用户名: 密码: 验证码:
新型多孔生物活性骨水泥用于椎体成型术的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     骨质疏松症(Osteoporosis,OP)是我国老年人群的三大疾病之一。50岁以上人群中,OP总患病率女性为20.7%,男性为14.4%。随着年龄增加,OP的发病率急剧增加,80岁以上女性OP发病率甚至高达66%。脊柱是OP受累最为严重的部位,50岁以上女性的脊柱OP发病率为28%,远远高于股骨的15%。因此,骨质疏松性椎体压缩骨折的发生率远远高于其他部位骨折,我国每年新发椎体压缩骨折约l81万例,预计至2020年椎体骨折患者将高达3675万人。椎体压缩骨折会导致患者剧烈疼痛、出现神经功能障碍,同时,由于脊柱后凸畸形改变躯干力线,导致临近节段椎体骨折风险增加,形成骨折-畸形-再骨折的恶性循环。所以,如何重新恢复压缩骨折椎体的强度和高度,降低骨质疏松椎体压缩骨折发生率,使骨质疏松的患者不再出现驼背畸形具有重要的临床价值和深远的社会意义。
     椎体成型术和球囊成型术是治疗骨质疏松椎体压缩性骨折的有效手段,目前使用的椎体填充材料绝大多数是聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)。然而,该材料存在明显的缺陷:单纯的力学支撑,不具有骨传导、骨诱导作用;无法被自身组织吸收替代;弹性模量过高。因此,迫切需要一种新型的椎体成型填充材料,在对疏松椎体提供力学支撑的同时,还可通过骨传导和骨诱导作用促进骨折的愈合。
     课题组前期将生物玻璃、壳聚糖与聚甲基丙烯酸甲酯复合,研发了一种新型可注射型多孔生物活性骨水泥,发现该材料具有适宜的生物力学强度和良好的体外生物活性,在体内部分可吸收。但能否将其作为椎体成型术的填充材料,以及其对骨质疏松椎体的作用及尚不明确。
     研究目的:
     通过兔骨质疏松模型评估新型可注射型多孔生物活性骨水泥作为椎体成型材料的有效性和可行性。
     材料方法:
     将生物玻璃、聚甲基丙烯酸甲酯和壳聚糖按照4:5:1的比例构建多孔生物活性骨水泥。骨水泥固/液比为1.5:1。首先,通过扫描电子显微镜观察材料表面形态,了解材料各组份分布情况。然后,将骨水泥样本浸泡于PBS磷酸缓冲液中降解4周,通过生物力学实验,检测骨水泥的体外最大抗压缩强度。同时,将骨水泥浸泡于模拟体液中,通过X线衍射分析,评价材料的体外生物活性。采用随机对照研究方案,将80只新西兰大白兔随机分为去势组(OVX, n=72)和假手术组(Sham,n=8)。通过双侧卵巢去势法,建立兔骨质疏松模型。采用随机对照研究方案,将去势组随机分为BBC组(BBC, n=24)、PMMA组(PMMA, n=24)和骨质疏松对照组(CON,n=24)。通过模拟椎体成形术,分别在BBC组和PMMA组兔子L4、L5椎体注射骨水泥材料,每组均于术后1周、4周、12周处死8只。采用组织学、MicroCT及生物力学实验评估新型多孔生物活性骨水泥对脊柱骨质疏松的治疗作用。
     结果:
     骨水泥材料固化后扫描电镜结果提示:生物玻璃颗粒和壳聚糖颗粒均匀的分布于PMMA基质当中。体外生物力学检测结果提示:在各时间点,新型材料的最大抗压缩强度均小于PMMA (P<0.05)。X线衍射结果显示:在模拟体液浸泡7天后,骨水泥表面有磷灰石层形成,并且随浸泡时间延长,磷灰石层增厚。组织形态学观察发现,椎体成形术后4周,BBC组可见骨连接形成;术后12周,可见新生骨小梁。显微CT结果显示:椎体成型术后4周至12周,BBC组的骨体积分数(BV/TV)从28.27±1.69%增至38.43±1.34%,而PMMA组的骨体积分数无明显变化。生物力学实验结果表明,在椎体成型术后1周、4周、12周,BBC组和PMMA组椎体的最大抗压缩强度均明显高于骨质疏松对照组(P<0.05)。术后1周、4周,BBC组椎体的最大抗压缩强度均低于PMMA组(P<0.05)。术后12周,两组椎体最大抗压缩强度无明显区别。
     结论:
     新型多孔生物活性骨水泥在体内可部分吸收,有一定的成骨活性,可以迅速有效地改善骨质疏松椎体骨小梁的三维构筑,提高椎体的力学强度。随着进一步的改性研究,有望成为新型的椎体成型材料。
Background: Osteoporosis (OP) is one of the three major diseases in elderly populationin China. By the age of50years,the prevalence of OP in women is nearly20.7%; in men,the corresponding figure is14.4%. The incidence of OP increases markedly with age,evenas high as66%in women after the age of80years. Vertebral compression fracture is themost common complication of osteoporosis. Spine is the most serious part for OPinvolvement. The prevalence of OP at spine is28%in women aged50years or older,which is much higher than the15%at femur. Therefore, vertebral fractures are the mostcommon of all osteoporotic fractures. In china, it is estimated that there are around1.81million osteoporotic fractures each year,and the number is predicted to36.75million by2020. Patients with vertebral compression fracture can present with severe back pain orneurological dysfunction, and kyphotic deformities that cause biomechanical changes inthe spinal segment and increase the incidence of adjacent vertebral fractures, forming avicious cycle of "fracture-deformity-re-fracture". Thus, it is important and significant to augment impaired bony structures in order to maintain or improve strength and stability ofthe spinal column, to reduce the prevalence of osteoporotic vertebral compressionfracture,and to correct the kyphotic deformities caused by OP.Vertebroplasty and kyphoplasty are two percutaneous minimally invasive techniques intreating symptomatic VCFs patients who do not have neurological impairment. The mostcommonly used cement in vertebroplasty is polymethyl methacrylate (PMMA). However,the limitations of PMMA could not be ignored, including un-absorbable, poorbiocompatibility, missing osteoconductivity and excessive stiffness.
