮肥运筹专题试验,研究并建立双季早稻超高产的基本苗计算与氮肥施用精确定量关键技术。主要研究结果如下:
     1、供试品种超高产群体的每公顷平均穗数为339.1万(307.6~365.1万),极显著高于高产与中产群体的298.9万(269.5~326.9万)、269.9万(250.4~315.0万),分别高13.5%、25.7%;每穗总粒数平均为120.3粒,与高产及中产群体相当;群体颖花量平均为4.19×108粒,极显著高于高产与中产群体的3.67×108粒、3.18×108粒,分别高14.5%、31.8%;结实率平均为84.1%,与高产群体的83.7%相当,显著高于中产群体的81.8%;千粒重平均为27.0克,与高产及中产群体间没有显著差异。超高产产量构成因素中,穗数对产量的贡献率最大,其次为粒数和结实率,但差异不显著;结实率对产量的净作用最大,其次为穗数与粒数,差异也未达显著水平。在高产基础上适当增加穗数的同时攻取大穗,并进一步着力提高结实率,从而形成足量的颖花量与高充实度,是双季早稻超高产形成的基本特征。双季早稻9000 Kg.hm-2超高产的适宜产量构成因素为:有效穗(339.14±26.34)×104.hm-2,每穗总粒数为(120.31±8.48)粒,结实率为(84.11±2.35%)%,千粒重为(27.03±0.42)克。
     2、超高产早稻群体叶面积在拔节期低于高产群体,在(N-n+1)叶龄期、抽穗期与成熟期高于高产与中产群体;叶面积生长速率在(N-n+1)~拔节阶段低于高产群体,在拔节~抽穗阶段高于高产及中产群体;抽穗后的叶面积衰减速率低于高产与中产群体;光合势在抽穗~成熟阶段显著高于高产与中产群体;群体生长率显著或极显著高于高产与中产群体。
     超高产群体主要生育期的适宜叶面积指数(LAI):有效分蘖临界叶龄期(N-n+1)为1.5~2.0,拔节期为4.5左右;抽穗期为6.5左右,成熟期为2.5~3.0。抽穗期的有效叶面积比例和高效叶面积比例分别达85%以上和65%以上。
     超高产群体主要生育阶段的适宜光合势(×104m2.d.666.7 m -2):移栽~(N-n+1)阶段为1.4~1.6,(N-n+1)~拔节阶段为2.5~3.0,拔节~抽穗阶段为7.0~7.5,抽穗~成熟阶段为9~10。
     超高产群体主要生育阶段的生长率(g.m-2.d):移栽~(N-n+1)阶段为8.0~10.0,(N-n+1)~拔节阶段为16~18,拔节至抽穗阶段为25~30,抽穗至成熟阶段>20。
     3、超高产群体在(N-n+1)期、拔节期、抽穗期、成熟期及拔节~抽穗阶段与抽穗~成熟阶段的干物质积累量显著或极显著高于高产与中产群体,在N-n+1~拔节阶段显著低于高产与中产群体;经济产量与抽穗期干物质积累量呈极显著抛物线关系,与成熟期及抽穗至成熟阶段的干物质积累量呈极显著正相关关系。经济系数与产量相关性不显著。超高产群体主要生育期的干物质积累量(Kg.hm-2):(N-n+1)叶龄期为2100左右,拔节期为4300左右,抽穗期为9500~10500,成熟期在15750以上,抽穗~成熟阶段的干物质积累量占总积累量的比例达40%以上。
     4、超高产群体抽穗后的茎鞘物质输出量显著多于高产与中产群体,叶片物质输出量及抽穗后叶茎鞘物质的表观输出率及其对产量贡献率显著低于高产与中产群体。超高产群体抽穗后的叶茎鞘物质表观输出率为20%~22%,表观输出物质对产量的贡献率为19%~20%。
     5、超高产群体在(N-n+1)叶龄期与拔节期的植株含氮率与高产及中产群体相当,在抽穗期与成熟期则高于高产及中产群体;氮素积累量、阶段氮素积累量与吸氮强度在(N-n+1)叶龄期、拔节期稍高于高产群体,显著高于中产群体,在抽穗期与成熟期显著高于高产与中产群体;成熟期穗部氮素积累比例、100 Kg籽粒吸氮量与氮肥当季利用率高于高产与中产群体;氮素收获指数、氮素农艺效率与氮素生理效率与高产群体相当,但高于中产群体;氮素干物质生产效率与氮素表观生产力显著低于高产群体。
     超高产群体的氮素吸收利用特征是:(1)植株含氮率(%): (N-n+1)叶龄期为2.7左右(2.5~3.0),拔节期为2.0左右(1.8~2.2),抽穗期为1.3左右(1.0~1.5),成熟期为1.0左右(0.8~1.3);(2)植株吸氮量(Kg.hm-2):(N-n+1)叶龄期为50左右,拔节期为90左右,抽穗期为136.5左右,成熟期在160以上,(N-n+1)叶龄期植株氮素积累量占总积累量的30%左右,拔节至抽穗阶段的氮素积累量占总积累量的25%~30%,抽穗至成熟阶段的氮素积累量占总积累量的20%左右,穗部氮素累积量占总积累量的75%左右;(3)氮素收获指数在70%左右,氮素农艺效率在18 Kg·Kg-1以上,氮素生理利用率在46 Kg·Kg-1以上,氮素当季利用效率在40%以上。
     6、将双季早稻超高产的基本苗定量计算公式简化为:X = Y/ (1 + t1 ) [ 1 + ( N﹣n﹣SN﹣bn﹣α) r1 ],并明确了用公式计算的关键参数。其中,3叶以上秧苗分蘖(t1)的成穗率(s1)平均为98.1%(94.2%~100%);2叶以下秧苗分蘖的成活率(s2)平均为11%(8.3%~13.4%);本田期有效分蘖发生位上的分蘖发生率(r)平均为72.9%(70.2%~76.2%);秧苗移栽分蘖缺位数(bn)为0.6~1.0叶,平均为0.8叶;适宜的够苗叶龄在8.5~9.2叶之间,平均为8.8叶,矫正系数(a)为-0.5~-1.2。用简化的基本苗公式进行超高产水稻基本苗定量计算的实用参数是:Y为目标产量所需的适宜穗数;t1为移栽时秧苗带3叶以上(包括3叶)的分蘖数;SN为移栽叶龄;N=12;n=4;r1=0.7,bn=0.8;α=-1。
     以上述简化的公式及关键定量参数应用于江西袁州、余干、鄱阳等地双季早稻百亩连片超高产综合试验示范方,秧苗一般5~6叶移栽,单株带3叶以上分蘖1~2个,经计算需栽插种子苗45~60×104株,比大面积生产高20%~30%,够苗叶龄期出现在9叶期,比大面积生产早0.5~1.0个叶龄,产量达9000Kg.hm-2以上,比大面积产量高20%~50%。
     7、明确了应用斯坦福(Stanford)方程进行双季早稻施氮量确定的方法与计算参数。试验地土壤基础产量(无氮区)、土壤当季供氮量(无氮区水稻氮素累积量)与正常施肥区产量呈极显著正相关,土壤有机质、碱解氮与土壤当季供氮量相关性不显著,土壤基础产量的百公斤籽粒需氮量与基础产量呈极显著正相关。土壤基础产量平均为4881.5 kg.hm-2(4575.9~5193.0 kg·hm-2),基础产量的百公斤籽粒需氮量平均为1.53公斤(1.45~1.64公斤),土壤当季供氮量平均为74.79 kg·hm-2(66.35~85.17 kg.hm-2);施氮区不同产量水平的百公斤籽粒需氮量与产量呈极显著二次方程关系,施氮区超高产水稻的百公斤籽粒需氮量在1.75~1.95 kg之间,集中在1.75~1.85 kg之间,最优回归值为1.82 kg,需氮总量为157.5~166.5 kg·hm-2,最优回归值为163.8 kg·hm-2;水稻产量随氮肥的当季利用率上升而提高,超高产水稻氮肥当季利用率为37.4~47.8%,平均为43.2%。
     应用斯坦福(Stanford)方程进行双季早稻超高产的氮肥精确定量计算的实用参数是:基础产量在4500~4875 kg.hm-2时,基础产量的百公斤籽粒需氮量为1.5公斤;基础产量在4875~5250 kg.hm-2时,基础产量的百公斤籽粒需氮量为1.6公斤;施氮区超高产的百公斤籽粒需氮量为1.8公斤;氮肥当季利用率为43%。
     将上述精确定量施肥参数先后在江西袁州、鄱阳、余干等地进行了百亩连片超高产示范,一般需施纯氮202.5~225 kg.hm-2,比大面积生产施氮量高37.5~60 kg.hm-2,高27.8%~36.4%,实收产量达9000 kg.hm-2以上,比大面积产量高3300 kg.hm-2,高57.9%,氮肥利用率达41%~46%,比大面积生产高15个百分点以上。
     8、基蘖肥与穗肥不同施用比例及穗肥不同施用叶龄期对水稻产量及氮肥当季利用率具有显著影响。基蘖肥与穗肥施用比例为7:3与6:4处理的产量及氮肥当季利用率均显著或极显著高于8:2与9:1处理。其中,7:3处理的产量分别比8:2与9:1处理高6.88%、10.43%,氮肥利用率高21.46%、33.13%;6:4处理的产量分别比8:2与9:1处理高4.41%、7.87%,氮肥利用率高17.52%、28.8%,7:3与6:4处理间的产量差异不显著;倒3叶期追施穗肥处理的产量最高,达9229.2 kg.hm-2,其与倒2叶追施穗肥处理的产量差异不显著,但显著高于倒4叶处理,高8.67%,极显著高于倒1叶与不施穗肥处理,分别高22.43%、47.41%;倒3叶追施穗肥处理的氮肥当季利用率与农学利用率最高,分别达45.11%、20.79 kg.kg -1,其显著高于倒2叶处理的41.33%、18.8 kg·kg -1,分别高9.14%、10.6%,极显著高于其它处理。基蘖肥与穗肥施用比例为7:3~6:4,穗肥施用时期为倒3叶~倒2叶,是双季早稻超高产及提高氮肥利用率的关键技术指标。
     将上述关键技术指标应用于超高产综合示范结果表明,该技术比大面积应用的前重施肥法(10:0或9:1)增产729~1503 kg.hm-2,增产8.1~16.7%,氮肥利用率提高6.5~13.4个百分点,提高15.4%~31.8%。
The double-rice planting is an important crop systems in the South rice zones, which was unique significance to food safety and society economy in our country. Early-rice production is easy to fluctuate in the double-rice planting, thus, steadily obtaining its high- or superhigh-yield was not only an very important production questions for discussion but also was of important significance to stabilitate double-rice areas, improve rice compositive productivities and increase peasant’s incomes. In recent years, due to many benefit policies to farming and new super early-rice varieties, the yields of the double early rice improved year after year, furthermore, there appeared many models of high- and superhigh-yield. But compared to the middle or late rice, there were disadvantages such as low and unsteady yields, unknown laws for superhigh yields and characteristics, uncertain quantitative technologies and planting, bad repeating high- yield experiments and so on. Therefore, from 2006 to 2009, in Ganzhou, Yuanzhou, Fengxing and Poyang zones in Jiangxi province, the rice varieties, Jingyou463, Xiannong31, Xinfenyou22, Lulianyou28, YouI458 were used to study the characteristics of yield formation, material production and N absorption by building middle-, high- and superhigh colony with many combining technologies of different sow period, basic seedling and N application; The topic experiments about different seeding ages, basic seeding, N amounts and management were done to study and build key technologies of calculating basic seedling and precise and quantitative N in early rice in the double-cropping system. The results were as follows:
