用户名: 密码: 验证码:
L/M锥细胞对比度对调节反应和模糊敏感度的影响及与近视关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究表明近视眼与正视眼之间存在着L/M锥细胞相对敏感性差异,近视眼具有更高的L锥细胞敏感性:不问的L/M锥细胞对比度对于调节刺激/反应阈值有着明显的影响,较高L锥细胞相对敏感性个体可‘能通过模糊敏感度的下降及调节滞后的增加导致近视的发生发展。本实验基于色觉理论,以L/M锥细胞对比度为观察点,通过对调节反应和模糊敏感度的研究对近视眼发生发展的机制研究提出了新的观点。创新之处在于:一、开创性的在L/M锥细胞对’比度有差异的个体之间进行调节反应和模糊敏感度的研究;二、使用对L/M锥细胞对比度有差异的视觉刺激对调节反应和模糊敏感度进行研究,史接近于人类生存的正常照明,避免了广泛被以往研究采用的单.色光研究的不足之处;三、将L/M锥细胞相对敏感性与屈光不正结合起来,应用于近视眼研究中。
     第一部分近视眼与正视眼间L/M锥细胞相对敏感性差异的研究
     目的:确定近视眼与正视眼之间是否存在L/M锥细胞的相对敏感性差异。
     方法:Nova Southeastern University视光学专业学生共223人入选,其中·近视眼166例,正视眼57例,所有受试者均为眼部健康,无色觉异常者,平均年龄252±3.46岁。收集基本资料后,首先采用综合验光仪进行双眼屈光度的检查,然后双眼分别在标准光下进行Ishihara假同色图色觉,符合入选标准者随机选择一眼进行HMC色盲镜(TyP 47700)检查,选用Rayleigh红绿测试程序,测量后获得红绿平衡点、红绿匹配范围以及亮度匹配点等数据。采用SPSS 13.0软件对重复测量数据行t检验或方差分析,P<0.05认为差异有统计学意义。
     结果:1)近视眼与正视眼的红绿匹配点平均分别为38.51±173及40.77±1.41,两组间差异具有统计学意义(P<0.001),而红绿匹配范围和亮度匹配点在两组间未见明显差异;2)ROC分析的结果显示红绿匹配点作为对近视和正视的诊断也有一定的意义(曲线下面积为0.853),统计结果显示最佳临界点为39.55;3)红绿匹配点与屈光度之间相关性具有统计学意义(P<0.001);4)早发性近视与迟发性近视之间、进展性近视与稳定性近视之间、低中高度近视之间红绿匹配点、红绿匹配范围、亮度匹配点之间均未见统计学差异。
     结论:近视眼与正视眼之间存在着L/M锥细胞相对敏感性差异,L/M锥细胞的敏感性与屈光不正状态相关,近视眼人群有着较高的L锥细胞敏感性,对于长波长色光更为敏感。
     第二部分不同L/M锥细胞对比度对调节反应及调节刺激/反应阈值的影响
     目的:探讨不同L/M锥细胞对比度对调节反应及模糊敏感度的影响。
     方法:受试者均来自参加过第一部分实验的个体,根据L/M锥细胞敏感性差异选取两组个体,分别为:正常L锥细胞相对敏感性组(NLSG),12名受试者,红绿匹配点均接近40,平均值为39.92±0 364;高L锥细胞相对敏感性组(ILSG),12名受试者,红绿匹配点平均值较低,均值为36.06±0.728。使用开放视野型红外验光仪(WAM-5500)和Badal光学系统测量在1.5D-25D的调节刺激下的调节反应。视标以黑色为背景呈现于高分辨率RGB LCD监视器(NEC AccuSync 72vx)上。所有视标均为空间频率为2.2 c/d的垂直方波,Michel son对比度为0.56,平均亮度约为80 cd/m2,视野范围为2。。为给予不同的L/M锥细胞对比度,本实验设计了三种颜色刺激条件,均为多色光组成,分别为主波长568nm的黄色刺激、535nm的绿色刺激以及白光刺激。测量数据为不同刺激下的调节反应值,运用统计学方法计算调节反应/刺激坡度以及调节刺激/反应阈值。组间以及不同刺激条件下各指标差异运用双因素方差分析,由SPSS13.0软件以及GB Stat 10.0统计软件完成,P<0.05为有统计学意义。
     结果:
     1)在1.5D、2D、2.5D这三个调节刺激水平,改变L/M锥细胞对比度对调节反应无明显影响;
     2)在1.5D-2.5D调节刺激水平,改变L/M锥细胞对比度对调节反应/刺激坡度有一定的影响,NLSG在黄色刺激和绿色刺激之间AR/AS坡度差异存在统计学意义(P<0.05); NLSG与ILSG两组在绿色刺激时AR/AS坡度差异存在统计学意义(P<0.05);
     3)在2D调节刺激平,改变L/M锥细胞对比度能明显影响调节刺激/反应阈值。在黄色刺激条件下,NLSG在2D的调节刺激水平的AS/AR阈值明显高于ILSG (P<0.01),但在绿色以及白色刺激条件下则低于ILSG组(P<0.05)。在NLSG内,黄色刺激条件下的AS/AR阈值明显较大,分别与绿色刺激条件及白色刺激条件都具有明著性差异(P<0.05,P<001);在ILSG内,黄色刺激条件下的AS/AR阈值明显较小,分别与绿色刺激条件及白色刺激条件都具有显著性差异(P<0.05,P<0.01)。
     4)在白色刺激条件下,NLSG与ILSG在1.5D、2D、2.5D这三个调节刺激水平的调节反应均未见统计学差异;在15D-25D调节刺激水平的调节反应/刺激坡度也未见统计学差异;而ILSG在2D调节刺激水平的调节刺激/反应闽值则明显高于NLSG (P<0.05)。
     结论:不同L/M锥细胞对比度对调节反应无明显影响,对调节反应/刺激坡度有定的影响,而对调节刺激/反应阈值即客观焦深具有明显的影响;较高L锥细胞相对敏感性个体可能通过模糊敏感度下降及调节滞后的增加引起近视的发生发展,给予这些个体较多的L锥细胞刺激会提高其模糊敏感度。
Summary