     In the previous study, we have showed the development and characteristic of a novelinjectable Porous Surface Modified Bioactive Bone Cement (PSMBBC), which had goodbioactivity in vitro, appropriate biomechanical strength, partial degradability, and wascomposed of bioglass, chitosan and PMMA. However, whether it can be use as a fillingmaterial for vertebroplasty or its effects on strengthening osteoporotic vertebrae stillremain unknown. Thus, the aim of this study is to determine the feasibility andeffectiveness of the PSMBBC for vertebroplasty of aiding osteoporotic vertebrae in anosteoporosis model.
     Materials and Methods: The novel Porous Surface Modified Bioactive Bone Cementwas composed of bioglass,chitosan and PMMA as weight ratio4:5:1, and a solid: liquidmass ratio of1.5:1was used. Samples of cured cement were immersed in15ml phosphatebuffered saline (PBS) at37°C and kept for4weeks. In order to measure the mechanicalproperties of the novel bone cement in vitro, the compressive strength values wereexamined.by biomechanical tests. Meanwhile, the samples were soaked in SBF and the invitro bioactivity of the novel bine cement was assess by X-ray diffraction (XRD).80adultfemale New Zealand white rabbits were randomly divided into two groups. Theovariectomy group (n=72) received bilateral ovariectomy (OVX), and the sham group(n=8) only received the sham operation. Then, the rabbits of the OVX group wererandomly divided into three groups: PMMA group, Bioactive Bone Cement group (BBC)and control group (CON). PMMA and BBC were administrated to osteoporotic vertebraein Vertebroplasty, respectively. The animals were sacrificed at1w,4w,12w after the procedure. Micro-CT analysis, biomechanical tests and histological analysis wereperformed at each time point.
     Results: The glass and CS particles were uniformly distributed in the polymeric matrix fordry cement samples by SEM analysis. A significantly lower compressive strength (P<0.05)was observed for the BBC compared to the PMMA bone cement at each degradation time.Newly formed apatites were confirmed by XRD at7day. From4to12weeks after bonecements implantation, the bone volume fraction (BV/TV,%) of the BBC group increasedfrom28.27±1.69%to38.43±1.34%. However, the BV/TV of the PMMA group showedno significant differences. At4weeks, direct contact between bone and bone cement wasobserved in the BBC group. At12weeks, it showed neo intact bone trabecular formed inPSMBBC group. Furthermore, the maximum compressive strength values of the BBCgroup were significantly higher than that of the control group at each time point afterimplantation. At1,4weeks, the maximum compressive strength values of the BBC groupwere lower than that of the PMMA group. At12weeks, it showed no difference betweenthe two groups.
     Conclusion:This study suggests that the novel Porous Surface Modified Bioactive BoneCement has a certain osteogenicability, appropriate biomechanical strength, partialdegradability, making it an excellent material for vertebroplasty.
引文
[1] Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet.2011;377:1276-87.
    [2] Melton LJ,3rd, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL. Epidemiology ofvertebral fractures in women. American journal of epidemiology.1989;129:1000-11.
    [3] Kanis JA, Pitt FA. Epidemiology of osteoporosis. Bone.1992;13Suppl1:S7-15.
    [4] Fransen H. Minimal invasive treatment of vertebral compression fractures: vertebroplasty.Neuroradiology.2011;53Suppl1:S199-201.
    [5] Karlsson MK, Gerdhem P, Ahlborg HG. The prevention of osteoporotic fractures. The Journalof bone and joint surgery British volume.2005;87:1320-7.
    [6] Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associatedwith osteoporotic fractures. Osteoporosis international: a journal established as resultof cooperation between the European Foundation for Osteoporosis and the NationalOsteoporosis Foundation of the USA.2006;17:1726-33.
    [7] Ettinger MP. Aging bone and osteoporosis: strategies for preventing fractures in theelderly. Archives of internal medicine.2003;163:2237-46.
    [8] McGraw JK, Cardella J, Barr JD, Mathis JM, Sanchez O, Schwartzberg MS, et al. Societyof Interventional Radiology quality improvement guidelines for percutaneous vertebroplasty.Journal of vascular and interventional radiology: JVIR.2003;14:827-31.
    [9] Zoarski GH, Snow P, Olan WJ, Stallmeyer MJ, Dick BW, Hebel JR, et al. Percutaneousvertebroplasty for osteoporotic compression fractures: quantitative prospective evaluationof long-term outcomes. Journal of vascular and interventional radiology: JVIR.2002;13:139-48.