     1.The averagely spike number per ha. was 3,391,000 in super high-yield colony, which was higher notably than that in high- and middle-yield colony, improved at 13.5%, 25.7% respectively;The total grain number per spike was averagely 120.3, which was equal to that high- and middle colony;The colony floret number was averagely 4.19×108 , which was higher notably than that in high- and middle-yield colony, improved at 14.5%, 31.8%, respectively; The seed-setting rate was averagely 84.1%, which was about equal to that in high-yield, but higher notably than that in middle-yield colony; The 1000-grain weight was averagely 27.0g, which was not notably difference to that in high- and middle-yield. Among the yield factors, the spike number was the most important to the yield, the next was grain number and seed-setting rate, but there was not notably differences; Seed-setting rate was the most important to net contribution of yield, the next was spike and grain number, but there was not notably difference.The basic characteristics of superhigh-yield formation in early rice in the double-cropping system were more and bigger spikes, enough floret number and substantial ratio. The proper component factors of early rice super high-yield were as follows: effective spikes were 339.14±26.34×104.hm-2, total grain number per spike was 120.31±8.48, seed-setting rate was 84.11±2.35%, 1000-grain weight was 27.03±0.42g.
     2.The colony leaf area of super high-yield early rice at jointing stage was lower than that of high- and middle colony, but it was higher at N-n+1 leaf age, heading and maturity stage; Its growth rate of leaf area was lower from N-n+1 leaf age to jointing stage, but higher from jointing stage to heading stage; Its decreased rate of leaf area after heading was lower than that of high- and middle colony;Its photosynthesis potential was higher notably than that of high- and middle colony from heading stage to maturity stage; Its colony growth ratio was also higher notably.
     The proper LAI of superhigh-yield early rice at main stages were as follows: 1.5~2.0 at critical stage of effective tiller emergence(N-n+1), 4.5 at jointing stage; 6.5 at heading stage, 2.5~3.0 at maturity, respectively. The effective and high leaf proportions were 85%, 65%,
     respectively. The proper photosynthesis potential of super high-yield early rice in main growth stage were as follows: 1.4~1.6 from transplanting to N-n+1 stage, 2.5~3.0 from N-n+1 to jointing stage, 7.0~7.5 from jointing to heading stage, 9~10 from heading to maturity stage. The growth rate of super high-yield early rice in main growth stage were as follows: 8.0~10.0 from transplanting to N-n+1 stage, 16~18 from N-n+1 to jointing stage, 25~30 from jointing to heading stage, more than 20 from heading to maturity stage.
     3.The dry material accumulations of super high-yield early rice were higher notably than those of high- and middle colony in main growth stage except from N-n+1 to jointing stage; Its economic yield had a notably parabola correlativity with dry material accumulations at heading stage, and a notably positive correlativity with dry material accumulations at maturity stage or from heading to maturity phases, but economy index was not significant to yield.
     The dry material accumulations of super high-yield early rice in main growth stage were as follows:2100 at N-n+1 leaf age, 4300 at jointing stage, 9500~10500 at heading stage, over 15750 at maturity stage, the ratio of dry material accumulation from heading to maturity phase to total dry material accumulations was over 40%.
     4.The materials export amounts from stem of super high-yield early rice were notably higher than those in high- and middle colony, but its leaf material export amounts, apparent export ratio in the stem after heading and their yield contributions were lower. Its apparent export ratio in the stem after heading was 20%~22%, the apparent export materials contribution ratio for yield was 19%~20%.
     5. At (N-n+1) leaf stage and elongation stage, the plant nitrogen content in super high yield population was similar with that in high yield and middle yield population, but was higher at heading and maturity stage. The amount of N accumulation, stage N accumulation and the N absorption intensity at (N-n+1) leaf stage and elongation stage were slightly higher than that in high yield population, and significantly higher than that in middle yield population, but significantly higher than that at heading and maturity stage. At maturity stage, the percentage of panicle N accumulation, N absorption per 100 Kg grains and nitrogen use efficiency in super high yield population were higher than that in high and middle yield population, while the N harvest index, N agricultural efficiency and N physiological efficiency were similar with that in high yield population, but higher than that in middle yield population. On the other hand, the N dry matter producing efficiency and N apparent productivity were significantly lower than that in high yield population.
     The characters of N uptake in super high yield population were as follows: (1) The plant N content was about 2.7(2.5~3.0)at (N-n+1) leaf stage, about 2.0(1.8~2.2)at elongation stage, about 1.3(1.0~1.5)at heading stage and about 1.0(0.8~1.3)at maturity stage. (2) The plant N absorption amoun(tKg.hm-2)was about 50 at (N-n+1) leaf stage, about 90 at elongation stage, about 136.5 at heading stage, and above 160 at maturity stage. The percentage of plant N accumulation at (N-n+1) leaf stage to total N accumulation was about 30%, at elongation to heading stage it was about 25%~30%, while at heading to maturity stage it was about 20%, and the percentage of panicle N accumulation to total N accumulation was about 75%. (3) The N harvest index was about 70%, the N agricultural efficiency was more than 18 Kg·Kg-1, the N physiological efficiency was more than 46 Kg·Kg-1, and the N use efficiency was more than 40%.