     The results of this study show that myopes have higher L-cone sensitivity when compared with emmetropes, which implies that myopes are more susceptible to a blurred image on the retina secondary to longitudinal chromatic aberration of the optical system of the eye. This study is based on chromatic theory and proposes a new point to the mechanism of the onset and development of myopia. Firstly, we conduct the research of accommodation system and blur sensitivity on the subjects who have different sensitivity of L/M cones; Secondly, the study on accommodation system and blur sensitivity was performed with the targets which can supply different L/M cone contrast, the illumination conditions of these targets are similar to the normal survival environment of human beings and avoid the shortcomings of monochromatic light which was widely used in previous research; Thirdly, we combine the L/M cone sensitivity with refractive errors and focus it on myopia.
     Part I:Research on different L/M-cone sensitivity between myopes and emmetropes
     Objective:This study was conducted to determine whether there is a difference in the L/M-cone sensitivity between myopes and emmetropes.
     Methods:223 optometry students in NSU participated in this study,57 emmetropes and 166 myopes. All subjects were free of ocular disease and defective color vision, with mean age 25.2±3.46 years old. A preliminary session was used to gather a case history, test color vision by Ishihara Pseudoisochromatic Plates, and measure visual acuity, subjective refraction. One eye of each subject was tested with an HMC Anomaloscope (Type 47700) for his/her red/green match value、matching range and the brightness point with the Rayleigh match program. In data analysis, the red/green match value, matching range and brightness match point between myopes and emmetropes were the dependent variables analyzed via independent-samples t-test by SPSS 13.0,P<0.05 was considered to be significant.
     Results:1) Mean red/green match values in myopes and emmetropes were 3851±1.73 and 40.77±1.41 respectively, statistical analysis demonstrated a significantly lower level of red/green match value in the myopic group than in the emmetropic group (P<0.001), which showed that myopes have increased L-cone sensitivity. The differences in the matching range and the brightness match point between the two groups are not significant;2) The ROC shows that the area under the ROC curve is 0.853, which supports the idea that the Rayleigh match test is valid in differentiating myopes from emmetropes, the cut-off point of red/green match value is 39.55; 3) A highly statistical significance was found in the correlation of red/green match value and refraction(P< 0.001); 4)The results demonstrate no significant difference of red/green match value、matching range、brightness point between early-onset myopia (EOM) and late-onset myopia (LOM); stable myopes (SMs) and progressing myopes (PMs); low myopia(LM), medium myopia(MM) and high myopia(HM).
     Conclusions:There is close relationship between refractive error status and sensitivity of L/M cones, myopes have higher L-cone sensitivity when compared with emmetropes, which means myopes have increased L-cone sensitivity and more sensitive to long wavelength light.