    [10] Venmans A, Klazen CA, Lohle PN, Mali WP, van Rooij WJ. Natural history of pain in patientswith conservatively treated osteoporotic vertebral compression fractures: results fromVERTOS II. AJNR American journal of neuroradiology.2012;33:519-21.
    [11] Einhorn TA. Vertebroplasty:an opportunity to do something really good for patients.pdf.Spine.2000;25:1051-2.
    [12] McGraw JK, Lippert JA, Minkus KD, Rami PM, Davis TM, Budzik RF. Prospective evaluationof pain relief in100patients undergoing percutaneous vertebroplasty: results and follow-up.Journal of vascular and interventional radiology: JVIR.2002;13:883-6.
    [13] Legroux-Gerot I, Lormeau C, Boutry N, Cotten A, Duquesnoy B, Cortet B. Long-termfollow-up of vertebral osteoporotic fractures treated by percutaneous vertebroplasty.Clinical rheumatology.2004;23:310-7.
    [14] Voormolen MH, Lohle PN, Lampmann LE, van den Wildenberg W, Juttmann JR, Diekerhof CH,et al. Prospective clinical follow-up after percutaneous vertebroplasty in patients withpainful osteoporotic vertebral compression fractures. Journal of vascular andinterventional radiology: JVIR.2006;17:1313-20.
    [15] Anselmetti GC, Corrao G, Monica PD, Tartaglia V, Manca A, Eminefendic H, et al. Painrelief following percutaneous vertebroplasty: results of a series of283consecutivepatients treated in a single institution. Cardiovascular and interventional radiology.2007;30:441-7.
    [16] Evans AJ, Jensen ME, Kip KE, DeNardo AJ, Lawler GJ, Negin GA, et al. Vertebral compressionfractures: pain reduction and improvement in functional mobility after percutaneouspolymethylmethacrylate vertebroplasty retrospective report of245cases. Radiology.2003;226:366-72.
    [17] Alvarez L, Alcaraz M, Perez-Higueras A, Granizo JJ, de Miguel I, Rossi RE, et al.Percutaneous vertebroplasty: functional improvement in patients with osteoporoticcompression fractures. Spine.2006;31:1113-8.
    [18] Kaufmann TJ, Jensen ME, Schweickert PA, Marx WF, Kallmes DF. Age of fracture and clinicaloutcomes of percutaneous vertebroplasty. AJNR American journal of neuroradiology.2001;22:1860-3.
    [19] Heini PF, Orler R.[Vertebroplasty in severe osteoporosis. Technique and experiencewith multi-segment injection]. Der Orthopade.2004;33:22-30.
    [20] Galibert P, Deramond H, Rosat P, Le Gars D.[Preliminary note on the treatment ofvertebral angioma by percutaneous acrylic vertebroplasty]. Neuro-Chirurgie.1987;33:166-8.
    [21] Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty and kyphoplasty: asystematic review of69clinical studies. Spine.2006;31:1983-2001.
    [22] Perez-Higueras A, Alvarez L, Rossi RE, Quinones D, Al-Assir I. Percutaneousvertebroplasty: long-term clinical and radiological outcome. Neuroradiology.2002;44:950-4.
    [23] Ducheyne P.6.611. Injectable Bone Cements for Spinal Column Augmentation: Materialsfor Kyphoplasty/Vertebroplasty. Comprehensive Biomaterials.2011;VOLUME6BIOMATERIALS ANDCLINICAL USE:147-60.
    [24] Wardlaw D, Cummings SR, Van Meirhaeghe J, Bastian L, Tillman JB, Ranstam J, et al.Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebralcompression fracture (FREE): a randomised controlled trial. Lancet.2009;373:1016-24.
    [25] Furtado N, Oakland RJ, Wilcox RK, Hall RM. A biomechanical investigation ofvertebroplasty in osteoporotic compression fractures and in prophylactic vertebralreinforcement. Spine.2007;32:E480-7.
    [26] Dong R, Chen L, Tang T, Gu Y, Luo Z, Shi Q, et al. Pain reduction following vertebroplastyand kyphoplasty. International orthopaedics.2013;37:83-7.
    [27] Gangi A, Guth S, Imbert JP, Marin H, Dietemann JL. Percutaneous vertebroplasty:indications, technique, and results. Radiographics: a review publication of theRadiological Society of North America, Inc.2003;23:e10.
    [28] Noldge G, DaFonseca K, Grafe I, Libicher M, Hillmeier J, Meeder PJ, et al.[Balloonkyphoplasty in the treatment of back pain]. Der Radiologe.2006;46:506-12.
    [29] Trumm CG, Jakobs TF, Zech CJ, Weber C, Reiser MF, Hoffmann RT.[Vertebroplasty in thetreatment of back pain]. Der Radiologe.2006;46:495-505.
    [30] Fourney DR, Schomer DF, Nader R, Chlan-Fourney J, Suki D, Ahrar K, et al. Percutaneousvertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients.Journal of neurosurgery.2003;98:21-30.
    [31] Stallmeyer MJ, Zoarski GH, Obuchowski AM. Optimizing patient selection in percutaneousvertebroplasty. Journal of vascular and interventional radiology: JVIR.2003;14:683-96.