     6. The basic seedling formula of double crop early rice for super high yield could be simplified as X = Y/ (1 + t1 ) [ 1 + ( N﹣n﹣SN﹣bn﹣α) r1 ], and the key parameters for the formula were definite. Among the formula, the earbearing tiller percentage(s1)of tillers with more than 3 leaves was averagely 98.1%(94.2%~100%), and the survival rate of tillers with less than 2 leaves was averagely 11%(8.3%~13.4%). The tiller formation percentage (r) in productive tillering sites was averagely 72.9%(70.2%~76.2%), and the amount of tiller absent when transplanting (bn) was 0.6~1.0 leaves, averagely 0.8 leaves. And the properly leaf stage to enough tillers was 8.5~9.2, averagely 8.8, the correctional coefficient (a) was -0.5~-1.2. When calculating the amount of basic seedling with this simplified formula for super high yield cultivating, the practical parameters were as follows: Y was the proper panicles number for the target yield, t1 was the number of tillers with more than 3 leaves when transplanting, and SN was the leaf stage when transplanting, and N=12, n=4, r1=0.7, bn=0.8,α=-1.
     The above simplified formula and the key parameters were used in Yuanzhou, Yugan, Boyang, Jiangxi Province, where located the testing and demonstrating area of double crop early rice for super high yield cultivating. The seedlings were transplanted with 5~6 leaves, every seedling had 1~2 tillers with more than 3 leaves. After calculating with the formula, the amount of needed seedlings was 45~60×104, which was 20%~30% higher than large scale cultivation, and the leaf stage to enough tillers was the 9th stage, 0.5~1.0 leaf stage earlier than large scale cultivation. Furthermore, the final yield was above 9000 Kg.hm-2, 20%~50% higher than large scale cultivation.
     7. It was definite for the calculation of N application and the parameters in double crop early rice with the Stanford formula. The basic yield in non-N soil and the N supply of soil (amount of N accumulation in non-N soil) had remarkably positive correlation with the yield from normally N application area, but the content of soil organic matter, alkali-hydrolyzed N were not obviously correlated with N supply of soil. On the other hand, the N demand per 100 Kg grains in non-N soil was remarkably positively correlated with the basic yield. The basic yield in non-N soil was averagely 4881.5 kg.hm-2 (4575.9~5193.0 kg·hm-2), and the N demand per 100 Kg grains in non-N soil was averagely 1.53 kg (1.45~1.64 kg), while the N supply of soil was averagely 74.79 kg·hm-2(66.35~85.17 kg.hm-2). In N application area, the N demand per 100 Kg grains was remarkably correlated with yield, which showed as quadratic equation, and the N demand per 100 Kg grains for super high yield was 1.75~1.95 kg, especially between 1.75 kg and 1.85 kg, the optimal regressed value was 1.83 kg. The total N demand was 157.5~166.5 kg·hm-2, which the optimal regressed value was 163.8 kg·hm-2. In addition, the yield was promoted with the increase of N use efficiency, that was, the N use efficiency for super high yield was 37.4~47.8%, averagely 43.2%. So the 40% of N use efficiency was the critical target for super high yield in double crop early rice.
     As for the double crop early rice, the parameters of the Stanford formula for calculating the accurate N application were as follows: The N demand per 100 Kg grains was 1.5 kg when the basic yield was 4500~4875 kg.hm-2, and 1.6 kg when the basic yield reached 4875~5250 kg.hm-2. In N application area, the N demand per 100 Kg grains for super high yield was 1.8 kg, and the N use efficiency was 43%.
     The above parameters were used in the testing and demonstrating area in Yuanzhou, Yugan, Boyang, the pure N application was 202.5~225 kg.hm-2, which was 37.5~60 kg.hm-2 (27.8%~36.4%) higher than large scale cultivation. The real yield reached 9000 kg.hm-2, which was 3300 kg.hm-2 (57.9%) higher, and the N use efficiency was 41%~46%, 15% higher.
     8. The yield and N use efficiency were apparently influenced by the proportion of base-tiller fertilizer and panicle fertilizer, as well as the application stage of panicle fertilizer. The yield and N use efficiency with 7:3 and 6:4 of the proportion of base-tiller and panicle fertilizer were remarkably higher than that with 8:2 and 9:1, which the yield with 7:3 was 6.88% and 10.43% higher than that with 8:2 and 9:1 respectively, and the N use efficiency was 21.46% and 33.13% higher. Similarly, the yield with 6:4 was 4.41% and 7.87% higher than that with 8:2 and 9:1 respectively, and the N use efficiency was 17.52% and 28.8% higher. There was no difference of the yield between 7:3 and 6:4. Furthermore, there was the highest yield (9229.2 kg.hm-2) when applied with panicle fertilizer at top third leaf stage, which was not apparently different with the yield when applied at top second leaf stage, but significantly higher (8.67%) than applied at top fourth leaf stage, and remarkably higher (22.43% and 47.41% each) than applied at top leaf stage and none panicle fertilizer. When applied with panicle fertilizer at top third leaf stage, the N use efficiency and N agricultural efficiency were the highest, 45.11% and 20.79 kg.kg -1 respectively, which were 9.14% and 10.6% higher than applied at top second leaf stage, and remarkably higher than other treatments. The 7:3 and 6:4 of the proportion of base-tiller and panicle fertilizer, and panicle fertilizer applied at top third or second leaf stage, were the key factors to get super high yield in double crop early rice.
     The results show that our technology could increase 729~1503 kg.hm-2, 8.1~16.7%, than the technology currently used in large scale cultivation (10:0 or 9:1), and the N use efficiency improved 15.4%~31.8%.
引文
[1] Peng S,Cassman KG,Virm ani SS,Sheehy J,et al. Yield potential trends of trop ical rice since release of IR8 and the challenge of increasing rice yield po tential. Crop Science,1999,39:1552-1559.
    [2]陈温福,徐正进,著.水稻超高产育种理论与方法.北京:科学出版社,2008.
    [3] Peng S, Khush GS,et al. Evolution of new plant ideo type for increased yield potential. In: Cassm an KG. Breaking the Yield Barrier. Los Bano s, Philippines: International Rice Research Institute,1994,5-20.
    [4]凌启鸿.作物群体质量.上海:上海科学技术出版社,2000.42-216.
    [5]王志敏,王树安.发展超高产技术,确保中国未来16亿人口的粮食安全.中国农业科技导报,2000,2(7): 8-11.
    [6]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考.中国稻米,1998(1):3-5.
    [7]章秀福,王丹英,方福平,曾衍坤,廖西元.中国粮食安全和水稻生产.农业现代化研究,2005,26(2):85-88.
    [8]陈印军,唐华俊,尹昌斌.对我国南方双季稻主产区粮食生产结构调整的思考.中国农业科技导报,1999(1):36-39
    [9]黄发松.我国南方双季早稻生产的回顾与展望.中国稻米,1997(3):8-10.
    [10]袁国保,柳达,王世才,周元坤,邵仁学,罗必灿.我国优质早稻产业化现状与发展前景分析.湖北农业科学,2007,46(2):161-163.
    [11]孟凡军.我国早稻生产状况回顾与购销形势分析.粮食与油脂,2003(9):32—33.
    [12]方福平,王磊,廖西元.中国早稻波动及成因分析.中国农村经济,2006(2):11-17.
    [13]佟远明.国内稻谷市场供求形势分析.第六届中国优质稻米博览交易会大会报告,2007,湖南长沙.
    [15]毛友纯,徐庆国,白德朗.中国杂交早稻的发展及其研究进展.杂交水稻,2002,17(6):1-5.石纪成,黄新飞,喻强,唐丙坤,谭盛斌.双季稻地区一季稻存在的问题及解决措施.中国种业,2003(4):20-21.
    [16]邹应斌.湖南双季稻高产栽培40年回顾与展望.作物研究,1999(1):1-8
    [17]邓华凤,向晓诚,张武汉,李和平,田应佳,舒服,何强.长江中游双季超级杂交早稻研究进展.杂交水稻,2009,24(1):l一4.
    [1]徐正步,陈温福,张步龙.日本水稻育种的现状与展望.水稻文摘,1990,9(5):1-6.
    [2]陈温福,徐正步,著.水稻超高产育种理论与方法.北京:科学出版社,2008,9-10.
    [3]张卫星,周训文,赵致.我国粮食作物超高产研究与实践.贵州农业科学,2007,35(4):125-12.
    [4] Khush G H.Varietal needs for different environments and breeds stratages .In: K.Muralidhardsran,E A Siddiq. New Frontiers in Rice Reshearch.Directorate of Rice Research,Hyderabad,india,68-75
    [5] Peng S,hush G H,Cassman K G.Evolution of the new plant ideotype for increased yield potential. In:Cassman K G.Breaking the yield barrier.Los Banos,Philippines:International Ric Research Institute,1 994,5-20.
    [6] Akita S.Improving yield potential in tropical rice.In:Progress in Irrigated Rice Research[c].International Rice Research Institute,Los Banos,Philippines,1989,41—73.