     PartⅡ:Effects of different L/M-cone contrast on accommodative response and AS/AR threshold
     Objective:This study was designed to investigate the effects of different L/M-cone contrast on accommodation and blur sensitivity
     Methods:All the participants in this project were choosed from our last research in which we investigated the different L/M-cone sensitivity between myopes and emmetropes within 223 volunteers. Two groups of subjects involved in this part The first group consisted of 12 subjects who had red/green match value and referred to normal L-cones sensitivity group (NLSG) in this article Red/green match value of subjects in this group were around 40, mean value was 39.92±0.364. In second group, there were 12 subjects whose red/green match value were much lower than 40 but still in normal range. They had an increased L-cone sensitivity and this group was called increased L-cone sensitivity group (ILSG). The mean red/group match value was 36.06±0.728. An open field infrared autorefractor (WAM-5500) and Badal optical system were used to measure accommodation responses (AR). Targets were displayed on a black background of a high resolution RGB LCD monitor (NEC AccuSync 72vx). All the targets were 2.2 c/d vertical square wave gratings with Michelson contrast of 0.56. All stimuli had a mean luminance of 80 cd/m2 and subtended a visual field of 2°. Three illumination conditions were provided to give different L/M-cone stimulus:1, A "Yellow" condition in which the main wavelength(568nm) was near the peak wavelength of L-cones; 2, A "Green" condition in which the main wavelength(535nm) was near the peak wavelength of M-cones.3, A "White" condition (normal white light). Since all the stimuli were generated by LCD with different RGB parameters, these targets were illuminated by polychromatic light. After the AR was obtained in each condition, AR/AS slope and AS/AR threshold were calculated by statistically methods. In data analysis, the AR、AR/AS slope and AS/AR threshold were the dependent variables analyzed via two-way ANOVA by SPSS 13.0 and GB Stat, P<0.05 was considered to be significant.
     Results:
     1) In these three AS levels of 1.5D、2D and 2.5D, the change of L/M-cone contrast can not affect the AR.
     2) In 1.5D~2.5D's AS level, there was slight effect of different L/M-cone contrast on AR/AS slope. In NLSG,statistical analysis demonstrated a significantly lower level of AR/AS slope in yellow condition than in green condition (P<0.05); In green condition, NLSG expressed higher level of AR/AS slope than ILSG (P<0.05);
     3) In 2D's AS level, the change of L/M-cone contrast can obviously impact the AS/AR threshold. In yellow condition, we found a significantly higher level of AS/AR threshold in NLSG than ILSG (P<0.01); In NLSQ AS/AR threshold in yellow condition was higher than green and white condition(P<0.05, P<0.01); Contrary to NLSG, AS/AR threshold in yellow condition was lower than green and white condition in ILSG(P<0.05, P<0.01).
     4) In white condition, it showed no statistical difference between NLSG and ILSG in AR of three AS levels(1.5D、2D and 2.5D); also there was no statistical difference in AR/AS slope between NLSG and ILSG; whereas in 2D's AS level, AS/AR threshold in ILSG was higher than NLSG(P<0.05).
     Conclusions:Difference of L/M-cone contrast has no effect on accommodative response, but slightly impact the AR/AS slope, furthermore, different L/M-cone contrast has significant influence on the AS/AR threshold, which represents the blur sensitivity. Increased L-cone sensitivity might induce the onset and development of myopia by decreasing the blur sensitivity and increasing the lag of accommodation response.
引文
1. Fredrick DR. Myopia[M]. BMJ.2002.324(7347):1195-1199.
    2. Pierro L, Camcsasca FI, Mischi M.et al. Peripheral retinal changes and axial myopia[J]. Retina,1992.12:12-17.
    3. Avila MP, Weiter JJ. Jalkh AE. et al. Natural history of choroidal neovascularization in degenerative myopia[J]. Ophthalmology,1984.91:1573-1581.
    4. Pacella R. McLellan J. Grice K. et al. Role of genetic factors in the etiology of juvenile-onset myopia based on a longitudinal study of refractive error[J]. Optom Vis Sci,1999.76:381-386..
    5. Goss DA. Wickham MG Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization:a literature review[J]. Doc Ophthalmol,1995,90:341-375.
    6. Jiang BC, Morse SE. Oculomotor functions and late-onset myopia[J]. Ophthalmic Physiol Opt.1999.19:165-172.
    7. Gilmartin. B. Autonomic correlates of near-vision in emmetropia and myopia[M]. In M. RosenWeld & B. Gilmartin (Eds.), Myopia and neanvork. Boston:Butterworth,1998.117-146.
    8. Goss. DA., Wickham MG. Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization. A literature review[J]. Documenta Ophthalmologica, 1995,90:341-375.
    9. Hung GK, Ciuffreda KJ. Khosroyani M. et al. Models of accommodation[M]. In G. K. Hung & K. J. CiuVreda (Eds.). Models of the visual system. New York:Kluwer Academic/Plenum Publishers.,2002.287-340
    10. Hung GK, Ciuffreda KJ. Adaptation model of nearworkinduced transient myopia[J]. Ophthalmic Physiol Opt,1999.19:151-158.