    [32]朱美忠.椎体成形术生物材料的应用与进展.中国微创外科杂志.2006;6:714-6.
    [33] Cotten A DF, Cortet B, Assaker R, Leblond D, Duquesnoy B, Chastanet P, Clarisse J.Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentageof lesion filling and the leakage of methyl methacrylate at clinical follow-upl.pdf.Radiology.1996;200:525-30.
    [34]赵刚.骨质疏松性脊柱骨折椎体成形术治疗的相关问题研究.博士学位论文.2007;昆明医学院.
    [35] Li KC, Li AF, Hsieh CH, Chen HH. Transpedicle body augmenter in painful osteoporoticcompression fractures. European spine journal: official publication of the European SpineSociety, the European Spinal Deformity Society, and the European Section of the CervicalSpine Research Society.2007;16:589-98.
    [36] Staples MP, Kallmes DF, Comstock BA, Jarvik JG, Osborne RH, Heagerty PJ, et al.Effectiveness of vertebroplasty using individual patient data from two randomised placebocontrolled trials: meta-analysis. Bmj.2011;343:d3952-d.
    [37] Kotwica Z, Saracen A. Early and long-term outcomes of vertebroplasty for singleosteoporotic fractures. Neurologia i neurochirurgia polska.2011;45:431-5.
    [38] Chang CY, Teng MM, Wei CJ, Luo CB, Chang FC. Percutaneous vertebroplasty for patientswith osteoporosis: a one-year follow-up. Acta radiologica.2006;47:568-73.
    [39] Lee MJ, Dumonski M, Cahill P, Stanley T, Park D, Singh K. Percutaneous treatment ofvertebral compression fractures: a meta-analysis of complications. Spine.2009;34:1228-32.
    [40] McGirt MJ, Parker SL, Wolinsky JP, Witham TF, Bydon A, Gokaslan ZL. Vertebroplasty andkyphoplasty for the treatment of vertebral compression fractures: an evidenced-based reviewof the literature. The spine journal: official journal of the North American Spine Society.2009;9:501-8.
    [41]唐海.骨质疏松性脊柱骨折的治疗进展.中华医学会第十二届骨科学术会议暨第五届COA国际学术大会教程汇编.2010.
    [42] Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplastyfor the treatment of painful osteoporotic compression fractures. Spine.2001;26:1511-5.
    [43] Jensen ME, McGraw JK, Cardella JF, Hirsch JA. Position statement on percutaneousvertebral augmentation: a consensus statement developed by the American Society ofInterventional and Therapeutic Neuroradiology, Society of Interventional Radiology,American Association of Neurological Surgeons/Congress of Neurological Surgeons, andAmerican Society of Spine Radiology. Journal of neurointerventional surgery.2009;1:181-5.
    [44] Lindsay R, Gallagher JC, Kagan R, Pickar JH, Constantine G. Efficacy of tissue-selectiveestrogen complex of bazedoxifene/conjugated estrogens for osteoporosis prevention inat-risk postmenopausal women. Fertility and sterility.2009;92:1045-52.
    [45] Harrop JS, Prpa B, Reinhardt MK, Lieberman I. Primary and secondary osteoporosis'incidence of subsequent vertebral compression fractures after kyphoplasty. Spine.2004;29:2120-5.
    [46] Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, et al. A randomizedtrial of vertebroplasty for painful osteoporotic vertebral fractures. The New Englandjournal of medicine.2009;361:557-68.
    [47] Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, et al. Arandomized trial of vertebroplasty for osteoporotic spinal fractures. The New Englandjournal of medicine.2009;361:569-79.
    [48] Jasper LE, Deramond H, Mathis JM, Belkoff SM. The effect of monomer-to-powder ratioon the material properties of cranioplastic. Bone.1999;25:27S-9S.
    [49] Hitchon PW, Goel V, Drake J, Taggard D, Brenton M, Rogge T, et al. Comparison of thebiomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadavericspinal compression fracture model. Journal of neurosurgery.2001;95:215-20.
    [50] Heini PF BU, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P. Augmentation ofmechanical properties in osteoporotic vertebral bones--a biomechanical investigation ofvertebroplasty efficacy with different bone cements. Eur Spine J.2001;10:164-71.
    [51] Heini PF, Berlemann U. Bone substitutes in vertebroplasty. European spine journal:official publication of the European Spine Society, the European Spinal Deformity Society,and the European Section of the Cervical Spine Research Society.2001;10Suppl2:S205-13.
    [52]刘绪立.兔骨质疏松模型的快速建立和硫酸钙复合bBMP在椎体强化中的实验研究.博士学位论文.2009;西安:第四军医大学..
    [53]宁磊.闭合复位辅助下椎体后凸成形术治疗骨质疏松性椎体骨折.硕士学位论文.2010;浙江大学.
    [54] Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, et al. The characteristics of ahydroxyapatite-chitosan-PMMA bone cement. Biomaterials.2004;25:5715-23.
    [55] Zhao F, Lu WW, Luk KD, Cheung KM, Wong CT, Leong JC, et al. Surface treatment of injectablestrontium-containing bioactive bone cement for vertebroplasty. Journal of biomedicalmaterials research Part B, Applied biomaterials.2004;69:79-86.
