用户名: 密码: 验证码:
非线性机器人的智能反演滑模控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人是由机械本体、控制器、伺服驱动系统和检测传感器装置构成的,一种能仿人操作、可自动控制、重复编程、并能在三维空间完成各种作业的机电一体化设备。机器人的应用是潜力无限的,所有人类所从事的领域机器人基本都可以从事,从人们的日常生活、工农业生产到海洋探测、太空探测,机器人都发挥着越来越重要的作用。多关节机器人也称为机械臂、机械手,是指一端与基础固定的一系列具有空间运动能力的刚体的连接组合。根据其运动方式,多关节机器人是一个十分复杂的多输入多输出非线性系统,具有时变性、耦合性和非线性等动力学特征。其控制问题就是要使机器人的各关节或末端执行器位置能够以理想的动态品质跟踪给定的轨迹或稳定在指定的位置上。针对具有建模误差和不确定干扰的机器人控制,目前主要有:(1)PID控制;(2)自适应控制;(3)鲁棒控制;(4)变结构控制;(5)智能控制;(6)反演控制等等。本文主要研究了基于反演的滑模控制与模糊控制、神经网络控制相结合的控制方法,主要有以下研究成果。
     (1)针对具有建模误差和不确定干扰的机器人轨迹跟踪问题,分别研究了反演线性滑模控制、反演非线性终端滑模控制和反演准滑模控制,并利用李亚普诺夫稳定性定理证明了系统的稳定性。反演的线性滑模控制采用传统的线性滑模面,其缺点无法在有限时间内收敛到平衡点。反演非线性终端滑模控制采用非线性终端滑模面,使得系统状态在滑模面上能够在有限时间内到达平衡点零。反演准滑模控制是在反演滑模控制律的基础上将符号函数改为饱和函数,即变成准滑模控制律。最后通过仿真实验验证了上述控制方法的有效性。
     (2)将模糊控制、反演控制和滑模控制相结合,针对有建模误差和干扰的的多关节机器人轨迹跟踪控制问题,研究了全局PID模糊滑模控制、PID反演自适应模糊滑模控制、基于模糊补偿的反演滑模控制和反演非奇异终端模糊滑模控制,并利用李亚普诺夫稳定性定理证明了系统的稳定性。前两种控制方法利用自适应模糊控制器在线估计不确定性上界值,实现对建模误差和干扰的自动跟踪,削弱了抖振。模糊补偿的反演滑模控制通过设计模糊补偿器逼近建模误差和外界干扰,减弱干扰的影响,从而削弱控制器的抖动。反演非奇异终端模糊滑模控制采用非线性终端滑模面,克服了终端滑模面存在奇异点的缺点,基于反演方法设计控制系统,为了削弱抖振设计了模糊控制器对建模误差和干扰的自动跟踪。最后通过仿真实验验证了上述控制方法的有效性。
     (3)将反演控制、滑模控制和神经网络相结合,针对有建模误差和干扰的的多关节机器人轨迹跟踪控制问题,研究了RBF神经滑模控制、全局PID神经滑模控制、积分反演神经滑模控制、反演非奇异终端神经滑模控制和反演非奇异快速终端神经滑模控制,并基于Lyapunov理论证明了系统的稳定性。RBF神经滑模控制是将切换函数作为RBF神经网络的输入,利用RBF神经网络直接作为滑模控制器,实现多入多出的神经滑模控制。全局PID神经滑模控制设计了全局PID滑模面,用RBF神经网络调节滑模控制的切换增益,通过在线调整控制器参数,实现对建模误差和干扰的自动跟踪,从而消除了抖动。积分反演神经滑模控制采用了RBF网络在线估计不确定性上界值,并且设计了网络权值的自适应律。反演非奇异终端神经滑模控制采用非线性终端滑模面,设计了神经网络控制器在线估计不确定性上界值,削弱了抖动。为了进一步减少系统收敛时间,设计了反演非奇异快速终端神经滑模控制。最后通过仿真实验验证了上述控制方法的有效性。
Robot consists of mechanical body,controller,servo driving system andsensor device,which has characteristics of human-simulated operation, auto-matic control and reprogrammability.It is an electromechanical equipmentthat can complete various operations in three dimensions.The use of robotshas become increasingly prevalent and far reaching.Robots almost can do allof what the human do. Robots are playing a more and more important role indaily life,industrial-agricultural production,ocean probe and spaceresearch.Multilink robot is also called mechanical arm or mechanical hand.Itis connection of rigid bodys with an end fixed which characterized by spacemovement. Based on the movement,Multilink robot is a complicated MIMOnonlinear system and has the nonlinear dynamics characteristics ofnonlinearity,time varying and coupling.The aim of the control strategy is tomake the output of the rigid robot tracking a desired trajectory in perfectdynamic quality.For tracking control of multilink robot manipulators withmodeling error and external disturbance,Now the following popular methodsare used:(1)PID Control;(2)Adaptive Control;(3)Robust Control;(4)variablestructure control;(5)intelligent control;(6)Backstepping Control.This paperput forward controlling methods,which combine backstepping sliding-modecontrol,fuzzy control and neural network.Main achievements are given asfollows in this paper.