    [7]陈温福,徐正步,张步龙.水稻超高产育种研究进展与前景.中国工程科学,2004(4):31-35
    [8] Peng S,Cassman K G,Virmani S S,Sheehy J.Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential.Crop Science,1999(39):1552—1559.
    [9] Horie T.Increasing yield potential in irrigated rice:Breaking the yield barrier.In:Peng S and Hardy B,Research for food security and poverty alleviation,International Rice Research Institute Press,2001,95-108.
    [10]黄耀祥,林青山.水稻超高产特优株型模式的构想和育种实践.广东农业科学,1994(4):1-6.
    [11]陈温福,徐正步,张步龙.水稻超高产育种生理基础.沈阳:辽宁科学技术出版社,1-22.
    [12]杨守仁.水稻超高产育种新动向.沈阳农业大学学报,1987,18(1):1-5.
    [13]陈温福,徐正进,张龙步.水稻超高产育种研究进展与前景.沈阳农业大学学报,1998,29(2):101-105.
    [14]杨守仁.国际水稻研究所的超级稻育种.世界农业,1996,(2):25-27.
    [15] Cassman K G. Breaking the yield barrier. Proceedings of a work ship on rice yield potential in favorable environments.IRRI,1994.
    [16]袁隆平.两系法杂交水稻研究的进展.中国农业科学,1990,23(3):1-6.
    [17]袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-3.
    [18] Yuan L P.Super hybrid rice.Chinese Rice ResearchNews Letter,2000,8(1):13-15.
    [19]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考.中国稻米,1998(1):3-5.
    [20] Chen W F,Xu Z J,Zhang L B.Theories and practices of rice breeding for super high yield.Proceedings of Intenational Conference on Engineering and Technological Sciences,2000,378-382
    [21]易俊良,陈立云.水稻超高产育种研究进展.湖南农业科学,2006(1):20-23.
    [22]李刚华,王绍华,杨从党,黄庆宇,李德安,宁加朝,凌启鸿,丁艳锋.超高产水稻适宜单株成穗数的定量计算.中国农业科学,2008,41(11):3556-3562.
    [23]吴桂成,张洪程,钱银飞,李德剑,周有炎,徐军,吴文革,戴其根,霍中洋,许轲,高辉,徐宗进,钱宗华,孙菊英,赵品恒.粳型超级稻产量构成因素协同规律及超高产特征的研究.中国农业科学,2010,43(2):266-276.
    [24]邹应斌.水稻超高产栽培的理论与技术策略—兼论壮秆重穗栽培法.农业现代研究,1997,18(1):30~34.
    [25]李祖章,谢金水,王海,叶春升,朱金保,龙丘陵.早稻超高产栽培技术的形成与验证.江西农业学报,2005,17(4):9~14.
    [26]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生产特性分析.作物学报,2008, 34(11):1985-1993.
    [27] Sheehy J E,Dionora M J A,Mitchell P L. Spikelet numbers,sink size and potential yield in rice. Field Crops Research, 2001,7: 77-85.
    [28]马均,李代玺,廖尔华.攀西地区重穗型杂交稻超高产栽培技术模式研究.西南农业学报,2000,13(4):39~44
    [29]杨建昌,杜永,吴长付,刘立军,王志琴,朱庆森.超高产粳型水稻生长发育特性的研究.中国农业科学,2006,39(7): 1336-1345.
    [30]杨惠杰,李义珍,黄育民.超高产水稻的产量构成和库源结构.福建农业学报,1994,14 (1) : 1~5.
    [31]林鹿.杂交早稻库源关系特征与其调控途径研究.江西农业大学学报, 1992,14(3):236-241.
    [32]袁继超,刘从军,蔡光泽.攀西地区优质稻产量构成因素的变异及其构成特点.西南农业学报,2005,18(2):144-148.
    [33]肖宇龙,余传元,雷建国,李马忠,旷一相,邱在辉.江西早杂组合产量构成因素的分析及高产早杂组合选育途径的探讨.江西农业学报2007, 19 (1) : 21~23
    [34]袁江,王丹英,丁艳锋,廖西元,章秀福,王绍华.早籼稻品种遗传改良进程中株型的演变特征.中国水稻科学,2009, 23 (3):277~281
    [35]陈友订,万邦惠,张旭.华南双季超级稻产量构成模式探讨.作物学报,2005,31(3):323-329
    [36]陈小荣,石庆华,潘晓华,贺浩华,张美良,吴德龙,朱昌兰,胡水秀,李木英,曾勇军.金优463在赣中北作双季早稻的产量、产量构成因素分析与生产对策.江西农业大学学报, 2006,28(2):161-163.
    [37]李杰,张洪程,钱银飞,陈烨,郭振华,戴其根,霍中洋,许轲,李德剑,刘国林,赵德亮.水稻超高产栽培研究进展.杂交水稻,2008,23 (5) : 1-6.
    [38]董桂春,王余龙.水稻根系生长动态的研究.扬州大学学报(农业与生命科学版) ,2002,23 (4) : 51 - 55.
    [39]杨守仁.水稻理想株形育种的理论和方法初论.中国农业科学,1984,(3) : 6-13.
    [40]邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望.中国农业科技导报,2003,5 (1) : 31-35.
    [41]郑景生,林文,姜照伟.超高产水稻根系发育形态学研究.福建农业学报,1999,14 (3) : 1– 6.
    [42]黄耀祥.半矮秆、早长根深、超高产、特优质中国超级稻生态育种工程.广东农业科学,2001,(3) : 2-6.
    [43]谢华安.中国特别是福建的超级稻研究进展.中国稻米,2004,(2) : 7-10.
    [44]凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究.中国农业科学,1984(4):3-11.
    [45]杨惠杰,李义珍,杨高群.超高产水稻的分集特性观察.福建农业学报,2003,18(4):205-208
    [46]凌启鸿,等著.水稻精确定量栽培理论与技术.北京:中国农业出版社,2007.
    [47]郭宏文,姚彪发.双季稻区水稻叶龄模式栽培技术探讨.南京:水稻叶龄模式的发展与应用,39-42.
    [48]陈梅早稻抛秧群体质量优化栽培技术的探讨.江西农业大学学报,2003,25(10):24-27.
    [49]章秀福,王丹英,周昌南,姜海燕,徐春梅,李西明.早稻单产693.7 kg/667m2的生育特性及其栽培调控技术.中国稻米,2005(5):28-29
    [50]青先国.水稻丰产高产实用技术.长沙:湖南科学技术出版社,2004,38-44.
    [51]邹应斌,黄见良,屠乃美.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影响.作物学报,2001,27(3) : 343—350.
    [52]李刚华,张国发,陈功磊,王绍华,凌启鸿,丁艳锋.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应,作物学报,2009,35(6):1106—111.
    [53] ChenW F,XuZ J,ZhangW Z,Zhang LB,Yang SR.Creation of new plant type and breeding rice for super high yield. Acta Agron Sin,2001,27(5):665-672
    [54]凌启鸿.作物群体质量.上海:作物群体质量,2001,42-216.
    [55]翟虎渠,曹树青,万建民,陆巍,张荣铣,李良璧,匡廷云,闵绍楷,朱德峰,程式华.超级杂交稻光合作用与籽粒灌浆和产量的关系研究,中国科学·C辑,2002,32(6):21 1-217.
    [56]吴文革,张洪程,陈烨,李杰,钱银飞,吴桂成,翟超群.超级中籼杂交水稻氮素积累利用特性与物质生产.作物学报,2008,34(6):1060-1068.
    [57]杨从党,朱德峰,袁平荣,黄庆宇,郑学玉,杨爱兵.水稻物质生产特性及其与产量的关系研究.西南农业学报,2006,19(4):560~564
    [58]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究,中国水稻科学,2001,15 (4):265~270.
    [59]谢华安,王乌齐,杨惠杰,杨高群,李义珍.杂交水稻超高产特性研究.福建农业学报,2003,18(4):201~204
    [60] Ying J F,Peng S B, He Q R,Yang H,Yang C D,Visperas R M,Cassman K G. Comparison of high-yield in tropical and subtropical environments. Determinants of grain and dry matter yields. Field Crops Research,1998,57:71-84
    [61]吴文革,张洪程,钱银飞,陈烨,徐军,吴桂成,翟超群.霍中洋,戴其根。超级杂交中籼水稻物质生产特性分析.中国水稻科学, 2007 , 21 (3) :287~293
    [62]刘建丰,袁隆平,邓启云,陈立云,蔡义东.超高产杂交稻的光合特性研究.中国农业科学, 2005, 38(2):258-264.
