用户名: 密码: 验证码:
光纤微加工技术及器件应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信技术和光纤传感技术的快速发展,光纤器件在人类生活的多个领域得到了广泛的应用。光纤器件的微加工技术及其应用引起了学术界和产业界的极大兴趣。本文针对新型种类光纤的光栅刻写技术、光纤器件的化学腐蚀、功能化处理以及相关的光刻微加工技术及其应用进行了研究。
     本文首先简单介绍了光纤微加工技术的研究背景和发展状况,接着介绍了光纤光栅的分类和理论基础以及刻写技术,并给出了本论文中所使用的光纤光栅制作系统。研究了微结构光纤光栅的刻写技术以及应用于光栅高阶模式选择性激发和获取的光刻微加工技术。利用193nm的准分子激光器制作出了高性能的微结构布拉格光栅,并对相应光栅的光谱特性进行了实验研究及模拟分析;然后利用光致聚合光刻在光纤端面制备了不同形貌、表面光滑的微尖,实现了次高阶模式耦合6.85dB的增强以及微流折射率传感,实验结果表明由于次高阶模式具有更强的倏逝场,其折射率灵敏度为基模折射率灵敏度的6.52倍。
     接着介绍了光纤干涉仪的分类和研究状况,设计并制作了一种新型的细芯模式干涉仪。结合光纤腐蚀微加工技术对细芯模式干涉仪进行了不同程度的包层腐蚀;最终获得了折射率灵敏度高达24584nm/R.I.U的传感应用;然后研究了光纤表面DNA分子绑定的层层自组装技术,实现了包层腐蚀的细芯模式干涉仪DNA传感器;随后通过将细芯模式干涉仪封装在微流槽内成功实现了光纤传感器件在微流芯片上的应用。
     然后根据光纤光栅的理论研究了光纤光栅的化学腐蚀及金属镀膜微加工技术,提出并实验验证了反射型的长周期光纤光栅传感器和低损耗微纳布拉格光纤光栅的制作方案。利用化学腐蚀微加工技术在长周期光纤光栅末端的纤芯内引入模式散射器,并结合金属镀膜微加工制作了光纤端面反射镜,获得了中心波长处深度大于15dB的反射型长周期光纤光栅传感器;同时利用对写有布拉格光栅的普通光纤进行施加提升控制的化学腐蚀制作了直径3.3um表面光滑的微纳光纤光栅,其反射信号光学损耗得到了6.29dB的优化。
     最后介绍了光纤端面器件及其微加工技术的研究背景,针对光纤端面器件结构紧凑、使用灵活、可满足特殊场合的传感应用等优点和目前制作成本非常高的现状,提出并实验验证了利用激光干涉光刻技术实现多根光纤端面低成本、批量化制作微纳结构的方案。
With the rapid development of optical fiber communication and fiber-optic sensor technologies, the optical fiber-based devices have been widely employed in many aspects of the human life. Recently the micro-fabrication technologies for the optical fiber devices have attracted great research interests both academically and industrially. This thesis mainly focuses on the study of fiber grating inscription technology for new types of optical fibers, chemical etching, functional micro-processing and optical lithography technologies for novel optical fiber devices, and their optical fiber sensing applications.
     Firstly, a brief overview of the research background of optical fiber micro-machining technologies is presented. Then the classification and theory of the optical fiber gratings and their fabrication technologies are introduced, and the fabrication system used in this thesis is presented. The fiber gratings inscription technology for the microstructure fiber and the lithography technology for fiber-end microtip have been experimentally demonstrated. Microstructure fiber Bragg gratings were fabricated by using the193nm Excimer laser and its spectral characteristics have been tested and compared with simulation analysis. Different fiber-end microtips with smooth surface have been fabricated on the optical fiber-end facet by the light-induced polymerization lithography. A6.85dB improvement in the excitation and coupling efficiency of the second-order optical mode has been experimentally achieved and used for microfluidic refractive index sensing applications. Experimental results revealed that the sensitivity of the second-order optical mode was around6.25times higher than that of the fundamental optical mode due to its relatively stronger evanescent wave.