     (1)For tracking a desired trajectory of multilink robot manipulators withmodeling error and external disturbance,Backstepping linear sliding modecontrol,backstepping nonlinear sliding mode control and backsteppingquasi-sliding mode control are studied respectively.The system stability isproved by Lyapunov Principle.The traditional linear sliding surface is used inbackstepping linear sliding mode control which can't converge to itsequilibrium point in finite time.A terminal sliding mode (TSM) surface is used in backstepping nonlinear sliding mode control.Compared with linearhyperplane-based sliding modes, TSM offers the superior property of finitetime convergence.Based on backstepping sliding mode control,backsteppingquasi-sliding mode Control is obtained by converting sign function intosaturation funtion.Finally,simulation results verify the validity of the controlschemes as above.
     (2)For tracking a desired trajectory of multilink robot manipulators withmodeling error and external disturbance,we studied new control methods inthis paper by combining fuzzy control,backstepping control and sliding modecontrol as follows:1.Global PID Fuzzy Sliding Mode Control;2.PIDBackstepping and adaptive Fuzzy Sliding Mode Control;3.BacksteppingSliding Mode Control with Fuzzy Compensation;4.Nonsingular TerminalFuzzy Sliding Mode Control Based on Backstepping.The stability of controlsystem is analyzed by Lyapunov Principle.A properly adaptive fuzzycontroller is designed to estimate uncertain upper boundary on line and trackthe modelling error and disturbance automatically in the first twomethods.Fuzzy compensation is designed to compensate the modelling errorand external disturbance in the backstepping sliding mode control with fuzzycompensation.So it weaken the disturbance and reduces chattering. Accordingto sliding mode control theory, backstepping is used to design nonsingularterminal sliding mode controller.So it overcomes disadvantage of singularpoint In order to reduces chattering a proper fuzzy controller is designed toestimate uncertain upper boundary on line and track the modelling error anddisturbance automatically. Finally,simulation results verify the validity of thecontrol schemes as above.
     (3)For tracking a desired trajectory of multilink robot manipulatorswith modeling error and external disturbance,new control methods werestudied in this paper by combining backstepping control, sliding mode controland neural network control as follows:1.RBF Neural Network Sliding-modeControl;2.Global PID Neural Network Sliding Mode Control;3.IntegralBackstepping Sliding Mode Control;4.Backstepping Nonsingular Terminal Neural Network Sliding Mode Control;5.Backstepping Nonsingular FastTerminal Neural Network Sliding Mode Control.The system stability isproved by Lyapunov Principle.A switching function is used as input of RBFneural network in the RBF neural network sliding mode control. RBF neuralnetwork is treated as sliding mode controller directly.So MIMO neuralnetwork sliding mode control is implemented.Global PID sliding modesurface is designed in the global PID neural network sliding modecontrol.RBF neural network is used to adjust switching gain.Controllerparameters are tuned to estimate uncertain upper boundary on line.Sochattering is reduced.In order to estimate uncertain upperboundary,Self-adaptation principle of weight is designed in the integralbackstepping sliding mode control. Nonlinear terminal sliding mode surface isused in the backstepping nonsingular terminal neural network sliding modecontrol.RBF neural network sliding mode controller is designed to estimateuncertain upper boundary to reduce chattering.In order to further minimizeconvergence time, we design fast terminal neural network sliding modecontrol.Finally,simulation results verify the validity of the control schemes asabove.
引文
[1]蔡自兴机器人学[M].清华大学出版社,2009.