    11 Ciuffreda KJ. Accommodation and its anomalies[M]. In:Channan WN (ed) Vision and visual dysfunction. MacMillan. London.1991.231-279.
    12 Ciuffreda KJ. Accommodation, pupil, and prcsbyopia[M]. In:Benjamin WJ (ed) Borish's clinical refraction:principles and practice. Saundcrs. Philadelphia,1998.77-120.
    13 Wang B. Ciuffreda KJ. Depth-of-focus of the human eye in the near retinal periphen[J|. Vision Rcs.2004.44:1115-1125.
    14. Jiang BC, Morse SE. A comparison between the perceptual depth-of-focus and the blur threshold of accommodation[J]. IOVS,1997,38:S984.
    15. Ivanoff A. Les aberrations de chromatisme et de sphericitie de l'ceil[J]. Revue Opt. theor. Instrum,1947,26:145-171.
    16. Halridge H. The visual perception of fine detail[J]. Phil Tram R Soc. B.1947,232:519-671.
    17. Campbell FW. The Depth of Field of the Human Eye[J]. J modern optics,1954,4:157-164.
    18. Fincham EF. The accommodation reflex and its stimulus[J]. J Physiol,1951,115:13P
    19. Crane HD. et al. A theoretical analysis of the visual accommodation system in humans. NASA Contractors Rep NASA CR[C]1966.
    20. Ivanoff A. Focusing wave-length for white light[J]. J Opt Soc Am,1949;39:718.
    21. Sharpe LT, Stockman A, Jagle W, et al. A luminous efficiency function, V, for daylight adaptation[J]. J Vis,2005,5:948-968
    22. Stockman A, Sharpe LT. Tritanopic color matches and the middle-and long-wavelength-sensitive cone spectral sensitivities [J]. Vision Res,2000,40:1739-1750
    23.孟兆明,魏佑震.色觉异常与屈光状态的关系[J].泰山医学院学报,2001,22:351-352.
    24. Kroger RH. Binder S. Use of paper selectively absorbing long wavelengths to reduce the impact of educational near work on human refractive development[J]. Br J Ophthalmol,2000,84:890-893.
    25.刘睿.单色光对豚鼠和恒河猴屈光发育及光谱敏感性作用的研究[D].博士论文,复旦大学,2008.27-28,55-56
    26. Bobier WR, Campbell MC, Hinch M. The influence of chromatic aberration on the static accommodative response[J]. Vision Res,1992,32:823-832.
    27. Charman WN, Tucker J. Accommodation and color[J]. J Opt Soc Am,1978,68:459-471.
    28. Phillips S, Stark L. Blur:a sufficient accommodative stimulus[J]. Doc Ophthalmol. 1977,43:65-89.
    29. Stark L. Takahashi Y. Absence of an odd error signal mechanism in human accommodation [J]. IEEE Trans Biomed Eng.1965.12:138-146.
    30. Aggarwala KR. Kruger ES. Mathews S. et al. Spectral bandwidth and ocular accommodation[J]. J Opt Soc Am,1995.12:450-455
    31. Campbell FW, Westheimer G. Factors influencing accommodation responses of the human eye[J]. J Opt Soc Am.1959.49:568-571.
    32. Kruger PB. Mathews S. Aggarwala KR. et al. Accommodation responds to changing contrast of long, middle and short waveband components of the retinal image[J]. Vision Res,1995.35:2415-2429.
    33. Kruger PB. Mathews S. Katz M. et al. Accommodation without feedback suggests directional signals specify ocular focus[J]. Vision Res.1997,37:2511-2526.
    34. Rucker FJ, Kruger PB. Accommodation responses to stimuli in cone contrast space[J]. Vision Res.2004.44:2931-2944.
    35. Kotulak JC. Morse SE, Billock VA. Red-green opponent channel mediation of control of human ocular accommodation[J].J Physiol,1995:482:697-703.
    36. Flitcroft DI. A neural and computational model for the chromatic control of accommodation[J]. Vis Neurosci,1990.5:547-555.
    37. Rucker FJ. Kruger PB. Cone contributions to signals for accommodation and the relationship to refractive error[J]. Vision Res.2006,46:3079-3089.
    38. Wienke RE. Refractive error and the green/red ratio[J]. J Opt Soc Am. 1960,50:341-342.
    39. Grosvenor TP. Goss DA. Clinical Management of Myopia[M].Boston: Buttenvorth-Heinemann,1999.
    40. Vera-Diaz FA. Strang NC, Winn B. Nearwork induced transient myopia during myopia progression[J]. Curr Eye Res.2002,24:289-295.
    41. Mcbrien NA. Adams DW. Longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings[J]. Invest Ophthalmol Vis Sci,1997,38:321-333.