     After that, the status and classification of the fiber-optic interferometers are introduced and a novel thin-core fiber modal interferometer was experimentally demonstrated. The sensitivity optimization was realized by the chemical etching technology and the refractive index sensitivity up to24584nm/R.I.U was illustrated in the optofluidic sensing experiments. Self-assembly of the probe DNA molecules was investigated and a label free DNA biosensor based on the cladding etched thin-core fiber modal interferometer was achieved. Subsequently the packing process was successfully employed to implement a microfluidic chip.
     Then, based on the theory of optical fiber gratings, the reflective long period grating sensor and low-loss microfiber Bragg grating sensors are proposed and experimental demonstrated by using chemical etching and metal coating technologies. A core mode scatter was formed in the optical fiber core region using the chemical etching method, and a fiber end-face mirror was fabricated through metal film coating technology. The reflective long period grating sensor with SNR of15dB at the central wavelength was demonstrated in the sensing applications. Meanwhile, a mechanically drawing aided HF etching method to fabricate a low-loss high-sensitivity microfiber Bragg grating sensor was presented. Through a precisely mechanically drawing of the optical fiber during HF etching process, a very smooth microfiber Bragg grating with a diameter of3.3um was obtained and a6.29dB improvement in reflection intensity was achieved.
     Finally, the fiber-end facet devices and some related fabrication technologies are described. The fiber-end facet devices have the advantages including compactness and flexible configuration. However, the current fabrication process has the drawback of high cost and low production. A scheme for the mass production of fiber-end facet with photonic crystal membrane based on the laser interference lithography was proposed and experimental demonstrated.
引文
1. K. C. Kao, and G. A. Hockham, Dielectric-Fibre Surface Waveguides for Optical Frequencies, Proceedings of the Institution of Electrical Engineers-London,1966,113 (7):1151-1158.
    2. F. P. Kapron, D. B. Keck, and R. D. Maurer, Radiation Losses in Glass Optical Waveguides, Applied Physics Letters,1970,17 (10):423-425.
    3. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, Ultimate Low-Loss Single-Mode Fiber at 1.55 μm, IEE Electronics Letters,1979.15 (4):106-108.
    4.廖延彪,光纤光学.2000,北京:清华大学出版社.156-159.
    5.李川,光纤传感器技术.2012,科学出版社.250-264.
    6. Michel J. F. Digonnet, and Herbert J. Shaw, Analysis of a tunable single mode optical fiber coupler, IEEE Transactions on Microwave Theory and Techniques,1982,4 (4): 592-600.
    7.乐孜纯,Optical Networks:A practical Perspective.2nd Edition.2004:机械工业出版社.107-112.
    8. L. G. Cohen, and M. V. Schneider, Microlens for coupling junction lasers to optical fibers, Applied Optics,1974,13 (1):89-94.
    9. Kyung S. Lee, and Frank S. Barnes, Microlenses on the end of single-mode optical fibers for laser applications, Applied Optics,1985,24 (19):3134-3139.
    10. C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, In-line single-mode wavelength division multiplexer/demultiplexer, IEE Electronics Letters.1984,20 (23): 963-964.
    11. G. Georgiou, and A. C. Boucouvalas, High-isolation single-mode wavelength-division multiplexer/demultiplexer, IEE Electronics Letters,1986,20 (2):62-63.
    12. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in Optical Fiber Waveguides-Application to Reflection Filter Fabrication, Applied Physics Letters,1978, 32 (10):647-649.
    13. T. Erdogan. Fiber grating spectra, Journal of Lightwave Technology,1997,15 (8): 1277-1294.
    14. Alan D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, Fiber grating sensors, Journal of Lightwave Technology, 1997,15(8):1442-1463.
    15. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter, Optics Communications,1999,169(1-6):159-165.
    16. M. A. Mirza, and G. Stewart, Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers, Applied Optics,2008,47 (29):5242-5252.
    17. R. A. Bergh, G. Kotler, and H. J. Shaw, Single-mode fiber optic directional coupler, IEE Electronics Letters,1980,16 (7):260-261.
    18. Shiao-Min Tseng, and Chin-Lin Chen, Side-polished fibers, Applied Optics,1992,31 (18):3438-3227.
    19. Vincent K. S. Hsiao, Zhen Li, Zhe Chen, Peng-Chun Peng, and JieYuan Tang, Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay, Optics Express,2009,17 (22):19988-19995.