    [63]松岛省三著.实用水稻栽培.秦玉田,缪世才译.北京:农业出版社,1984:168-210
    [64]凌启鸿,张洪程,苏祖芳等.稻作新理论-水稻叶龄模式.北京:科学出版社,1994
    [65]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究.作物学报,1995, 21 (4): 464--469
    [66]凌启鸿,苏祖芳,张洪程等.水稻品种不同生育类型的叶龄模式.北京:中国农业科学,1983(1)9-18.
    [67]杜永,潘启民,徐敏权等.连嘉粳1号特征及高产栽培技术.江苏农业科学,2004,6(4): 49-50
    [68]苏祖芳,王辉斌,杜永林等.水稻生育中期群体质量与产量形成关系的研究.中国农业科学,1998,31(5):19-25
    [69]杜永林.水稻抽穗期源库质量与产量关系及其影响关系的研究. 1998,扬州大学农学院硕士论文.
    [70]凌启鸿,张洪程,苏祖芳,等著.作物群体质量.上海:上海科技出版社,2000.154-197
    [71]孙旭初.输掉叶型的类别及其光合作用的研究.中国农业科学,1985(4):49-55
    [72]刘贞琦.不同株型水稻光和特性的研究.中国农业科学,1980,3(6):6-10
    [73]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生产特性分析.作物学报,2008, 34(11):1985-1993.
    [74]石庆华,潘晓华,钟旭华,张佩莲,郭进跃.不同熟期杂交晚稻的氮素吸收特性与产量形成的关系.江西农业学报,1991,3(1):43-50
    [75]李祖章,陶其骧,刘光荣.双季两系杂交稻营养特性和施肥技术.江西农业学报,1998,10(4):29-37
    [76]王学华,郭名奇.两系杂交早稻生育中期氮肥施用量研究.湖南农业科学,1997,(3):19-20
    [77]凌启鸿,张洪程,戴其根,丁艳锋,凌励,苏祖芳,徐茂,阙金华,王绍华.水稻精确定量施氮研究.中国农业科学,2005,38(12):2457-2467.
    [78]杜永,刘辉,杨成,王志琴,杨建昌.超高产栽培迟熟中粳稻养分吸收特点的研究.作物学报,2007,33(2):208-215.
    [79]易俊良,陈立云.超级杂交稻的生育特性与超高产栽培策略.作物研究,2006(5):366-382
    [80]邹应斌.水稻超高产栽培的理论与技术策略—兼论壮秆重穗栽培法.农业现代化研究,1997,18(1):31-34.
    [81]松岛省三著.实用水稻栽培.秦玉田,缪世才译.北京:中国农业出版社,1984: 168—210.
    [82]杨守仁著.水稻高产栽培及高产育种论丛.北京:农业出版社,1990: 222-227.
    [83]杨守仁,张尤步,陈温福.水稻超高产育种的理论和方法.中国水稻科学,1996, 10 (2) : 115—120.
    [84]刘贞琦.不同株形水稻光合特性的研究.中国农业科学,1980 (3) : 8—10.
    [85]蒋彭炎.论高产水稻几个基本生物学规律.作物杂志,1988 (4) : 1-3.
    [86]杨建昌,朱庆森等.水稻群体冠层结构与光合特性对产量形成作用的研究.中国农业科学,1992,25 (4) : 4—14.
    [87]孙永飞,梁尹明,叶坚朱,万耀.水稻超高产模式株型栽培概论.中国稻米,1999(5):38-39
    [88]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体物质的关系及其影响因素的研究.作物学报,1995,21 (4) : 463—469.
    [89]角田重三郎等.稻的生物学.闵绍楷等译.北京:农业出版社,1989: 158—159.
    [90]村田吉男,等著.作物的光合作用与生态—作物生产的理论与技术.吴尧鹏等译.上海科技出版社,1982: 272.
    [91]袁隆平.水稻强化栽培技术.杂交水稻,2001,16(4):1-3.
    [92]郑家国,陆贤军,姜心禄,等.水稻强化栽培的引进创新与四川盆地超高产的技术实践.西南农业学报,2004,17(2):169-173.
    [93]蒋彭炎,编著.科学种稻新技术.北京:金盾出版社,2009.
    [94]蒋彭炎,编著.水稻高产新技术—稀少平栽培法的原理与应用.浙江:浙江科学技术出版社,1989.
    [95]黄仲青,李奕松.关于水稻“四少四高”栽培模式的探讨.水稻高产理论与实践论文集.北京:中国农业出版社,1994: 127—130.
    [96]李义珍,杨高群,彭桂峰,杨惠杰.水稻超高产库源结构的研究.2001,全国第八届水稻高产理论与实践学术研讨会论文,厦门.
    [97]李义珍,王朝祥,水稻高产工程研究(早稻部分),福建农业科技,1979(1)1-9.
    [98]李义珍,王朝祥.水稻高产工程研究(晚稻部分),福建农业科技,1979(4)11-17.
    [99]双季稻超高产栽培技术体系研究与示范”课题组水稻“旺、壮、重”超高产栽培法简介,种植世界,2003,10-12.
    [100]陶诗顺,张清东,陈德刚.杂交中稻超多孽壮秧超稀栽培模式.绵阳经济技术高等专科学校学报,1997,14(4):1-8.
    [101]越景峰,李会议,赵永敬.寒地水稻双三栽培技术.垦殖与稻作,2000,(4) : 19 - 21.
    [102]金学泳,金正勋,秋太权.寒地水稻三超栽培技术及其增产原理. 2003,全国第九届水稻高产理论与实践学术研讨会论文,海南三亚..
    [103]刘志斌.超级水稻三围立体强化栽培超高产模式研究,四川农业科技,2009,43-45.
    [104]姜心禄,郑家国,池忠志,何树林,王少华.成都平原水稻超高产栽培的实践与创新.中国稻米,2009(1):28-29.
    [105]孙博,王新江.寒地水稻“晚、大、稀”超高产栽培技术研究及应用.耕作与栽培,2005(4):20-21.
    [106]金学泳,金正勋,李荣田,蔡承一,张君,陶永庆.寒地水稻宽中深控超高产栽培技术.中国稻米,1999(5):23-24.
    [107]张根贤,杨发贵,徐肖平,朱芳前,童顺尧.单季稻“稳穗增粒高穗重”栽培途径的研究与探讨.中国稻米,2006(3):33-36.
    [108]李杰,张洪程,钱银飞,陈烨,郭振华,戴其根,霍中洋,许轲,李德剑,刘国林,赵德亮.水稻超高产栽培研究进展.杂交水稻, 2008, 23 (5) : 1- 6.
    [109]钟旭华,曹开威.水稻“三控”施肥技术.2009,江西农业大学学报,31:243-245.
    [110]新华社.我国杂交水稻育种进入“超高产时代”.科技纵横,2006(4),18.
    [111]裴又良,熊绪让,马国辉.论湖南省超级稻超高产栽培的主要限制因素及其对策.I.超高产栽培的概念与湖南省超高产栽培现状,湖南农业科学,2005(1):25-26,39.
    [112]郑家国姜心禄.水稻超高产的突破技术——强化栽培.四川粮油科技,2003,20(2):8-9
    [113]许哲鹤,金熙镛.水稻“三早栽培”研究报告Ⅰ.早熟品种高产途径的探讨.吉林农业科学,1986,(4):31-36.
    [114]许哲鹤,金熙镛.水稻“三早栽培”研究报告Ⅱ.“三早栽培”水稻的生育特点及其高产栽培技术.吉林农业科学,1988,(1):20-25.
    [115]金玉女,赵士龙.水稻大养稀栽培施氮肥效应研究初报.吉林农业科学,1991,(4):50-54.
    [116]金玉女,田奉俊,赵世龙.水稻大养稀栽培分蘖发育特性的研究.延边大学农学学报,1998,20(4):258-262.
    [1]张三元,李彻,石玉海,等.吉林省水稻超高产育种研究-不同类型水稻品种产量构成与超高产育种目标.吉林农业科学,1999,24 (1) : 4~7.
    [2]陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景.沈阳农业大学学报, 1998,29(2):101~105.
    [3]黄耀祥,林青山.水稻超高产、特优质株型模式的构想和育种实践.广东农业科学, 1994,(4):2~6.
    [4]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考.中国稻米, 998,(1):1~3.
    [5] Seizo Matsushima (松岛省三) 1 Amelioration and technology for cultivation of paddy (稻作の改善と技) , Tokyo : Yokendo , 1973,117 - 247 (in Japanese).
    [6]周开达,马玉清,刘清,等.杂交稻亚种间重穗型组合的选育—杂交水稻超高产育种的理论与实践[J ] .四川农业大学学报,1995 ,13 (4) :403 - 407.
    [7]张强,李自超,吴长明,傅秀林,金京花.不同株穗型水稻超高品种产量构成因素分析.西南农业学报,2005,18(5):518-521.