    42. Cline D. Hofstetter HW. Griffin JR. Dictionary of Visual Science[M].4th ed. Boston: Buttcnvorth-Hcinemann.1997.
    43. Jagle H. Pirzer M. Sharpe LT. The Nagel anomaloscopc:its calibration and recommendations for diagnosis and research[J]. Graefes Arch Clin Exp Ophthalmol.2005.243:26-32
    44. Degen RL. Mullanc SD. Richards OW. Variation of the green-red ratio with refractive error[J]. Am J Optom Physiol Opt.1983.60:151-152.
    45. Carroll J. McMahon C. Neitz M. et al. Flicker photometric clcetroretinogram estimates of L:M cone photorcccplor ratio in men with photopigmcnl speetra derived from genetics[J]. J Opt Soc Am A Opt Image Sci Vis,17:499-509.
    46. Hagstrom SA, Neitz J, Neitz M. Variations in cone populations for red-green color vision examined by analysis of mRNA[J]. Neuroreport,1998,9:1963-1967.
    47. Kremers J, Scholl HP, Knau H, et al. L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry[J]. J Opt Soc Am A Opt Image Sci Vis,2000,17,517-526.
    48. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye[J]. Nature,1999,397:520-522.
    49. Wesner MF, Pokorny J, Shevell SK, et al. Foveal cone detection statistics in color——normals and dichromats[J]. Vision Res,1991,31:1021-1037.
    50. He JC, Shevell SK. Variation in color matching and discrimination among deuteranomalous trichromats:theoretical implications of small differences in photopigments[J]. Vision Res,1995,35:2579-2588.
    51. Pokorny J, Smith VC. Effect of Weld size on red-green color mixture equations[J]. J Opt Soc Am,1976,66:705-708.
    52. Sanocki E, Teller DY, Deeb SS. Rayleigh match ranges of red/green color-defficient observers: psychophysical and molecular studies[J]. Vision Res.1997,37:1897-1907.
    53 Sanocki E, Shevell SK, Winderickx J. Serine/alanine amino acid polymorphism of the L-cone photopigment assessed by dual Rayleigh-type color matches[J]. Vision Res.1994.4:377-382.
    54. Pokorny J, Jin Q. Smith VC. Spectral-luminosity functions, scalar linearity, and chromatic adaptation[J]. J Opt Soc Am A.1993,10:1304-1313.
    55. Campbell FW. Gubisch RW. Optical quality of the human eye[J]. J Physiol,1966.186:558-578.
    56. Marcos S. Moreno E. Navarro R. The depth-of-field of the human eye from objective and subjective measurements[J]. Vision Res.1999,39:2039-2049.
    57. Meeteren V. Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light[J]. J Modern Opt,1974,21:395-412.
    58. Legge GE. Mullen KT. Woo GC, et al. Tolerance to visual defocus[J], J Opt Soc Am A. 1987,4:851-863.
    59. Ogle KN. Optics:An Introduction for Ophthalmologistsy[M]. Springfield. Illinois. Charles C Thomas, ed 2.1968.
    60. Liang J, Williams DR. Aberrations and retinal image quality of the normal human eye[J]. J Opt Soc Am A.1997,14:2873-2883.
    61. Walsh G, Charman WN. Measurement of the axial wavefront aberration of the human eye[J]. Ophth Phy Opt,1985.5:23-31.
    62. Noorlander C. Hcuts MJ. Koenderink JJ. Sensitivity to spatiotcmporal combined luminance and chromaticity contrast[J]. J Opt Soc Am A,1981.71:453-459.
    63. Stromeyer CF, Cole GR, Kronauer RE. Chromatic suppression of cone inputs to the luminance flicker mechanism[J]. Vision Res,1987,27:1113-1137.
    64. Kruger PB. Mathews S, Agganvala KR, et al. Chromatic aberration and ocular focus:Fincham revisited[J]. Vision Res.1993,33:1397-1411.
    65. Kruger PB. Mathews S. Agganvala KR. et al. Accommodation responds to changing contrast of long, middle and short waveband components of the retinal image[JJ. Vision Res,1995,35:2415-2429.
    66. Fulk GW, Cyert LA, Parker DA Seasonal variation in myopia progression and ocular elongation[J]. Optom Vis Sci.2002.79:46-51.
    67. Hepsen IF. Evereklioglu C. Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys:a prospective, controlled, three-year follow-up study[J]. Vision Res.2001.41:2511-2520.
    68. Abbott ML. Schmid KL. Strang NC. Differences in the accommodation stimulus response curves of adult myopes and emmetropes[J]. Ophthalmic Physiol Opt,1998,18:13-20.
    69. Vcra-Diaz FA. Strang NC, Winn B. Neanvork induced transient myopia during myopia progression[J]. Curr Eye Res.2002.24:289-95.
