用户名: 密码: 验证码:
长输电线路精确故障定位系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压输电线路的精确故障定位可以极大的缩短巡线时间,加快恢复供电,对电力系统安全和经济运行具有非常重要的意义。
     本文采用基于全球卫星定位系统(GPS)授时的双端数据同步的输电线路故障定位方法,做了如下工作:
     针对较长和超长输电线路,首次提出了基于分布参数模型的有限差分故障定位算法。该算法先利用相模变换将相量转换成模量,再在模量域利用有限差分法直接获取线路波动方程的数值解,根据故障点电压的唯一性来求取故障点的位置。该算法具有如下特点:算法采用精确的分布参数模型,能很好的反映线路的波动特性和实际运行情况,模型误差小;采样数据的各种频率分量均满足线路波动方程,算法直接从波动方程出发进行求解,使得算法对采样数据具有很好的适应性,利用暂态数据亦能精确定位。
     针对安装有串补电容装置的输电线路,首次提出了基于微分方程法的精确故障定位算法。该算法将可以计及过渡过程的微分方程作为数学模型,利用相模变换将相量转换成模量,依据判断得到的故障类型,选用相应的线模量求解故障距离。陔算法具有如下特点:算法将可以计及过渡过程的微分方程作为数学模型,与传统的工频相量故障定位算法相比,微分方程算法克服了短路电流中非周期分量的影响,并且计算数据窗可取得很短,因此算法既能在暂态故障时精确定位,又能在稳态故障时精确定位;该算法分别假定故障点在串补电容的两侧,通过计算得到两个故障定位结果,然后根据由线路两侧获取的数据分别计算出的故障点电压应相等这一原理提出一种简单、可靠的找出真根除去伪根的方法,可正确判定事故地点。
     利用MATLAB工具箱中的PSB对本文所述的算法作了大量的数字仿真,并对影响算法定位精度的因素进行了分析。仿真结果验证了理论分析的正确性,本文所提出的两种故障定位算法精度高,且从工程角度考虑定位精度基本不受故障点位置、故障类型、过渡电阻、系统频率和系统运行方式的影响,亦基本不受线路零序参数变化的影响,具有强鲁棒性。
     简单介绍了故障定位装置的硬件和软件实现,并利用研制出的定位装置在实时数字仿真系统(RTDS)上对本文算法进行了大量的动模试验。试验结果表明两种算法均具有很高的定位精度,这充分证明了本文算法的准确性和可行性以及故障定位装置的可靠性和实用性。
Accurate fault location for high-voltage transmission line can greatly lessen the time needed for patrolling line and quicken the power restoration. It is significantly important to the secure and economic operation of power system.
    Accurate fault location algorithms using data synchronically sampled from all ends of the line based on GPS are presented in this paper. The following work has been done.
    For long and ultra-long transmission lines, an algorithm using distributed parameter line model and based on finite difference method is presented for the first time in this paper. In the algorithm, phase components are converted to modal components firstly; then the numerical solution for transmission line wave equations is obtained in the modal domain using finite difference method; by the exclusiveness of the voltage on the fault point, the fault position is determined based on the above numerical solution. Accurate distributed parameter line model is adopted, so the algorithm can well reflect the wave characteristic and real operating condition of transmission line. Its model error is little. Quanta of various frequencies all fulfill the line wave equations. The fault location result is obtained directly from the wave equations, so the algorithm is highly adaptive to sampled data. It can locate faults accurately even when there exists highly transient process.
    For the transmission lines having installed series compensating capacitor, an algorithm based on differential equation method is presented for the first time in this paper. In the algorithm, phase components are converted to modal components firstly; then correspondent line-mode component is chosen to calculate the fault position according to the fault type. The mathematical model of the algorithm is differential equation that considers the transient process. Compared with conventional algorithms using phasors of fundamental frequency, the algorithm can overcome the influence of aperiodic component in the fault currents, and the data window used can be small. So the algorithm can accurately locate the fault position both in transient faults and in stabilized faults. First, two fault points located in both sides of the compensating capacitor can be determined. Then, according to the principle that the voltage of real fault point calculated by data collected at both sides of transmission line must be equal, th
    e real fault location can be decided.
    Plenty of digital simulations are performed on the algorithms using the PSB
    (Power System Blockset) toolbox of MATLAB. And factors, which affect the
    accuracy of the algorithms, are analyzed. Simulation results show that the
    algorithms presented in this paper are highly accurate and robust. From the view of
    
    
    engineering application, the accuracy is affected neither by fault position, fault type, fault resistance, system frequency, the operation model of power system, nor by variance of the zero-sequence parameters basically.