    [8]杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和库源结构.福建农业学报,1994,14 (1) : 1~5.
    [9]袁继超,刘从军,蔡光泽,等.攀西地区优质稻产量构成因素的变异及其构成特点.西南农业学报,2005,18(2):144-148.
    [10]杨从党,贺庆瑞,郑学玉,等.汕优63不同产量水平下增产因素分析[J ].中国生态农业学报,2003 ,11 (1) :33 - 35.
    [11]张强,李自超,吴长明,等.不同株穗型水稻超高品种产量构成因素分析.西南农业学报,2005,18(5):518-520.
    [12]田智慧,潘晓华.氮肥运筹及密度对超高产水稻中优752的产量及产量构成因素的影响.江西农业大学学报,2007,29(6):894-898.
    [13]陈小荣,石庆华,潘晓华,贺浩华,张美良,吴德龙,朱昌兰,胡水秀,李木英,曾勇军.金优463在赣中北作双季早稻的产量、产量构成因素分析与生产对策.江西农业大学学报, 2006,28(2):161-163.
    [14]邹应斌.水稻超高产栽培的理论与技术策略—兼论壮秆重穗栽培法.农业现代化研究,1997,18(1):30~34.
    [15]李祖章,谢金水,王海,叶春升,朱金保,龙丘陵.早稻超高产栽培技术的形成与验证.江西农业学报,2005,17(4):9~14.
    [16]梁世胡,李传国,伍应运,王丰,符福鸿.杂交水稻产量构成因素的通径分析.广东农业科学,1999(6):4-6.
    [17]陈兵林,金桂红,汤一卒,张培通,王永乐.棉花单一群体创“150”产量构成及其贡献率分析.棉花学报,1998,10 (5)∶268~272
    [18]田纪春,邓志英,胡瑞波,王延训.不同类型超级小麦产量构成因素及籽粒产量的通径分析.作物学报,2006,32(11):1699~1705.
    [19]王汉民.华北地区小麦产量构成因素的相关和通径分析.现代农业科技,2006,4:55-56.
    [20]林鹿.杂交早稻库源关系特征与其调控途径研究.江西农业大学学报,1992,14(3):236-241.
    [21]肖宇龙,余传元,雷建国,李马忠,旷一相,邱在辉.江西早杂组合产量构成因素的分析及高产早杂组合选育途径的探讨.江西农业学报2007, 19 (1) : 21~23.
    [22]袁江,王丹英,丁艳锋,廖西元,章秀福,王绍华,早籼稻品种遗传改良进程中株型的演变特征.中国水稻科学,2009, 23 (3):277~281.
    [23]陈友订,万邦惠,张旭.华南双季超级稻产量构成模式探讨.作物学报,2005,31(3):323-329.
    [24]邓华凤,向晓诚,张武汉,李和平,田应佳,舒服,何强.长江中游双季超级杂交早稻研究进展.杂交水稻,2009, 24(1):1– 4.
    [25]杨仕华,程本义,沈伟峰,廖西元.我国长江流域籼稻品种选育进展及改良策略.中国水稻科学,2004,18(2) :89~93.
    [26]陈建民,黄荣裕,陈秉发,谢旺有.杂交早稻库源特征及其应用研究.福建农业学报, 2001,16(2):1 6~1 9.
    [1]郑景生,黄育民.中国稻作超高产的追求与实践.分子植物育种,2003年,1(6):585~596
    [2]张卫星,周训文,赵致.我国粮食作物超高产研究与实践.贵州农业科学,2007,35(4):125~12
    [3]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考.中国稻米,1998(1):3~5
    [4]邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望.中国农业科技导报,2003,5 (1) :31~35
    [5]杨从党,朱德峰,袁平荣,黄庆宇,郑学玉,杨爱兵.水稻物质生产特性及其与产量的关系研究.西南农业学报,2006,19(4):560~564
    [6]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究,中国水稻科学,2001,15 (4):265~270.
    [7]吴文革,张洪程,钱银飞,陈烨,徐军,吴桂成,翟超群.霍中洋,戴其根。超级杂交中籼水稻物质生产特性分析.中国水稻科学, 2007 , 21 (3) :287~293
    [8]吴文革,张洪程,陈烨,李杰,钱银飞,吴桂成,翟超群.超级中籼杂交水稻氮素积累利用特性与物质生产.作物学报,2008, 34(6): 1060~1068
    [9]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J ] .中国农业科学,1993 ,26(6) :1~11
    [10]戚昌瀚.大穗型水稻物质生产特性及产盈能力关系的研究.作物学报,1986.12(1) :211~215
    [11]陈进红,郭恒德,毛国娟,陶稚彪,张国平,赵伟明.杂交粳稻超高产群体干物质生产及养分吸收利用特点.中国水稻科学, 2001,15 (4): 271~275
    [12]张洪松,岩田中寿,佐藤勉.粳型杂交稻与常规稻的物质生产及营养特性的比较.西南农业学报,1995,8(4):11~16
    [13]杨建昌,朱庆森,王志琴.亚种间杂交稻光合特性及物质积累与运转的研究.作物学报,1997,23(1):81~88
    [14]赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究.中国农业科学, 2001, 34(3):301~310
    [15]邹应斌.水稻超高产栽培的理论与技术策略—兼论壮秆重穗栽培法.农业现代研究,1997,18(1):30~34
    [16]李祖章,谢金水,王海,叶春升,朱金保,龙丘陵.早稻超高产栽培技术的形成与验证.江西农业学报,2005,17(4):9~14
    [17]谢华安,王乌齐,杨惠杰,杨高群,李义珍.杂交水稻超高产特性研究.福建农业学报,2003,18(4):201~204
    [18] Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. of Comparison high-yield in tropical and subtropical environmentsⅠ. Determinants of grain and dry matter yields. Field Crops Research, 1998,57:71-84
    [19]刘建丰,袁隆平,邓启云,陈立云,蔡义东.超高产杂交稻的光合特性研究.中国农业科学, 2005, 38(2):258-264.
    [20]杨建昌,杜永,吴长付,刘立军,王志琴,朱庆森.超高产粳型水稻生长发育特性的研究.中国农业科学,2006, 39(7):1336-1345.
    [21]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生产特性分析.作物学报,2008, 34(11):1985-1993.
    [22]马均,朱庆森,马文波.重穗型水稻光合作用、物质积累与运转的研究.中国农业科学,2003,36 (4):375~381.
    [23]许乃霞,苏祖芳,张亚洁.抽穗后水稻株型与产量形成关系的研究.扬州大学学报,2002,23(4):56~60
    [23]苏祖芳.水稻单茎茎鞘重与产量形成关系及其高产栽培途径的探讨江苏农学院学报,1993,14(1):37~39
    [24]苏祖芳,孙成明,张亚洁.水稻抽穗后株型指标与产量形成关系的研究.中国农业科学,2003,36(1):115~120
    [1]杜永,刘辉,杨成,王志琴,杨建昌.超高产栽培迟熟中粳稻养分吸收特点的研究.作物学报,2007,33(2):208—21.
    [2]陈进红,郭恒德,毛国娟,陶稚彪,张国平,赵伟明.杂交粳稻超高产群体干物质生产及养分吸收利用特点.中国水稻科学,2001, 15 (4) : 271~275.
    [3]关伟.超高产水稻主要营养特性及调控技术的研究.贵州大学硕士研究生学位论文,2008,贵州大学.
    [4]曾勇军,石庆华,潘晓华,韩涛.施氮量对高产早稻氮素利用特征及产量形成的影响.作物学报,2008,34(8):1409—141.
    [5]江立庚,曹卫星,甘秀芹,韦善清,徐建云,董登峰,陈念平,陆福勇,秦华东.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学2004,37(4):490—496.
    [6]黄育民,李义珍,郑景生.杂交稻高产群体的氮磷钾素积累运转.福建农科院学报,1997,12(3):1-6.
    [7]肖恕贤,谭步生.杂交水稻生长特征和施肥技术.作物学报,1982,8(1):23-32.
    [8]卢普相,罗莲香,张羹兴,袁彩庭.早稻高产水平下对氮磷钾的吸收累积特点.1998(4):181-182.
    [9]石庆华主编.水稻优质高产理论与技术.2002,北京:中国农业科学技术出版社.
    [10]邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望.中国农业科技导报,2003,5 (1) :31~35.
    [11]郑景生,黄育民.中国稻作超高产的追求与实践.分子植物育种,2003年, 1(6):585~596.
    [12]张卫星,周训文,赵致.我国粮食作物超高产研究与实践.贵州农业科学,2007,35(4):125~12.
    [13]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考.中国稻米,1998(1):3~5.