    20. Daisuke Kato, Fused-silica-core glass fiber as a low-loss optical waveguide, Applied Physics Letters,1973,22(1):3-4.
    21. F. P. Payne, C. D. Hussey. and M. S. Yataki, modelling fused singlemode fiber couplers, IEE Electronics Letters,1985.21 (11):461-462.
    22. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in Optical Fiber Waveguides-Application to Reflection Filter Fabrication, Applied Physics Letters, 1978,32(10):647-649.
    23. G. Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters,1989,14 (15):823-826
    24. A. N. Chryssis, S. Saini, Sang M.Lee, H. YI, W. E. Bentley, and Mario Dagenais, Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber bragg grating sensors. IEEE Journals of Selected Topics in Quantum Electronics,2005, 11(4):864-872.
    25. Binfeng Yun, Na Chen, and Yiping Cui, Highly Sensitive Liquid-Level Sensor Based on Etched Fiber Bragg Grating, IEE Electronics Letters,2007.19 (21):1747-1749.
    26. E. J. Smythe, Smythe, M. D. Dichey, Jiming Bao, G. M. Whitesides, and Federico Capasso, Optical Antenna Arrays on a Fiber Facet for in Situ Surface-Enhanced Raman Scattering Detection, Nano Letters,2009,9 (3):1132-1138.
    27. D. J. Lipomi, R. V. Martinez, M. A. Kates, Sung H. Kang, Philseok Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, Patterning the Tips of Optical Fibers with Metallic Nanostructures Using Nanoskiving, Nano Letters,2011,11:632-636.
    28.陈哲,沈丽达等.光纤侧边抛磨装置及其工艺方法.中国专利,2005:CN1631616A.
    29.苑立波,邓洪昌,杨军.沿侧面抛磨开槽方向运动的光纤微小粒子定向驱动器及方法,中国专利,2011:CN02147501A.
    30. K. Taek Kim, Hyo H. Kim, Seung Hwangbo, Sangsoo Choi, Byeong Ha Lee, and Kyunghwan Oh, Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler, Optics Communications,2004, 245(2005):145-151.
    31. Hokyung Kim, Jinchae Kim, Un-Chul Paek, and Byeong Ha Lee, Tunable photonic crystal fiber coupler based on a side-polishing technique, Optics Letters,2004,29(11): 1194-1196.
    32. K. McCallion, W. Johnstone, and G. Fawcett, Tunable in-line fiber-optic bandpass filter. Optics Letters,1994,19(8):542-544.
    33. Nan-Kuang Chen, and Sien Chi, Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay. Optics Letters,2004,29(19): 2219-2221.
    34. Minghong Yang, Jixiang Dai, Xiaobin Li, and Junjie Wang, Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film, Journal of Applied Physics,2010,108(033102):1-3.
    35. Chuen-Lin Tien, Hong-Wei Chen, Wen-Fung Liu, Shou-Shan Jyu, Shane-Wen Lin, and Yung-Sen Lin, Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film. Thin Solid Films,2008,516,5360-5363.
    36. J. V. Wright, Variational analysis of fused tapered couplers, IEE Electronics Letters 1985.21 (23):1064-1065.
    37. Timothy E. Dimmick, George Kakarantzas, Timothy A. Birks, and Philip St. J. Russell, Carbon dioxide laser fabrication of fused-filter couplers and tapers, Applied Optics, 1999.38(33):6845-6848.
    38. C.S. Hsieh, T.L. Wu, and W.H. Cheng, An optimum approach for fabrication of low loss fused fiber couplers, Materials Chemistry and Physics,2001.69(2001):199-203.
    39. David B. Mortimore, Theory and fabrication of 4×4 single-mode fused optical fiber couplers, Applied Optics,1990.29(3):371-374.
    40. Yoshiaki Takeuchi, Thermodynamic analysis of WDM fiber couplers fabricated by using a microheater, Journal of Non-Crystalline Solids,1996.202(1996):272-278.
    41. Limin Tong, Rafael R. Gattass, Jonathan B. Ashtcom, Sailing He, Jingyi Lou, Mengyan Shen, Iva Maxwell, and Eric Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature,2003.426:816-819.