    The hardware and software realization of the corresponding fault locator is also presented in this paper concisely. Plenty of dynamic simulations are performed on the fault locator by using Real-Time Digital Simulation (RTDS) system to verify the algorithms presented in this paper. Simulation results show that highly accurate and robust results can be obtained by using the algorithms and the locator. These sufficiently prove that the algorithms are feasible and accurate; the locator is practical and reliable.
引文
1.肖东晖,刘沛,程时杰.架空输电线路故障测距方法综述.电力系统自动化,1993,17(8):46-56
    2.全玉生,杨敏中,王晓蓉等.高压架空输电线路的故障测距方法.电网技术,2000,24(4):27-33
    3.蔡得礼.高压输电线故障点定位的一种新的计算机方法.重庆大学学报,1982,6(2):1-14
    4.付丰年.输电线路复杂故障的精确定位系统研究[硕士学位论文],2003
    5.龚庆武.输电线路精确故障定位理论研究及其实现[博士学位论文],2002
    6. Bao Lian, M.M.A. Salama. An overview of the digital fault location algorithms for the power transmission line protection based on the steady-state phasor approaches. Electric machines and power systems, 1996, 24: 83-115
    7. Sachdev M.S, Agarwal R. A technique for estimating transmission line fault location from digital impedance relay measurement. IEEE Trans on Power Delivery, 1988, 3(1): 121-129
    8. A.T. johns, S. Jamali.Accurate Fault Location Technique for Power System Lines. IEE Proceedings Pt.C, 1990, 137(6): 395-402
    9.董新洲,葛耀中.一种使用两端电气量的高压输电线路故障测距算法.电力系统自动化,1995,19(8):47-53
    10. Harry Lee, Abdul M. Mousa. GPS Travelling Wave Fault Locator System:Investigation into The Anomalous Measurements Related to Lightning Strikes. IEEETrans. on Power Delivery, Vol. 11, No. 3, July 1996, 1214-1223
    11. David J. Lawrence, Luis Z. Cabeza, Lawrence r. Hochberg. Development of an Advanced Transmission Line Fault Location System Part Ⅰ: Input Transducer Analysis and Requirements. IEEE Trans on Power Delivery, 1992, 7(4): 1963-I971
    12.龚庆武,雷庆生,王志梅,陈允平.采用输电线路双端信号的故障精确定位系统.继电器,1999,27(6):18-23
    13.吕虎,钟岷秀等.基于GPS授时同步采样的输电线路故障定位.电力系统自动化,1998,22(8):26-29
    14. R K Aggarwal, D V Coury, A T Johns, et al. A Practical Approach to Accurate Fault Location on Extra High Voltage Teed Feeders. IEEE Trans on Power Delivery, 1993, 8(3): 874-883
    15. I. Zamora, J.F.Minzmbres, A.J. Mazon, etal. Fault Location on Two-Terminal Transmission Lines Based on Voltages. IEE Proceedings-Generation, Transmission&Distribution, 1996, 143(1): 1-6
    
    
    16. J. F. Minzmbres, I. Zamora, A.J. Mazon, etal. A new technique based on voltages for fault location on three-terminal transmission lines. Electric Power System Research, 1996(37): 143-151
    17. Damir Novosel, David G. Hart, Eric Udren, etal. Unsynchronized Two-Terminal Fault Location Estimation. IEEE Trans on Power Delivery, 1996, 11(1): 130-138
    18, Adly A. Girgis, David G. Hart, William L. Peterson, A New Fault Location Technique for Two-and Three-Terminal Lines. IEEE Trans on Power Delivery, 1992, 7(1): 98-107