    70. McBrien NA, Millodot M. The effect of refractive error on the accommodative response gradient[J].Ophthalmic Physiol Opt,1986,6:145-9.
    71. Nakatsuka C. Hascbc S. Nonaka F. et al. Accommodative lag under habitual seeing conditions: comparison between adult myopes and emmetropes[J]. Jpn J Ophthalmol.2003.47:291-298.
    72. Goss DA. Clinical accommodation and hctcrophoria findings preceding juvenile onset of myopia[J]. Optom Vis Sci.1991.68:110-6.
    73. Gwiazda J. Thorn F. Held R. Accommodation,accommodativc convergcncc. and response AC/A ratios before and at the onset of myopia in children[J]. Optom Vis Sci.2005.82:273-278
    74. Mutti DO, Mitchell GL, Hayes JR, et al. Accommodative lag before and after the onset of myopia[J]. Invest Ophthalmol Vis Sci,2006.47:837-846.
    75. Udlam WM, Wittenberg S, Giglio EJ, et al. Accommodative responses to small changes in dioptric stimulus[J]. Am J Optom Arch Am Acad Optom,1968,45:483-506.
    76. Campbell FW. The depth of field of the human eye[J].Optica Acta,1957,4:157-164.
    77. Von Bahr G Studies on the depth of focus of the eye[J]. Acta Ophthalmol,1952,30:39-44.
    78. FRY GA. Distribution of focused and stray light on the retina produced by a point source[J]. J opt Soc Am,1965,55:333-334.
    79. Blatherwick P, Hallett PE. The discrimination of blur in peripheral coloured borders[J]. Vision Res,1992.32:1719-1727.
    80. Rosenfield M, Abraham-Cohen JA. Blur sensitivity in myopes[J]. Opt Vis Sci,1999, 76:303-307.
    81. Vasudevan B, Ciuffreda KJ, Wang B. Objective blur thresholds in free space for different refractive groups[J]. Curr Eye Res,2006,31:111-118.
    82. Jiang BC. Integration of a sensory component to static accommodation model reveals differences between emmetropes and late-onset myopes[J]. Invest Ophthalmol Vis Sci.1997. 38:1511-1516.
    83. Jiang BC. A modified control model for steady-state accommodation[M]. In:O. Franzen, H. Richter, L. Stark (Eds.). Accommodation and Vergence Mechanisms in the Visual System. Birkhauser Verlag. Basel. Switzerland.2000.235-243.
    1. Stockman A. Sharpe LT. Tritanopic color matches and the middle-and long-wavelength-sensitive cone spectral sensitivitics[J]. Vision Res.2000.40:1739-1750.
    2. Bobier WR. Campbell MC. Hinch M. The influence of chromatic aberration on the static accommodative response[J]. Vision Res,1992.32:823-832.
    3. Charman WN, Tucker J. Accommodation and color[J]. Journal of the Optical Society of America.1978,68:459-471.
    4. Heath GG. The influence of visual acuity on the accommodative responses of the eye[J]. Am J Opt,1956,33:513-524.
    5. Phillips S, Stark L. Blur:a sufficient accommodative stimulus[J]. Documenta Ophthalmol, 1977.43:65-89.
    6. Wolfe JM, Owens DA. Is accommodation colorblind? Focusing chromatic contours[J]. Perception.1981.10:53-62.
    7. Campbell FW. Westheimer G. Factors influencing accommodation responses of the human eye[J]. J Opt Soc Am.1959,49:568-571.
    8. Vincent A. Nguyen. Howard IP, et al. Allison Detection of the depth order of defocused images[J]. Vision Res.2005,45:1003-1011.
    9. Ivanoff A. Focusing wave-length for white light[J]. J Opt Soc Am.1949,39:718.
    10. Fincham EF. The accommodation reflex and its stimulus[J]. J Physiol,1951.115:13
    11. Kruger PB. Mathews S. Katz M, et al. Accommodation without feedback suggests directional signals specify ocular focus[J]. Vision Res.1997.37:2511-2526.
    12. Rucker FJ. Kruger PB. Isolated short-wavelength sensitive cones can mediate a reflex accommodation response[J]. Vision Res,2001.41:911-922.
    13 Rucker FJ. Kruger PB. The role of short-wavclength sensitive cones and longitudinal chromatic aberration in response to a step accommodation signal[J]. Vision Rcs.2004.44:197-208.
    14. Cavanagh P. MacLeod DI. Anstis SA. Equiluminancc:spatial and temporal factors and the contribution of blue sensitive cones[J]. J Opt Soc Am.1987,4:1428-1438
    15. Flitcroft DI. Judge SJ The effects of stimulus chromalicty on ocular accommodation in the monkcy[J]. J Physiol.1988.398:36.