    [56] Lin LC CS, Kuo SM, Chen SF, Kuo CH. Evaluation of chitosan-beta-tricalcium phosphatemicrospheres as a constituent to PMMA cement. J Mater Sci Mater Med.2005;16:567-74.
    [57] Cho BC, Kim TG, Yang JD, Chung HY, Park JW, Kwon IC, et al. Effect of calciumsulfate-chitosan composite: pellet on bone formation in bone defect. The Journal ofcraniofacial surgery.2005;16:213-24; discussion25-7.
    [58] Yokoyama A YS, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cementusing chitosan and citric acid for bone substitute materials. Biomaterials.2002;23:1091-101.
    [59] Cotte FE, Cortet B, Lafuma A, Avouac B, Hasnaoui AE, Fardellone P, et al. A model ofthe public health impact of improved treatment persistence in post-menopausal osteoporosisin France. Joint, bone, spine: revue du rhumatisme.2008;75:201-8.
    [60] Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economicburden of osteoporosis-related fractures in the United States,2005-2025. Journal of boneand mineral research: the official journal of the American Society for Bone and MineralResearch.2007;22:465-75.
    [61] Turner AS. Animal models of osteoporosis--necessity and limitations. European cells&materials.2001;1:66-81.
    [62] Reinwald S, Burr D. Review of nonprimate, large animal models for osteoporosis research.Journal of bone and mineral research: the official journal of the American Society for Boneand Mineral Research.2008;23:1353-68.
    [63] Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA Guidelines and animal models forosteoporosis. Bone.1995;17:125S-33S.
    [64]王振恒赵,王瑞.骨质疏松动物模型研究进展.中国骨质疏松杂志.2012;18:656-62.
    [65]李险峰.骨质疏松症的分类和分型.中国全科医学.2005;8:1300.
    [66] Davidson MK, Lindsey JR, Davis JK. Requirements and selection of an animal model. Israeljournal of medical sciences.1987;23:551-5.
    [67] Rodgers JB, Monier-Faugere MC, Malluche H. Animal models for the study of bone lossafter cessation of ovarian function. Bone.1993;14:369-77.
    [68] Ikeda S, Tsurukami H, Ito M, Sakai A, Sakata T, Nishida S, et al. Effect of trabecularbone contour on ultimate strength of lumbar vertebra after bilateral ovariectomy in rats.Bone.2001;28:625-33.
    [69] Gustavo Duque KW. Osteoporosis Research: Animal Models1st Edition.2011.
    [70] Jee WS, Yao W. Overview: animal models of osteopenia and osteoporosis. Journal ofmusculoskeletal&neuronal interactions.2001;1:193-207.
    [71] Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone and mineral.1991;15:175-91.
    [72] FDA. Guidelines for Preclinical and Clinical Evaluation of Agents Used for thePrevention of Treatment of Postmenopausal Osteoporosis. Washington, DC: Division ofMetabolism and Endocrine Drug Products, Food and Drug Administration.1994.
    [73] Banu J. The Ovariectomized Mice and Rats. Osteoporosis Research1st.2011.
    [74]廖慧娟.骨质疏松症动物模型.国外医学(内分泌学分册).2004;1:60-2.
    [75] Sigrist IM, Gerhardt C, Alini M, Schneider E, Egermann M. The long-term effects ofovariectomy on bone metabolism in sheep. Journal of bone and mineral metabolism.2007;25:28-35.
    [76]王晓.骨质疏松动物模型的复制与评价.中国骨质疏松杂志.2007;13:141-5.
    [77]崔燎,吴铁.骨质疏松药理学动物实验与图谱.20111st.北京:科学出版社.
    [78]李昊,张西正.2012.中国骨质疏松杂志.2012;18:663-6.
    [79] Chiang SS, Liao JW, Pan TM. Effect of bioactive compounds in lactobacilli-fermentedsoy skim milk on femoral bone microstructure of aging mice. Journal of the science of foodand agriculture.2012;92:328-35.
    [80] Alexander JM, Bab I, Fish S, Muller R, Uchiyama T, Gronowicz G, et al. Human parathyroidhormone1-34reverses bone loss in ovariectomized mice. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research.2001;16:1665-73.
    [81]贾经汉邱,陈志坚.常用骨质疏松动物模型特点的综述.广西中医学院学报.2006;9:76-9.
    [82]李素萍.骨质疏松动物模型的研究现状.中国组织工程研究与临床康复.2011;15:3767-70.
    [83] Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment inosteoporosis. Osteoporosis international: a journal established as result of cooperationbetween the European Foundation for Osteoporosis and the National Osteoporosis Foundationof the USA.2005;16Suppl2:S129-38.
    [84] Silva MJ, Brodt MD, Uthgenannt BA. Morphological and mechanical properties of caudalvertebrae in the SAMP6mouse model of senile osteoporosis. Bone.2004;35:425-31.
    [85] Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms andimplications for the pathogenesis and treatment of osteoporosis. Endocrine reviews.2000;21:115-37.
    [86] Stoker NG, Epker BN. Age changes in endosteal bone remodeling and balance in the rabbit.Journal of dental research.1971;50:1570-4.
    [87] Mashiba T, Burr DB, Turner CH, Sato M, Cain RL, Hock JM. Effects of human parathyroidhormone (1-34), LY333334, on bone mass, remodeling, and mechanical properties of corticalbone during the first remodeling cycle in rabbits. Bone.2001;28:538-47.