    42. Gilberto Brambilla, Vittoria Finazzi, and David J. Richardson, Ultra-low-loss optical fiber nanotapers, Optics Express,2004.12(10):2258-2263.
    43. M. Sumetsky, How thin can a micro fiber be and still guide light? Optics Letters, 2003.31(7):870-872.
    44. Fei Xu, and Gilberto Brambilla, Embedding optical microfiber coil resonators in Teflon, Optics Letters.2007.32(15):2164-2166.
    45. X. Fang, C. R. Liao, and D. N. Wang, Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing, Optics Letters,2010.35(7):1007-1009.
    46. M. Sumetsky. Y. Dulashko, J. M. Fini, and A. Hale, Optical microfiber loop resonator, Applied Physics Letters,2005.86(2005):161108-161110.
    47.李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用,2005,科学出版社.
    48. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in Optical Fiber Waveguides-Application to Reflection Filter Fabrication, Applied Physics Letters, 1978,32 (10):647-649.
    49. G. Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Optics Letters,1989,14 (15):823-826.
    50. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, and D. L. Williams, All-fibre narrowband reflection gratings at 1500 nm, IEE Electronics Letters,1990,26 (11): 730-732.
    51. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO doped optical fibres, IEE Electronics Letters,1993,29 (13):1191-1193.
    52. R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses, IEE Electronics Letters, 1993,29(14):1234-1235.
    53. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Applied Physics Letters,1993,62(10):1035-1037
    54. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, Production of in-fibre gratings using a diffractive optical element, IEE Electronics Letters,1993,29 (6): 566-568.
    55. F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. M. Skinner, Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre:spectral response, IEE Electronics Letters,1991,27 (8):682-683.
    56. V. Bhatia, and A. M. Vengsarkar, Optical fiber Long-period grating sensors, Optics Letters,1996,21 (9):692-694.
    57. Yi-Ping Wang, D. N. Wang, Wei Jin, Yun-Jiang Rao, and Gang-Ding Peng, Asymmetric long period fiber gratings fabricated by use of CO2 aser to carve periodic grooves on the optical fiber, Applied Physics Letters,2006,89(151105):1-3.
    58. Haifeng Xuan, Wei Jin, Min Zhang, CO2 laser induced long period gratings in optical microfibers. Optical Express,2009,17(24):21882-21890.
    59. Yanxin Liu, Chao Meng, A. Ping Zhang, Yao Xiao, Huakang Yu, and Limin Tong, Compact micro fiber Bragg gratings with high-index contrast. Optical Letters,2011, 36(16):3115-3117.
    60. Ming Ding, Michalis N. Zervas, and Gilberto Brambilla, A compact broadband microfiber Bragg grating, Optical Express,2011,19(16):15627-1-15626.
    61. X. Fang, C. R. Liao, and D. N. Wang, Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing, Optical Letters,2010,35 (7):1007-1009.
    62. Patrik Hoffmann, Betrand Dutoit, and Rene-Paul Salathe, Comparison of mechanically drawn and protection layer chemically etched optical fiber tips, Ultramicroscopy,1995, 61(1995):165-170.
    63. Samir K. Mondal, Anupam Mitra, Nahar Singh, S. N. Sarkar, and Pawan Kapur, Optical fiber nanoprobe preparation for near-filed optical microscopy by chemical etching under surface tension and capillary action, Optical Express,2009,17(22): 19470-19475.
    64. Athanasios N. Chryssis, Sang M. Lee, Sang B. Lee, Simarjeet S. Saini, and Mario Dagenais, High Sensitivity Evanescent Field Fiber Bragg Grating Sensor, IEEE Photonics Technology Letters,2005,17(6):1253-1255.
    65. Athanasios N. Chryssis. Simarjeet S. Saini, Sang M. Lee, Hyunmin Yi,William E. Bentley, and Mario Dagenais, Detecting Hybridization of DNA by Highly Sensitive Evanescent Field Etched Core Fiber Bragg Grating Sensors, IEEE Journal of selected topics in quantum electronics,2005, 11(4):864-872.
    66. Minghong Yang, Jixiang Dai, Ciming Zhou, Desheng Jiang, Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials, Optical Express,2009,17(23):2077-2082.