    16. Kruger PB, Mathews S, Aggarwala KR, et al. Accommodation responds to changing contrast of long, middle and short waveband components of the retinal image[J]. Vision Res,1995,35:2415-2429.
    17. Flitcroft DI. A neural and computational model for the chromatic control of accommodation[J]. Vis Neurosci,1990,5:547-555.
    18. Lee JH, Stark LR, Cohen S, et al. Accommodation to static chromatic simulations of blurred retinal images[J]. Ophth Phy Opt,1999,19:223-235.
    19. Stark LR, Lee RS, Kruger PB, et al. Accommodation to simulations of defocus and chromatic[J]. Vision Res,2002,42(12):1485-1498.
    20. Ivanoff A. Les aberrations de chromatisme et de sphericitie de l'ceil[J]. Revue Opt. theor. Instrum,1947,26:145-171.
    21. Halridge H. The visual perception of fine detail[J]. Phil Tram R Soc. B.1947,232:519-671.
    22. Campbell FW. The Depth of Field of the Human Eye[J]. J modern optics,1954,4:157-164.
    23. Crane HD, et al. A theoretical analysis of the visual accommodation system in humans[C]. NASA Contractors Rep NASA CR.1966.
    24. Kruger PB, Pola J. Stimuli for accommodation:blur, chromatic aberration and size[J], Vision Res,1986,26:957-971.
    25. Kruger PB, Nowbotsing S, Aggarwala KR, et al. Small amounts of chromatic aberration influence dynamic accommodation [J]. Optom Vis Sci.1995,72:656-66.
    26. Kruger PB, Mathews S, Aggarwala KR, et al. Chromatic aberration and ocular focus:Fincham revisited[J]. Vision Res,1993,33:1397-1411.
    27. Aggarwala KR, Kruger ES, Mathews S, et al. Spectral bandwidth and ocular accommodation[J]. J Opt Soc Am,1995,12:450-455.
    28. Kotulak JC, Morse SE, Billock VA. Red-green opponent channel mediation of control of human ocular accommodation[J]. J Physiol,1995;482:697-703.
    29. Karan RA, Ekaterina SK, Steven M, et al. Spectral bandwidth and ocular accommodation[J]. J Opt Soc Am.1995,12:450-455
    30. McLellan JS, Marcos S, Prieto PM, et al. Imperfect optics may be the eye's defence against chromatic blur. Nature,2002,417:174-176.
    31. Mathews S, Kruger PB. Accommodation to low contrast stimuli. [Abstract]. IOVS, 1989.30.134.
    32. Jalie M. The Principles of Ophthalmic Lenses,4th eds. Association of Dispensing Opticians. London,1984.373-380.
    33. Smith G, Atchison DA. The Eye and Visual Optical Instruments[M]. Cambridge University Press. Cambridge.1997 .350-352.355-356.720.
    34. Cobb SR. On a possible explanation as to why most people have small refractive errors. [J]Med Hypotheses.1993.41:134-136.
    35. SchaeVel F, Weiss S. Seidel J. How good is the match between the plane of the text and the plane of focus during reading?[J]. Ophthal Physiol Opt.1999,19:180-192.
    36. Rohrer B. Schae.el F, Zrenner E. Longitudinal chromatic aberration and emmetropization: results from the chicken eye[J]. J. Physiol,1992.449:363-376.
    37 Wildsoet CF, Howland HC. Falconer S. et al. Chromatic aberration and accommodation:their role in emmetropization in the chick[J]. Vision Res.1993,33:1593-1603.
    38. Kroger RH. Wagner HJ. The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration[J]. J. Comp.1996.179(6):837-842
    39. Bailey JE. Heath GG. Flicker effects of receptor directional sensitivity[J]. Am J Opt Physiol Opt. 1978.55:807-812.
    40. Enoch JM, Bedell HE. Campos EC. Local variations in rod receptor orientation[J]. Vision Res.1978.18:123-124.
    41. Enoch J M. Lakshminarayanan V. Retinal fibre optics[M]. In:Vision and Visual Dysfunction (ed J. Cronly-Dillon), Visual Optics and Instrumentation. vol.1. Macmillan Press. Houndmills, Hampshire,1991.280-309.
    42. Laties AM, Enoch JM. An analysis of retinal receptor orientation. Ⅰ. Angular relationship of neighboring photoreceptors[J]. Invest. Ophthalmol.1971,10:69-77.
    43. Enoch JM and Hope GM. An analysis of retinal receptor orientation Ⅲ. Results of initial psychophysical tcsts[J]. Invest. Ophthalmol.1972.11:765±782.