    [88] Castaneda S, Calvo E, Largo R, Gonzalez-Gonzalez R, de la Piedra C, Diaz-Curiel M, etal. Characterization of a new experimental model of osteoporosis in rabbits. Journal of boneand mineral metabolism.2008;26:53-9.
    [89] Baofeng L, Zhi Y, Bei C, Guolin M, Qingshui Y, Jian L. Characterization of a rabbitosteoporosis model induced by ovariectomy and glucocorticoid. Acta orthopaedica.2010;81:396-401.
    [90] Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O, et al. Effect of sexsteroids on peak bone density of growing rabbits. The American journal of physiology.1988;255:E416-21.
    [91] Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: currentstatus and comparison with other animal models. Bone.1995;16:277S-84S.
    [92] Kennedy OD, Brennan O, Mauer P, O'Brien FJ, Rackard SM, Taylor D, et al. The behaviourof fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.Studies in health technology and informatics.2008;133:148-55.
    [93] Borsari V, Fini M, Giavaresi G, Rimondini L, Consolo U, Chiusoli L, et al.Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromisedcortical and trabecular bone: in vivo comparative study on young, aged, andestrogen-deficient sheep. Journal of orthopaedic research: official publication of theOrthopaedic Research Society.2007;25:1250-60.
    [94] Egermann M, Goldhahn J, Holz R, Schneider E, Lill CA. A sheep model for fracture treatmentin osteoporosis: benefits of the model versus animal welfare. Laboratory animals.2008;42:453-64.
    [95] Arens D, Sigrist I, Alini M, Schawalder P, Schneider E, Egermann M. Seasonal changesin bone metabolism in sheep. Veterinary journal.2007;174:585-91.
    [96] Turner AS. Seasonal changes in bone metabolism in sheep: further characterization ofan animal model for human osteoporosis. Veterinary journal.2007;174:460-1.
    [97] Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L, Augat P. Glucocorticoid treatmentof ovariectomized sheep affects mineral density, structure, and mechanical properties ofcancellous bone. Journal of bone and mineral research: the official journal of the AmericanSociety for Bone and Mineral Research.2003;18:2010-5.
    [98] Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoidapplication on bone properties in sheep: a pilot study. Osteoporosis international: ajournal established as result of cooperation between the European Foundation forOsteoporosis and the National Osteoporosis Foundation of the USA.2002;13:480-6.
    [99] Wu ZX, Lei W, Hu YY, Wang HQ, Wan SY, Ma ZS, et al. Effect of ovariectomy on BMD,micro-architecture and biomechanics of cortical and cancellous bones in a sheep model.Medical engineering&physics.2008;30:1112-8.
    [100] Giavaresi G, Fini M, Torricelli P, Martini L, Giardino R. The ovariectomized ewe modelin the evaluation of biomaterials for prosthetic devices in spinal fixation. TheInternational journal of artificial organs.2001;24:814-20.
    [101]李良陈,陈孟诗,谭建三,吴文超,翁玲玲,郑虎.建立骨质疏松山羊模型初探.中国骨质疏松杂志.1998;4:12-6.
    [102]何成明陈.雌性山羊去卵巢后不同时间骨生物力学参数变化.生物医学工程学杂志.1999;16:295-9.
    [103] Dehoux JP, Gianello P. The importance of large animal models in transplantation.Frontiers in bioscience: a journal and virtual library.2007;12:4864-80.
    [104] Kohn F, Sharifi AR, Malovrh S, Simianer H. Estimation of genetic parameters for bodyweight of the Goettingen minipig with random regression models. Journal of animal science.2007;85:2423-8.
    [105] Reynolds LP, Kirsch JD, Kraft KC, Redmer DA. Time-course of the uterine response toestradiol-17beta in ovariectomized ewes: expression of angiogenic factors. Biology ofreproduction.1998;59:613-20.
    [106] Martiniakova M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M. Differences amongspecies in compact bone tissue microstructure of mammalian skeleton: use of a discriminantfunction analysis for species identification. Journal of forensic sciences.2006;51:1235-9.
    [107] Mosekilde L, Weisbrode SE, Safron JA, Stills HF, Jankowsky ML, Ebert DC, et al.Evaluation of the skeletal effects of combined mild dietary calcium restriction andovariectomy in Sinclair S-1minipigs: a pilot study. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research.1993;8:1311-21.
    [108] Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength in ovariectomizedcynomolgus monkeys (Macaca fascicularis). Calcified tissue international.1997;60:265-70.
    [109] Costa LA, Lopes BF, Lanis AB, De Oliveira DC, Giannotti JG, Costa FS. Bonedemineralization in the lumbar spine of dogs submitted to prednisone therapy. Journal ofveterinary pharmacology and therapeutics.2010;33:583-6.
    [110] Fukuda S, Iida H. Effects of orchidectomy on bone metabolism in beagle dogs. The Journalof veterinary medical science/the Japanese Society of Veterinary Science.2000;62:69-73.
    [111] Cheng M, Wang Q, Fan Y, Liu X, Wang L, Xie R, et al. A traditional Chinese herbalpreparation, Er-Zhi-Wan, prevent ovariectomy-induced osteoporosis in rats. Journal ofethnopharmacology.2011;138:279-85.