    19.梁军,孟昭勇,车仁飞等.精确双端故障测距新算法.电力系统自动化,1997,21(9):24-27
    20.滕林,刘万顺等.一种实用的新型高压输电线路故障双端测距精确算法.电力系统自动化,2001,25(18):24-27
    21.李卫国,周力行,杨荣凯.超高压输电线路精确故障定位算法研究.高电压技术,1997,23(3):59-64
    22.全玉生,王晓蓉,杨敏中等.工频双端故障测距算法的鲁棒性问题和新算法研究.电力系统自动化,2000,24(10):28-32
    23.董新洲,葛耀中,徐丙垠.利用GPS的输电线路行波故障测距研究.电力系统自动化,1996,20(12):37-40
    24.郑健超,陈祥训,覃剑等.验证小波变换行波故障测距法的现场试验.电网技术,2001,25(3):26-29
    25.董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究.中国电机工程学报,1999,19(4):76-80
    26.曾祥君,尹项根,陈德树等.基于整个输电网GPS行波故障定位系统的研究.电力系统自动化,1999,23(10):8-100
    27.曾祥君,尹项根等.新型输电线路故障综合定位系统研究.电力系统自动化,2000年11月:39-44
    28.吴必信,陈冬菊.综述单端故障测距算法(一).电力自动化设备,1995,8(3):30-34
    29.吴必信,王玉秋.综述单端故障测距算法(二).电力自动化设备,1995,11(4):23-25
    30.吴必信.综述单端故障测距算法(三).电力自动化设备,1996,2(1):15-19
    31.杨家兴,束洪春,蔡武卫等.基于人工神经网络的输电线路单端故障测距方法.云南电力技术,2000,28(4):20-25
    32.毛鹏,孙雅明,张兆宁.基于神经网络原理的高压架空输电线路故障测距模型的研究.电力系统及其自动化学报,1999,11(3):66-73
    
    
    33. M. Kezunovic, I. Rikalo, D.J. Sobajic. High-speed fault detection and classification with neural nets. Electr. Power Syst. Res., 1995, 34: 109-116
    34. A.F. Sultan, G.W. Swift, D.J. Fedirchuk. Detection of high impedance arcing faults using a multi-layered perception. IEEE Trans. Power Deliv., 1992, 7 (4): 1871-1877
    35. Urasawa K, etc. New fault location system for power transmission lines using composite fiber-optic overhead ground wire. IEEE Trans on Power Dlivery, 1989, 4(4): 2005-2011
    36.韩彦华,施围.串补输电线路的精确故障定位算法.中国电机工程学报,2002,22(5):75-77
    37.韩祯祥,吴国炎.电力系统分析.浙江大学出版社,1993
    38.Dommel.H.W,李永庄等译.电力系统电磁暂态计算理论.水利电力出版社,1991
    39.吴维韩,张芳榴等.电力系统过电压数值计算.科学出版社,1989
    40.王秉中.计算电磁学.科学出版社,2002
    41.邱关源.电路.高等教育出版社,1997
    42.蔡启富等.数学物理方程.武汉水利电力大学出版社,2000
    43. Novosel D, et al. Algorithms for locating faults on series compe-nsated lines using neural network and deterministic methods. IEEE Trans. on PD, 1996, 11(4): 1728-1736
    44.束洪春,司大军,陈学允.基于分布参数模型的串补线路故障测距方法研究.中国电机工程学报,2002,22(4):72-76
    45.陈允平,吴夙,龚庆武,廖文瑶.输电线路故障定位的最小二乘法实现.电力系统自动化,2001,7:54-56
    46.龚庆武,来文青,吴夙.用MATLAB和EMTP对输电线路进行故障定位数字仿真的比较.华北电力技术,2001,10月:31-34
    47.高後磊,厉吉文,文锋等.GPS及其在电力系统中的应用.电力系统自动化,1999,19(9):41-44
    48. Y P Chen. The Principles and Computer Based Realization of Zero Sequence Parameter Measurement of Transmission Line with Mutual Inductance. International Power Engineering Conference 1995, 27 February-1 Match 1995, Singapore
    49.陈允平等.互感线路零序带电测量的理论及其微机实现.电力系统自动化,1995,19(2):18-25
    50.刘韬文,龚庆武,龙志君,基于GPS的输电线路故障精确定位装置的研究,电力建设,2002,23(5):20-23
    51.张承学,龚庆武,胡志坚等.基于GPS同步采样装置的研制及其应用.电力系统自动化,2000,24(1):45-47
    
    
    52.龚庆武,张承学,左克锋等.GPS同步采样装置中防止干扰GPS秒脉冲信号的措施.电力系统自动化,2000,24(1):45-47
    53.周明德.微型计算机IBM-PC/XT[0520系列]系统原理及应用.清华大学出版社,1991
    54.刘乐善等,微型计算机接口技术及应用.华中理工大学出版社,1993
    55.徐士良.C常用算法程序集.清华大学出版社,1994
    56.谭浩强.C程序设计.清华大学出版社,1991
    57.龙志君,付丰年,刘靖等.利用RTDS测试精确故障定位系统.继电器,2002,30(4):29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700