    44. Enoch JM, Hope GM. An analysis of retinal receptor orientation. Ⅳ. Center of the entrance pupil and the center of convergence of orientation and directional scnsitivity[J]. Invest Ophthalmol.1972,11:1017-1021.
    45. Wcsthcimer G Entoplic visualization of Stilcs±Crawford effect. An indicator of cyball shape[J]. Arch Ophthalmol,1968,79:584-588.
    46. Stiles WS, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points[M]. Proc. R. Soc. Lond., B Contain. Pap. Biol. Character 112,1933,428-450.
    47. Enoch JM. Amblyopia and the Stiles-Crawford effect[J]. Am J Optom Arch Am Acad Optom,1957,34:298-309.
    48. Gorrand JM, Delori F. A reflectometric technique for assessing photoreccptor alignment[J]. Vision Res.1995.35:999-1010.
    49. Lawrence R, Roni S, Kruger PB, et al. Accommodation to simulations of defocus and chromatic aberration in the presence of chromatic misalignment[J]. Vision Res,2002,42:1485-1498.
    50. Kruger PB, Pola J. Stimuli for accommodation:blur, chromatic aberration and size[J]. Vision Res,1986,26:957-971.
    51. Fincham EF. Defect of the color-sense mechanism as indicated by the accommodation reflex[J].J. Physiol.1953,121:570-580.
    52. Brent J, Wilson KE, Decker AR. Monochromatic aberrations provide an odd-error cue to focus direction[J]. J. Opt. Soc. Am. A,2002,19(5):833-839.
    53. Lopez-Gil N, Howland HC Measurement of the eye's near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique[J]. Vision Res.1999 Jun;39(12):2031-2037.
    54. Kelly DH, van Norren D. Two band model of heterochromatic flicker[J]. J. Opt. Soc. Am. A. 1977(67):1081-1091.
    55. Hendry SH. Reid RC. The koniocellular pathway in primate vision[J]. Annual Reviews of Neuroscience,2000,23.127-153.
    56. Fulk GW, Cyert LA. Parker DA Seasonal variation in myopia progression and ocular elongation[J]. Optom Vis Sci.2002,79:46-51.
    57. Hepsen IF, Evereklioglu C, Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys; a prospective, controlled, three-year follow-up study[J]. Vision Res.2001.41:2511-2520.
    58. Abbott ML, Schmid KL, Strang NC. Differences in the accommodation stimulus response curves of adult myopes and emmetropes[J]. Ophthalmic Physiol Opt,1998.18:13-20.
    59. Vera-Diaz FA. Strang NC. Winn B. Nearwork induced transient myopia during myopia progression[J]. Curr Eye Res.2002.24:289-95.
    60. McBrien NA. Millodot M. The effect of refractive error on the accommodative response gradient[J]. Ophthalmic Physiol Opt,1986.6:145-9.
    61. Nakatsuka C. Hasebe S. Nonaka F, et al. Accommodative lag under habitual seeing conditions: comparison between adult myopes and emmetropes[J]. Jpn J Ophthalmol,2003.47.291-298.
    62. Goss DA. Clinical accommodation and hetcrophoria findings preceding juvenile onset of myopia[J]. Optom Vis Sci,1991.68:110-6.
    63. Gwiazda J. Thorn F, Held R. Accommodation.accommodative convergence, and response AC/A ratios before and at the onset of myopia in children[J]. Optom Vis Sci.2005.82:273-278.
    64. Mutti DO, Mitchell GL, Hayes JR, et al. Accommodative lag before and after the onset of myopia[J].Invest Ophthalmol Vis Sci.2006.47:837-846.
    65.盂兆明,魏佑震.色觉异常与屈光状态的关系[J].泰山医学院学报,2001,22:351-352.
    66. Kroger RH, Binder S. Use of paper selectively absorbing long wavelengths to reduce the impact of educational near work on human refractive development[J]. Br J Ophthalmol,2000.84:890-893.
    67.陈冬红,褚仁远,周国民等.不同波长有色光对豚鼠眼球生长发育的影响[J]。眼视光学杂志,2003,5(3):144-146.
    68 刘睿.单色光对豚鼠和恒河猴屈光发发育及光谱敏感性作用的研究[D].博士论文.复旦大学,2008.27-28,55-56
    69. Ruckcr FJ. Kruger PB. Cone contributions to signals for accommodation and the relationship to refractive error[J]. Vision Res.2006,46:3079-3089.
    70. Wienke RE. Refractive error and the grcen/red ratio[J]. J Opt Soc Am. 1960.50:341-342.
    71. Dcgen RL. Mullane SD. Richards OW. Variation of the green-red ratio with refractive crror[J]. Am J Optom Physiol Opt,1983.60:151-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700