    [14]吴文革,张洪程,陈烨,李杰,钱银飞,吴桂成,翟超群.超级中籼杂交水稻氮素积累利用特性与物质生产.作物学报,2008,34(6):1060-1068.
    [15]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生产特性分析.作物学报,2008, 34(11):1985-1993.
    [16]石庆华,潘晓华,钟旭华,张佩莲,郭进跃.不同熟期杂交晚稻的氮素吸收特性与产量形成的关系.江西农业学报,1991,3(1):43-50.
    [17]李祖章,陶其骧,刘光荣.双季两系杂交稻营养特性和施肥技术.江西农业学报,1998,10(4):29-37.
    [18]王学华,郭名奇.两系杂交早稻生育中期氮肥施用量研究.湖南农业科学,1997,(3):19-20.
    [19]凌启鸿,张洪程,戴其根,丁艳锋,凌励,苏祖芳,徐茂,阙金华,王绍华.水稻精确定量施氮研究.中国农业科学,2005,38(12):2457-2467.
    [20]凌启鸿,张洪程,黄丕生,凌励,戴其根.高产水稻施氮新方法.土壤学报.,2002,39(增刊):26-40.
    [21]邹长明,秦道珠,陈福兴,刘更另.水稻氮肥施用技术.湖南农业大学学报(自然科学版), 2000,26(6):467-469.
    [22] S. LON,CHEN Neng-chang,N. CHISHAKI,S. INANAGA.Behavior of Nitrogen Absorbed at Different Growth Stages of Rice Plants.
    [23]黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理技术研究.2003,湖南农业大学博士学位论文.
    [24]曹开蔚,高素丽,周培健.江西省水稻精确栽培试验示范与应用效果情况.江西农业学报,2007.19(增刊),120-123.
    [25]高素丽.袁州区双季稻高产精确定量栽培示范区应用效果介绍.江西农业大学学报,2009,31(增刊),212-214.
    [1]徐春梅,王丹英,邵国胜,章秀福.施氮量和栽插密度对超高产水稻中早22产量和品质的影响.中国水稻科学,2008,22(5):507-512.
    [2]苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(4):281-286.
    [3]陈小荣,潘晓华.不同施氮及抛栽密度对长秧龄抛栽水稻产量形成的影响.江西农业大学学报,2000,22 (3) : 322-326
    [4]李建广,张秀和,张国新,甄翠荣.移栽密度对水稻生长发育及产量的影响.垦殖与稻作,2005,1:18-19.
    [5]吴春赞,叶定池,林华,倪日群,赖联赛,林辉.栽插密度对水稻产量及品质的影响.中国农学通报,2005,21(9):190-191.
    [6]刘建,徐少安.密肥条件对水稻产量及种植效益的影响.湖北农学院学报,2004,24(1):1-5.
    [7]周义文,龚红兵,李闯,胡春明,盛生兰,刁立平,林添资,景德道,钱华飞.播期和栽插密度对Ⅱ优084产量构成因子的影响.江苏农业科学,2008,5:32-33.
    [8]石扬娟,黄艳玲,申广勒,王维刚,张志转,石英尧,陈多璞.氮肥用量和栽插密度对水稻茎秆力学特性的影响研究.中国农学通报,2008,7(24):101-106.
    [9]陈厚存,蔡连贵.苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(4):281-286.
    [10]张永泰,吴文革,杨联松,赵决建,胡根生,方文杰,白一松,张四海,张玉海.施氮量和栽插密度对杂交中籼稻及其构成因素的影响.安徽农业大学学报,2008,35(1):49-55.
    [11]王夫玉,赵新华.行株距配比对水稻群体特征的影响.甘肃农业学报,2001,13 (2) : 38-42.
    [12]冯太勤,朱玉萍.苏香粳1号适宜的群体起点研究.江苏农业科学,2000 (3) : 15-17.
    [13]苏祖芳,霍中洋.水稻合理密植研究进展.耕作与栽培,2006,5:6-9.
    [14]凌启鸿,张洪程,苏祖芳,凌励.稻作新理论——水稻叶龄模式.北京:科学出版社,1994
    [15]凌启鸿,苏祖芳,张洪程,蔡建中,何杰升.水稻品种不同生育类型的叶龄模式.中国农业科学,1983(1):9-18
    [16]凌启鸿.水稻精确定量栽培理论与技术.北京:中国农业出版社,2007:76-87
    [17]罗永藩,马继发,苏祖芳.水稻叶龄模式的应用与发展.南京:江苏科学技术出版社,1991
    [18]胡建平,陈世琨.云贵高原稻区杂交中稻叶龄模式的开发应用.南京:江苏科学技术出版社,1991,24-29
    [19]陆敦,陈永孝,谢家驹.桂林地区杂交稻叶龄模式栽培技术.南京:江苏科学技术出版社,1991,36-38
    [20]郭宏文,姚彪发.双季稻区水稻叶龄模式栽培技术探讨.南京:江苏科学技术出版社,1991,39-42
    [21]潘晓华,陈小荣,杨福孙.双季水稻塑盘旱育抛栽基本苗公式的建立.中国水稻科学,2006,20 (3):290-294
    [22]李刚华,王绍华,杨从党,黄庆宇,李德安,宁加朝,凌启鸿,丁艳锋.超高产水稻适宜单株成穗数的定量计算.中国农业科学2008,41(11):3556-3562
    [23]蒋彭炎,姚长溪,任正龙.水稻高产新技术——稀少平栽培的原理与应用.杭州:浙江科学技术出版社, 1989 : 26-30.
    [24]潘晓华,陈小荣,杨福孙.双季水稻塑盘旱育抛栽基本苗公式的验证.江西农业大学学报,2006,28 (1) :1-6
    [25]江苏叶龄模式研究协作组.基本苗公式中几个参数的论证.江苏农学院学报,1985 , (4) :13-22.
    [25]莫惠栋.关于稻麦理论分蘖计算公式的一些补充.作物学报,1992,18(4):9-14
    [1] shaobingPeng , JianliangHuang , XuhuaZhong , JianchangYang , GuanghuoWang ,YingbinZou,QingshenZhu,RolandBuresh and ChristianWitt.Chellangen and opportunity in improving fertilizer Niortgen use efficiency of irrigated rice in China. China Agricul Sci.,2002,35(9):776-785
    [2]王鹏,徐爱兰.太湖流域典型圩区农田氮素地表径流迁移特征.农业环境科学学报,2008,27(4):1335-1339
    [3]侯彦林,周永娟,李红英,赵慧明.中国农田氮面源污染研究:Ⅰ污染类型区划和分省污染现状分析.农业环境科学学报2008,27(4):1271-1276
    [4]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用.化学通报,1994(9):15-21
    [5]黄见良,邹应斌,彭少兵,R.J Buresh.水稻对氮素的吸收、分配及其在组织中的挥发损失.植物营养与肥料学报,2004,10(6):579-583
    [6]朱兆良.施肥与农业环境.院士讲坛.1999(6):1-4
    [7]苏成国,尹斌,朱兆良,沈其荣.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报,2003,14(11):1884-1888
    [8]曾希柏,关光复.水稻配方施肥方法及其比较研究.土壤通报,1999,30(1):40-41
    [9]慕成功、郑义主编.农作物配方施肥.北京:中国农业科技出版社,1994
    [10]鲁如坤.土壤植物营养学原理和施肥.北京:化学工业出版社,1998
    [11]全国农牧渔业丰收计划办公室.平衡施肥配套技术.北京:经济科学出版社,1996,66-69
    [12]赵决建,赵艳萍.水稻定时定量施肥研究.土壤通报,33(4):288-292
    [13] Stanford G.Rationale for optimum nitrogen fertiligation in corn production .Environ.Qual,1979,2:159-165
    [14]刘艳阳.不同地力对水稻产量、品质及精确施氮参数影响的研究.扬州:扬州大学博士论文,2006
    [15]阕金华.水稻优质高产氮肥精量确定技术的研究.扬州:扬州大学硕士论文,2003
    [16]凌启鸿,张洪程,黄丕生,凌励,戴其根.水稻高产氮肥合理施用的运筹新探讨.土壤学报,2002,39:26-40
    [17]凌启鸿,张洪程,戴其根,丁艳锋,凌励,苏祖芳,徐茂,阙金华,王绍华.水稻精确定量施氮研究.中国农业科学,2005,39(12):2457-2467
    [18]徐茂,吴昊,王绍华,李刚华,杨文祥,王强盛,丁艳锋,沈其荣.江苏省不同类型土壤基础供氮能力对水稻产量的影响.南京农业大学学报2006, 29 (4) : 1~5
    [19]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978.