    [2]丁学恭.机器人控制研究[M].浙江大学出版社.2006.
    [3]刘金锟.机器人控制系统的设计与Matlab仿真[M].清华大学出版社.2008.
    [4] Luca A D,Siciliano B,Zollo L.PD control with on-line gravity compensation for robots withElastic Joints[J]. Theory and Experiments,Automatica,2005,41(1):1809-1819.
    [5]陶永华.新型PID控制及其应用[M].机械工业出版社.第二版,2002.
    [6]申铁龙..机器人鲁棒控制基础[M].北京:清华大学出版社,2004.
    [7] Shen T.Robust model following controller applied to positioning of pneumatic control valvewith fritions.Journal of Dynamic Systems,Measurement,and Control,1998.
    [8]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [9]刘金锟.滑模变结构控制Matlab仿真[M].北京:清华大学出版社,2005.
    [10] Utkin V I.Variable structure systems with sliding modes[J].IEEE Transactions AutomaticControl.1977,22(2):212-222.
    [11]王立新,王迎军.模糊系统和模糊控制教程[M].北京:清华大学出版社,2003.
    [12] Ge S S,Hang C C,Woon L C.Adaptive Neural Network Contol of Robot Manipulators in TaskSpace[J].IEEE Transactions on Industrial Electronics,1997,44(6):746-752.
    [13] Jong H O,Jin S L.Control of flexible Joint Robot System by Backstepping DesignApproach.Proceeding of the1997IEEE,International Conferenceon Robottics andAutomation,New Mexico,1997,3435-3440.
    [14] Liu J K,Sun F C.Nominal Model-based Sliding Mode Control with Backstepping for3-axisFlight Table[J].Chinese Journal of Aeronautics,2006,19(1):65-71.
    [15]丁学恭.机器人控制研究[M].浙江大学出版社.2006.
    [16]蔡自兴.机器人学[M].清华大学出版社.2009.
    [17]贾庆轩,张晓东,李梅峰等.空间机械臂关节积分反演滑模控制研究[J].系统仿真学报.2009.21(10):3014-3021.
    [18] Chang koanyuh.Wang weyune.Robust covariance control for perturbed stochastic multi-variable system via variable structure control[J].System and Control Letters,1999,37(5):323-314.
    [19]周军,周凤岐,陈新海等.变结构局部模型跟踪控制研究[J].控制理论与应用,1995,12(6):665-672.
    [20]吴玉强,冯纯伯.结构未建模系统的变结构自适应控制器设计[J].控制与决策,1994,9(1):8-13.
    [21] Shyu kuokai, Tsai yaowen, Lai chiuken. A dynamic output eedback controllers formismatched uncertain variable structure system[J]. Automatica,2001,37(5):775-779.
    [22] V.I.Utkin. Variable structure systems with sliding modes[J].IEEE Transactions on AutomaticControl,1977,22(1):212-222.
    [23] V.I.Utkin.Sliding mode control design principles and applications to electric drives[J].IEEETransactions on Industrial Electronics,1993,40(1):328-342.
    [24]高为炳.变结构控制的理论及设计方法[M]..科学出版社.1998.
    [25] Weibing Gao, James C.Hung. Variable structure control of nonlinear syatem: Anewapproach[J]. IEEE Transactions on Industrial Electronics,1993,40(1):45-55.
    [26]高为柄,程勉.变结构控制系统的品质控制[J].控制与决策,1989,4(4):1-6.
    [27]张翔,王德石,李景熹.滑模控制器趋近律仿真研究[J].微处理机,2008,1:80-81.
    [28]盛严,王超,陈建斌.结构变结构控制的指数趋近律改进方法[J].西安交通大学,2003,1(37):108-110.
    [29]童克文,张兴,张昱.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [30]刘军,王洋,黄萌芝.一种新型趋近律的滑模控制在永磁同步电动机中的应用[J].青岛科技大学学报(自然科学版).2009,5(30):457-464.
    [31]江坤,张井岗.一种新的基于模糊趋近律的滑模控制方法[J].系统仿真学报,2002,14(7):964-967.
    [32]谢慕君,王辉.模糊趋近率的滑模控制在倒立摆系统中的应用研究[J].控制理论与应用,2008,27(10):7-11.
    [33] Slotine J J, Sastry S S. Tracking control of nonlinear system using sliding surfaces withapplication to robot manipulator [J]. International Journal of Control,1983,38(2):465-492.