    [112] Matsumoto T, Ezawa I, Morita K, Kawanobe Y, Ogata E. Effect of vitamin D metaboliteson bone metabolism in a rat model of postmenopausal osteoporosis. Journal of nutritionalscience and vitaminology.1985;31Suppl:S61-5.
    [113] Morrow R, Deyhim F, Patil BS, Stoecker BJ. Feeding orange pulp improved bone qualityin a rat model of male osteoporosis. Journal of medicinal food.2009;12:298-303.
    [114] Mandadi K, Ramirez M, Jayaprakasha GK, Faraji B, Lihono M, Deyhim F, et al. Citrusbioactive compounds improve bone quality and plasma antioxidant activity in orchidectomizedrats. Phytomedicine: international journal of phytotherapy and phytopharmacology.2009;16:513-20.
    [115] De La Piedra C, Quiroga I, Montero M, Dapia S, Caeiro JR, Rubert M, et al. Daily ormonthly ibandronate prevents or restores deteriorations of bone mass, architecture,biomechanical properties and markers of bone turnover in androgen-deficient aged rats. Theaging male: the official journal of the International Society for the Study of the AgingMale.2011;14:220-30.
    [116] Matsushita M TT, Kasai R, Okumura H, Yamamuro T, Higuchi K, Higuchi K, Kohno A, YonezuT, Utani A, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM).SAM-R/3and SAM-P/6as new murine models for senile osteoporosis. Am J Pathol.1986;125:276-83.
    [117] Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC. Linkage of decreasedbone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. TheJournal of clinical investigation.1996;97:1732-40.
    [118] Chen H, Shoumura S, Emura S. Ultrastructural changes in bones of thesenescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Histology andhistopathology.2004;19:677-85.
    [119] Vajda EG, Wronski TJ, Halloran BP, Bachus KN, Miller SC. Spaceflight alters bonemechanics and modeling drifts in growing rats. Aviation, space, and environmental medicine.2001;72:720-6.
    [120] Milstead JR, Simske SJ, Bateman TA. Spaceflight and hindlimb suspension disuse modelsin mice. Biomedical sciences instrumentation.2004;40:105-10.
    [121] Zerath E, Grynpas M, Holy X, Viso M, Patterson-Buckendahl P, Marie PJ. Spaceflightaffects bone formation in rhesus monkeys: a histological and cell culture study. Journalof applied physiology.2002;93:1047-56.
    [122] Liao JM, Li QN, Wu T, Hu B, Huang LF, Li ZH, et al. Effects of prednisone on bone mineraldensity and biomechanical characteristics of the femora and lumbar vertebras in rats. Di1jun yi da xue xue bao=Academic journal of the first medical college of PLA.2003;23:97-100.
    [123] Goldhahn J JA, Schneider E, Lill CA. Slow rebound of cancellous bone after mainlysteroid-induced osteoporosis in ovariectomized sheep. J Orthop Trauma.2005;19:23-8.
    [124] Verhaeghe J SA, Einhorn TA, Geusens P, Visser WJ, Van Herck E, Van Bree R, MagitskyS, Bouillon R. Brittle bones in spontaneously diabetic female rats cannot be predicted bybone mineral measurements: studies in diabetic and ovariectomized rats. J Bone Miner Res.1994;9:1657-67.
    [125] Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering--an overview.Marine drugs.2010;8:2252-66.
    [126] Masala S, Mastrangeli R, Petrella MC, Massari F, Ursone A, Simonetti G. Percutaneousvertebroplasty in1,253levels: results and long-term effectiveness in a single centre.European radiology.2009;19:165-71.
    [127] Saliou G, Kocheida el M, Lehmann P, Depriester C, Paradot G, Le Gars D, et al.Percutaneous vertebroplasty for pain management in malignant fractures of the spine withepidural involvement. Radiology.2010;254:882-90.
    [128] Trumm CG, Jakobs TF, Zech CJ, Helmberger TK, Reiser MF, Hoffmann RT. CTfluoroscopy-guided percutaneous vertebroplasty for the treatment of osteolytic breastcancer metastases: results in62sessions with86vertebrae treated. Journal of vascularand interventional radiology: JVIR.2008;19:1596-606.
    [129] Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone:correlation with collagen intermolecular cross-links. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research.2002;17:1621-8.
    [130] Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P. Long-termobservations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty.Rheumatology.2000;39:1410-4.
    [131] Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P. Augmentationof mechanical properties in osteoporotic vertebral bones--a biomechanical investigation ofvertebroplasty efficacy with different bone cements. European spine journal: officialpublication of the European Spine Society, the European Spinal Deformity Society, and theEuropean Section of the Cervical Spine Research Society.2001;10:164-71.
    [132] Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the loadtransfer in an osteoporotic functional spinal unit: finite-element analysis. Spine.2003;28:991-6.
    [133] Dahl OE, Garvik LJ, Lyberg T. Toxic effects of methylmethacrylate monomer on leukocytesand endothelial cells in vitro. Acta orthopaedica Scandinavica.1994;65:147-53.
    [134] Lewis G. Properties of acrylic bone cement: state of the art review. Journal ofbiomedical materials research.1997;38:155-82.
    [135]谭中宝.应用于经皮椎体成形术的填充材料研究进展.中国矫形外科杂志.2011;19:1182-4.