    [20]周鸣铮编著.土壤肥力测定与测土施肥.北京:中国农业出版社,1988.
    [21]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用.化学通报,1994(9):15-21
    [22] De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia.Fertilizer Res. 1986,(9):171-186.
    [23] Zhu Z L. Research progresses on the fate of soil N supply and applied fertilizer N in China.Soil. 1985,17(1):2-9. (in Chi-nese)
    [24] Li Q K.Fertilizer Issues in the Sustainable Development of China Agriculture.Jiangxi Science and Technology Press.1997. (in Chinese)
    [25] Li R G. Efficiency and regulation of fertilizer nitrogen in high-yield farmland: A case study on rice and wheat double maturing system agriculture area of Tai lake for deducing to Jiangsu Province. Ph.D. Dissertation, China Agricultural University,Beijing, China.2000. (in Chinese)
    [26] Skjemstad J O, Vallis I, Myers R K J. Decomposition of soil organic nitrogen. In: Wilson J R(ed.). Advances in nitrogen cycling in agricultural ecosystems. International Wallingford, Oxon, UK, 1988.134-144
    [27]郭宏文,李土明,李刚,候乐锋.氮肥运筹对双季稻产量及氮素利用率的影响.耕作与栽培,2006(3):8-10
    [28]吴文革,张四海,赵决建,吴桂成,李泽福,夏加发.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响.植物营养与肥料学报,2007,13(5):757—764
    [29]高辉,张洪程,戴其根,冯加根,严桂珠,朱德进.不同土种土壤氮素等养分与水稻基础产量的关系.扬州大学学报(农业与生命科学版),2007,28(1):49-52
    [30]朱蕾,陶珑.江苏省地力级差及土地增产潜力的探讨.土壤肥料,1997(1):17-20
    [31]朱莲.泰州市三大农区土壤肥力变化趋势及原因分析.土壤肥料,2000(4):19-22
    [32]杨文钰,屠乃美主编.作物栽培学各论.北京:中国农业出版社,2003
    [33]鲁如坤,等著.土壤植物营养学原理和施肥.北京:化学工业出版社,1998
    [34]石庆华.双季稻氮素吸收与利用特征研究.第十三届全国水稻优质高产理论与技术研讨会,2009,江西南昌
    [35]万靓军,张洪程,霍中洋,林忠成,戴其根,许轲,张军.氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响.作物学报,2007,33(2) :175 - 182
    [36]霍中洋,张洪程,王秀芹,戴其根,许轲,叶全宝.氮肥对亚种间杂交水稻“两优培九”产量及氮素营养特性的影响.江苏农业学报,2003,19(4) :223~227
    [37]凌启鸿.作物群体质量.上海科学技术出版社.上海.2000
    [38]凌启鸿,苏祖芳,张洪程等.水稻品种生育类型的叶龄模式.中国农业科学,1983(1):1-8
    [39]黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究.长沙:湖南农业大学博士论文,2003
    [1]杨惠杰李义珍黄育民,等.超高产水稻的产量构成和库源结构.福建农业学报,1994,14 (1) : 1~5, 1999
    [2]王汉民.华北地区小麦产量构成因素的相关和通径分析.现代农业科技,2006,4:55-56
    [3]陈建民,黄荣裕,陈秉发,谢旺有.杂交早稻库源特征及其应用研究.福建农业学报,2001,16(2):1 6~1 9,
    [4]林鹿.杂交早稻库源关系特征与其调控途径研究.江西农业大学学报,1992,14(3):236-241.
    [5]袁继超,刘从军,蔡光泽,等.攀西地区优质稻产量构成因素的变异及其构成特点.西南农业学报,2005 ,18 (2):144-148.
    [6]肖宇龙,余传元,雷建国,李马忠,旷一相,邱在辉.江西早杂组合产量构成因素的分析及高产早杂组合选育途径的探讨.江西农业学报,2007,19 (1) : 21~23.
    [7]袁江,王丹英,丁艳锋,廖西元,章秀福,王绍华.早籼稻品种遗传改良进程中株型的演变特征.中国水稻科学,2009,23 (3):277~281.
    [8]陈友订,万邦惠,张旭.华南双季超级稻产量构成模式探讨.作物学报,2005,31(3):323-329.
    [9]杨从党,朱德峰,袁平荣,黄庆宇,郑学玉,杨爱兵.水稻物质生产特性及其与产量的关系研究.西南农业学报,2006,19(4):560~564.
    [10]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究,中国水稻科学,2001,15 (4):265~270.
    [11]谢华安,王乌齐,杨惠杰,杨高群,李义珍.杂交水稻超高产特性研究.福建农业学报,2003,18(4):201~204.
    [12]吴文革,张洪程,钱银飞,陈烨,徐军,吴桂成,翟超群.霍中洋,戴其根。超级杂交中籼水稻物质生产特性分析.中国水稻科学,2007,21 (3) :287~293.
    [13] Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield in tropical and subtropical environmentsⅠ. Determinants of grain and dry matter yields. Field Crops Research, 1998,57:71-84.
    [14]刘建丰,袁隆平,邓启云,陈立云,蔡义东.超高产杂交稻的光合特性研究.中国农业科学, 2005,38(2):258-264.
    [15]陆敦,陈永孝,谢家驹.桂林地区杂交稻叶龄模式栽培技术.南京:江苏科学技术出版社,1991,36-38.
    [16]郭宏文,姚彪发.双季稻区水稻叶龄模式栽培技术探讨.南京:江苏科学技术出版社,1991,39-42.
    [17]潘晓华,陈小荣,杨福孙.双季水稻塑盘旱育抛栽基本苗公式的建立.中国水稻科学,2006,20 (3):290-294.
    [18]阕金华.水稻优质高产氮肥精量确定技术的研究.扬州:扬州大学硕士论文,2003.
    [19]高辉,张洪程,戴其根,冯加根,严桂珠,朱德进.不同土种土壤氮素等养分与水稻基础产量的关系.扬州大学学报(农业与生命科学版),2007,28(1):49-52.
    [20]刘艳阳.不同地力对水稻产量、品质及精确施氮参数影响的研究.扬州:扬州大学博士论文,2006.
    [21]徐茂,吴昊,王绍华,李刚华,杨文祥,王强盛,丁艳锋,沈其荣.江苏省不同类型土壤基础供氮能力对水稻产量的影响.南京农业大学学报2006, 29 (4) : 1~5.
    [22]付立东,李国范,王宇,等.水稻超高产栽培技术途径的探讨.垦殖与稻作,2005, (2) : 14- 16.
    [23]李义珍,杨高群,彭桂峰,杨惠杰.水稻超高产库源结构的研究.2001,全国第八届水稻高产理论与实践学术研讨会论文,厦门.
    [24]李义珍,王朝祥,水稻高产工程研究(早稻部分),福建农业科技,1979(1)1-9.
    [25]李义珍,王朝祥.水稻高产工程研究(晚稻部分),福建农业科技,1979(4)11-17.
    [26]邹应斌.水稻超高产栽培的理论与技术策略—兼论壮秆重穗栽培法.农业现代研究,1997,18(1):30~34.
    [27]邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望.中国农业科技导报,2003,5 (1) : 31-35.
    [28]双季稻超高产栽培技术体系研究与示范”课题组水稻“旺、壮、重”超高产栽培法简介,种植世界,2003,10-12.
    [29]陶诗顺,张清东,陈德刚.杂交中稻超多孽壮秧超稀栽培模式.绵阳经济技术高等专科学校学报,1997,14(4):1-8.
    [30]越景峰,李会议,赵永敬.寒地水稻双三栽培技术.垦殖与稻作,2000,(4) : 19 - 21.
    [31]金学泳,金正勋,秋太权.寒地水稻三超栽培技术及其增产原理. 2003,全国第九届水稻高产理论与实践学术研讨会论文,海南三亚..
    [32]马均,李代玺,廖尔华.刘志斌.超级水稻三围立体强化栽培超高产模式研究,四川农业科技,2009,43-45.
    [33]姜心禄,郑家国,池忠志,何树林,王少华.成都平原水稻超高产栽培的实践与创新.中国稻米,2009(1):28-29.
    [34]孙永飞,梁尹明,叶坚朱,万耀.水稻超高产模式株型栽培概论.中国稻米,1999(5):38-39
    [35]张根贤,杨发贵,徐肖平,朱芳前,童顺尧.单季稻“稳穗增粒高穗重”栽培途径的研究与探讨.中国稻米,2006(3):33-36.
    [36]钟旭华,曹开威.水稻“三控”施肥技术.2009,江西农业大学学报,31:243-245.
    [37]凌启鸿,等著.水稻精确定量栽培理论与技术.北京:中国农业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700