    [34] Chung S C Y, Lin C L. A transformed Lure Problem for sliding mode control and chatteringreduction[J]. IEEE Transactions on,Automatic Control,1999,44(3):563-568.
    [35] Secshagiri S,Khalil H K.On introducing integral action in sliding mode control Proceeding ofthe41st IEEE Conference on,2002,2:1470-1478.
    [36]曹永辉.基于动态边界层的水下航行器滑模轨迹跟踪[J].2009,26(5):190-194.
    [37]杨玲玲,章云,陈晓龙.一类不确定非线性系统的模糊边界层滑模控制[J].系统仿真学报,2009,21(22):7262-7265.
    [38]李院平,郭西进,王可安.基于组合趋近律的模糊滑模控制[j].郑州轻工业学院学报(自然科学版),2009,24(5):102-105.
    [39]周德文,高存臣,李自强.一种离散变结构控制趋近律.控制与决策[J].2008,3(23):306-309.
    [40] Kang B P, Ju J L. Sliding mode controller with filtered signal for robot manipulators usingvirtual plant/controller[J]. Mechatronics,1997,7(3):277-286.
    [41] Yanada H, Ohnishi H. Frequency_shaped sliding mode control of an electrohydraulicservomotor[J].Journal of systems and control and dynamics,1999,213(1);441-448.
    [42] Kawamura A, Itoh H, Sakamoto K.Chattering reduction of disturbance observer base slidingsmode control[J].IEEE Transaction on industry Application,1994,30(2):456-461.
    [43] Liu H.Smooth sliding mode control of uncertain system based on a prediction error[J].Inter-national Journal of Robust and Nonlinear control,1997,7(4):353-372.
    [44]孙彪,孙秀霞.基于干扰观测器的离散滑模控制算法[J].控制工程,2010,17(4):440-443.
    [45]王洪斌,姚洪磊.基于干扰观测器的倒立摆自适应滑模控制及仿真研究[J].系统仿真学报.2010,22(6):1476-1480.
    [46]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报,2007,28(3):673-677.
    [47]薛雅丽,姜长生,朱亮.一类径向基神经网络干扰观测器轨迹线性化控制[J].系统工程与电子技术[J].2008,30(3):522-526.
    [48]胡慧,刘国荣.基于神经网络干扰观测器的一类不确定非线性MIMO系统H∞跟踪控制[J].控制与决策,2009,24(3).
    [49] Bartonlini G, Ferrara, A Usani E. Chattering avoidance by second-order sliding modecontrol[J].IEEE transactions on Automatic Control.1998,43(2):241-246.
    [50] Bartolini G, Pisano A, Punta E, Usai E. A survey of application of second-order sliding modecontrol to mechanical systems[J].International Journal of Control.2003,76(9):875-892.
    [51]晁红敏,胡跃明.动态滑模控制及其在移动机器人输出跟踪中的应用[J].控制与决策.2001,16(5):565-568.
    [52]武鑫,郗安民.动态滑模控制在移动机器人输出控制中的应用[J].机床与液压,2005,5:105-108.
    [53]吴玉香,冯颖,胡跃明.基于动态滑模控制的移动机械臂输出跟踪控制[J].华南理工大学学报(自然科学版).2006,34(6):29-33.
    [54] Q. P. Ha,Q. H.Nguyen, D. C. Rye. H. F. Durrant-Whyte. Fuzzy sliding-mode controllers withApplications[J]. IEEE Transactions on Industrial Electronics.2001,48(1)38-41.
    [55]张天平,冯纯伯.基于模糊逻辑的连续滑模控制[J].控制与决策.1995,10(6):503-507.
    [56] Ertugrul M, Kaynak O. Neuro sliding mode control of robot manipulators[J]. Mechatronics,2000,10(2):239-263.
    [57]穆效江.多关节机器人的智能滑模变结构控制方法研究[博士学位论文].北京工业大学模式识别与智能系统,2008.
    [58] X.H.Yu,Z.H.Man. Fast Terminal Sliding-Mode Control Design for Nonlinear DynamicalSystems[J].IEEE transaction on Circuits and Systems-I:Fundamental theory and applications,2002,49(2):262-264.
    [59]张德江,张袅娜,冯勇.参数不确定柔性机械手的快速终端滑模控制[J].控制与决策,2010,35(3):433-436.