    [136] Boger A, Bohner M, Heini P, Verrier S, Schneider E. Properties of an injectable lowmodulus PMMA bone cement for osteoporotic bone. Journal of biomedical materials researchPart B, Applied biomaterials.2008;86:474-82.
    [137] Kane RJ, Yue W, Mason JJ, Roeder RK. Improved fatigue life of acrylic bone cementsreinforced with zirconia fibers. Journal of the mechanical behavior of biomedical materials.2010;3:504-11.
    [138] Khaled SM, Charpentier PA, Rizkalla AS. Synthesis and characterization of poly(methylmethacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes. Actabiomaterialia.2010;6:3178-86.
    [139] Tomita S, Kin A, Yazu M, Abe M. Biomechanical evaluation of kyphoplasty andvertebroplasty with calcium phosphate cement in a simulated osteoporotic compressionfracture. Journal of orthopaedic science: official journal of the Japanese OrthopaedicAssociation.2003;8:192-7.
    [140] Bai B, Yin Z, Xu Q, Lew M, Chen Y, Ye J, et al. Histological changes of an injectablerhBMP-2/calcium phosphate cement in vertebroplasty of rhesus monkey. Spine.2009;34:1887-92.
    [141] JT. W. The use of an injectable bone graft substitute in tibial metaphyseal fractures.Orthopedics.2004;27:s103-7.
    [142] Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectable calciumsulfate-based bone graft substitute. Orthopedics.2004;27:s131-5.
    [143] Hautamaki M, Meretoja VV, Mattila RH, Aho AJ, Vallittu PK. Osteoblast response topolymethyl methacrylate bioactive glass composite. Journal of materials science Materialsin medicine.2010;21:1685-92.
    [144] Tan H, Guo S, Yang S, Xu X, Tang T. Physical characterization and osteogenic activityof the quaternized chitosan-loaded PMMA bone cement. Acta biomaterialia.2012;8:2166-74.
    [145] Aho AJ, Hautamaki M, Mattila R, Alander P, Strandberg N, Rekola J, et al. Surface porousfibre-reinforced composite bulk bone substitute. Cell and tissue banking.2004;5:213-21.
    [146] Heikkil JT AA, Kangasniemi I, Yli-Urpo A. Polymethylmethacrylate composites disturbedbone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials.1996;Sep;17:1755-60.
    [147] Shinzato S, Nakamura T, Kokubo T, Kitamura Y. PMMA-based bioactive cement: effect ofglass bead filler content and histological change with time. Journal of biomedical materialsresearch.2002;59:225-32.
    [148] He Q, Chen H, Huang L, Dong J, Guo D, Mao M, et al. Porous surface modified bioactivebone cement for enhanced bone bonding. PloS one.2012;7:e42525.
    [149] Hench LL. Bioceramics: From Concept to Clinic. J Am Ceram Soc.1991;74:1487-510.
    [150] Kawashita M, Kawamura K, Li Z. PMMA-based bone cements containing magnetite particlesfor the hyperthermia of cancer. Acta biomaterialia.2010;6:3187-92.
    [151] Devlin H, Ferguson MW. Compositional changes in the rat femur following ovariectomy.Acta anatomica.1989;136:38-41.
    [152] Tabuchi C, Simmons DJ, Fausto A, Russell JE, Binderman I, Avioli LV. Bone deficit inovariectomized rats. Functional contribution of the marrow stromal cell population and theeffect of oral dihydrotachysterol treatment. The Journal of clinical investigation.1986;78:637-42.
    [153] Bellino FL. Nonprimate animal models of menopause: workshop report. Menopause.2000;7:14-24.
    [154] Newton BI, Cooper RC, Gilbert JA, Johnson RB, Zardiackas LD. The ovariectomized sheepas a model for human bone loss. Journal of comparative pathology.2004;130:323-6.
    [155] Belkoff SM, Mathis JM, Jasper LE, Deramond H. The biomechanics of vertebroplasty. Theeffect of cement volume on mechanical behavior. Spine.2001;26:1537-41.
    [156] Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill onmechanical behavior during percutaneous vertebroplasty. Spine.2003;28:1549-54.
    [157] Krebs J, Ferguson SJ, Hoerstrup SP, Goss BG, Haeberli A, Aebli N. Influence of bonemarrow fat embolism on coagulation activation in an ovine model of vertebroplasty. TheJournal of bone and joint surgery American volume.2008;90:349-56.
    [158] Aebli N, Goss BG, Thorpe P, Williams R, Krebs J. In vivo temperature profile ofintervertebral discs and vertebral endplates during vertebroplasty: an experimental studyin sheep. Spine.2006;31:1674-8; discussion9.
    [159] Aebli N, Krebs J, Davis G, Walton M, Williams MJ, Theis JC. Fat embolism and acutehypotension during vertebroplasty: an experimental study in sheep. Spine.2002;27:460-6.
    [160] Urrutia J, Bono CM, Mery P, Rojas C. Early histologic changes followingpolymethylmethacrylate injection (vertebroplasty) in rabbit lumbar vertebrae. Spine.2008;33:877-82.
    [161] Wang ML, Massie J, Perry A, Garfin SR, Kim CW. A rat osteoporotic spine model for theevaluation of bioresorbable bone cements. The spine journal: official journal of the NorthAmerican Spine Society.2007;7:466-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700