    [60]吴青云,闫茂德,贺昱曜.移动机器人的快速终端滑模轨迹跟踪控制[J].系统工程与电子技术,2007,29(12):2127-2130.
    [61]冯勇,鲍晟,余星火.用于刚性机械手的无抖振快速终端滑模控制[J].控制与决策,2002,17(3):381-384.
    [62] S.H.Yu,X.H.Yu.Robust Global Terminal Sliding Mode Control of SISO Nonlinear UncertainSystems. Proceedings of the39th IEEE Conference on Decision and Control,Sydney,Australia,2000:2198-2203.
    [63] Pieper J K. First order dynamic sliding mode control[C]//Proceedings of the37th IEEEConference on Decision&Control. Tampa, Florida, USA,1998:2415-2420.
    [64]李春华,孙约,罗琦.非线性系统的反演自适应动态滑模控制[J].计算机工程与设计,2009,30(1):185-187.
    [65]王洪瑞,冯玉,刘秀玲等.基于反演设计的机器人自适应动态滑模控制[J].计算机工程与应用,2010,46(8):211-213.
    [66] Kanellkopouls I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers forfeedback linearizable system[J].IEEE Trans Automat Contr,1991,36:1241-1253.
    [67]王志新.智能模糊控制的若干问题研究[M].知识产权出版社.北京,2009,9.
    [68]诸静.模糊控制理论与系统原理[M].机械工业出版社.北京,2005,8.
    [69]赵永胜.模糊滑模控制及其在机电系统中应用的研究[博士学位论文].武汉.华中科技大学机械设计理论系,2007.
    [70] Wang,W.J. and Lin,H.R. Fuzzy control design for the trajectory tracking on uncertainlinear systems[J].IEEE Trans.Fuzzy Systems,1999,7(1):53-62.
    [71] Abdelhameed,M.M.Enhancement of sliding mode controller by fuzzy logic with applicationto robotic manipulators[J].Mechatrionics,2005,15:439-458.
    [72] Hwang,C.L. A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-mode controller[J].IEEE Transactions on Fuzzy Systems,2004,5(12):676-687.
    [73] Guan,P.Liu, X.J. Liu,J.Z. Adaptive fuzzy silding mode control for flexible statellite[J].Engineering Applications of Artificial Intelligence,2005,18(3):451-459.
    [74] Guo Y Z,Woo P Y.An adaptive Fuzzy Sliding Mode Controller for Robotic Manipulators[J].IEEE Transaction System, Man and Cybernetics.Part A:System And Human,2003,33(2):149-159.
    [75] Lee,J.H.,Ko,J.S. and Chung,S.K. A Continuous variable structure controller for BLDDSMposition control with prescribed tracking performance[J]. IEEE Transactions on IndustrialElectronics,1994,41(5):483-491.
    [76] Tong,S.C. and Li,H.X. Fuzzy adaptive sliding-mode control for MIMO nonlinear systems.IEEE Transactions on fuzzy systems,2003,11(3):354-360.
    [77]付永领,王岩,逄波.滑模模糊控制算法在液压机器人控制中的应用[J].中国机械工程,2007,18(10):1168-1170.
    [78]穆效江,陈阳舟.多关节机器人的自适应模糊滑模控制[J].控制工程,2008,15(5):619-622.
    [79]高庆吉,刘凯,刘丽丽.基于模糊滑模的移动机械臂控制研究[J].系统仿真学报,2008,20(16):4323-4325.
    [80]赵宁,吕建超,牛秦玉.电子节气门模糊自适应调节滑模控制及仿真[J].计算机仿真,2010,17(4):296-299.
    [81]王传江,孙秀娟.一种自适应全程滑模变结构控制器的研究与设计[J].山东科技大学学报.2009,28(1):64-69.
    [82]穆效江,陈阳舟.多关节机器人的自适应模糊滑模控制.控制工程[J].2008,15(5):619-622.
    [83]穆效江,陈阳舟,张利国.多关节机器人的全局快速终端模糊滑模控制[J].系统仿真学报,2008,20(15):4085-4088.
    [84] Ilyas Eker.Sliding mode control with PID sliding surface and experimental application to anelectromechanical plant[J].ISA Transactions45,(2006):109–118
    [85]高兴华,耿德旭,高玉等.基于反演滑模变结构控制的倒立摆系统跟踪控制设计[J].北华大学学报.2008,9(6):559-562.
    [86]贾庆轩,张晓东,李梅峰等.空间机械臂关节积分反演滑模控制研究[J].系统仿真学报.2009,21(10):3014-3021.
    [87] Wang L X,Mendel J M. Fuzzy basis functions,universal approximation,and least sequareslearning[J].IEEE Trans on Neural Networks,1992,3(5):807-814.
    [88]梁捷,陈力.双臂空间机器人基于高斯型函数的姿态、关节运动模糊自适应补偿控制[J].中国机械工程,2010,21(3):330-336.
    [89]戴学丰,严浙平,孙立宁等.双连杆柔性机器人的模糊补偿滑模控制[J].电机与控制学报,2005,9(1):1-4.
    [90]戴学丰,冯宏飚,王艳春等.具有模糊二次补偿的柔性臂滑模控制研究[J].控制理论与应用,2004,23(10):8-10.
    [91] MAN Z H, YU X H. Terminal sliding mode control of MIMO linear systems[J]. IEEETransactions on Circuits and Systems I:Fundamental Theory and Applications,1997,44(11):1065–1070.
    [92] X HYu, ZMan. Multi-inputuncertain linear systemswith termi-nal sliding-mode control[J].Automatica(S0005-1098),1998,34(3):389-392.
    [93]庄开宇,张克勤,苏宏业等.高阶非线性系统的Terminal滑模控制[J].浙江大学学报(工学版),2002,36(5):482–539.
    [94] YU X H,MAN Z H,WU Y Q.Terminal sliding modes with fast transient performance [C].//Proceedings of the36th Conference on Decision&Control.San Diego,California,USA:IEEE1997:962–963.
    [95]冯勇,鲍晟,余星火.非奇异终端滑模控制系统的设计方法[J].控制与决策,2002,17(2):194-198.
    [96] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control and its applicationfor robot manipulators[C]//Proceedings of IEEE International Symposium on Circuits andSystem.Sydney,Australia:IEEE,2001:545–548.
    [97]穆效江,陈阳舟,张利国.多关节机器人的非奇异终端模糊滑模控制[J].北京工业大学学报,2008,34(9):920-924.
    [98] McCulloch.W.S,W.H.Pitts. A logic calculus of ideas immanent in nervous activity.Bulletinof Math.Biophsics,1943,5:115-133.
    [99] Hebb,D.O. The Organization of Behavior.John Wiley&Sons.New York1949.
    [100] Hopfield.J.J. Neural network and physical system with emergent collective computationalabilities.Proc.Natl.Acad.sci.USA,1982,79:1552-2558.
    [101]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社.2003.
    [102] Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basisfunction sliding mode controller. Mechatronics,2003,13:313~329.
    [103] Mu Xiaojiang,Chen Yangzhou.Neural sliding mode control for multi-link robots[J].Controland Decision Conference.2008:3513-3517.
    [104]高宏宇,邵克勇,李艳辉.不确定系统的上界自适应动态神经滑模控制[J].吉林大学学报.2010,28(3):292-297.
    [105]穆效江,陈阳舟.多关节机器人的神经滑模控制[J].计算机工程与应用.2009,45(11):245-248.
    [106] C.L.Hwang,L.J.Chang,Y.S.Yu. Network-Based Fuzzy Decentralized Sliding-Mode Controlfor Car-Like Mobile Robots[J].IEEE Transactions on Industrial Electronics.2007,1(54):574-585.
    [107] Chern T L, Wu Y C. Design of integral variable structure controller and application toelectrohydraulic velocity servosystems [J]. IEEE Proceedings,1991,138(5):439-444.
    [108]贾庆轩,张晓东,李梅峰等.空间机械臂关节积分反演滑模控制研究[J].系统仿真学报.2009,21(10):3014-3017.
    [109]董朝阳,陈宇,王青等.基于积分滑模的BTT导弹鲁棒反演控制律设计[J].航空兵器.2011,2(1):3-9.
    [110]李升波,李克强,王建强等.非奇异快速的终端滑模控制方法[J].信息与控制.2009,38(1):1-8.
    [111]李升波,李克强,王建强等.非奇异快速的终端滑模控制方方法法及其跟车控制应用[J].控制理论与应用.2010.27(5):543-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700