    67.崔铮著.微纳米加工技术及其应用.北京:高等教育出版社,2005.
    68.顾文琪主编.电子束曝光微纳加工技术.北京:北京工业大学出版社,2004.
    69. Yongbin Lin, Yang Zou, and Robert G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing, Biomedical Optics Express,2011,2(3):478-484.
    70. Elizabeth J. Smythe, Michael D. Dickey, Jiming Bao, George M. Whitesodes, and Federico Capasso, Optical antenna arrays on a fiber facet for in situ surface-enhanced raman scattering detection, Nano Letters,2009,9(3):1132-1138.
    71. Bowen Wang, Timothy Siahaan, Mehmet A. Dundar, Richard Notzel. Marinus J. van der Hoek, Sailing He, and Rob W. van der Heijden, Photonic crystal cavity on aoptical fiber facet for refractive index sensing, Optics Letters,37(5):833-835.
    72. Shengfei Feng, Sabrina Darmawi, Torsten Henning, Peter J. Klar, and Xinping Zhang, A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber, Small,2012,10(1002):1-8.
    73. Johannes de Boor, Nadine Geyer, Jorg V Wittemann, Ulrich Gosele, and Volker Schmidt, Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching, Nanotechnology,2010,21 (2010):095302.
    74. Michael T. Gale, Markus Rossi, and Jorn Pedersen, Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists, Optical Engineering, 1994,33(11):3556-3566.
    75.韦乐平,张成良,光网络—系统、器件与联网技术.2006,人民邮电出版社.
    76. Dakin J, Culshaw B. Optical fiber sensors:principles and components volume I,1988, Artech House.
    77.李川,光纤传感器技术.2012,科学出版社.125-151.
    78.胡先志,光器件及其应用.2010,电子工业出版社.
    79. Myoung Jin Kim, Tae Joong Eom, Un-Chul Paek, and Byeong Ha Lee, Lens-free optical fiber connector having a long working distance assisted by matched long-period fiber gratings, Journal of lightwave technology,2005,23(2):588-596.
    80. S. Masuda, Variable attenuator for use in single-mode fiber transmission systems. Applied Optics,1980,19(14):2435-2438.
    81. J. M. Dziedzic, A. Ashkin, R. H. Stolen, and J. R. Simpson, Tension-adjusted in-line optical-fiber attenuator, Optics Letters,1983,8(12):647-649.
    82. Takeshi Ozeki, and B. S. Kawasaki, Optical directional coupler using tapered sections in multimode fibers, Applied Physics Letters,1976,28(9):528-529.
    83.廖延彪,偏振光学,2003, 科学出版社.
    84. W. L. Bames,2*2 optical fiber polarisation swith and polarisation controller. Electronics Letters,1988,24(23):1427-1429.
    85.何赛灵,戴道锌,微纳光子集成,2010,科学出版社.
    86. H. D. Ford, and R. P. Tatam, Narrow-band wavelength-division multiplexers using birefringent optical fibre. Optics Communications,1993,98(1993):151-158.
    87. Masataka Shirasaki, and Kunihiko Asama, Compact optical isolator for fibers using birefringent wedges. Applied Optics,1982,21(23):4296-4299.
    88. Xuejin Yan, and Shangqing Xiao, Magnetooptic circulator for optical fiber transmission, Journal of Applied Physics,1989,65(4):1664-1665.
    89. Yutaka Ohmori, and Haruo Ogiwara, Optical fiber switch driven by PZT bimorph, Applied Optics,1978,17(22):3531-3532.
    90. Masahiro Nunoshita, Yoshinori Nomura, Teruhito Matsui, and Takashi Nakayama, Optical switch for multimode optical-fiber systems, Optics Letters,1979,4(1):27-28.
    91. R. E. Wagner, and J. Cheng, Electrically controlled optical switch for multimode fiber applications, Applied Optics,1980,19(170:2921-2925.
    92. Y. H. Chew, Tjeng Thiang Tjhung, and F. V. Chrys Mendis, An optical filter of adjustable finesse using an amplified fiber ring resonator, Journal of Lightwave technology,1997,15(2):364-370.
    93. France P.W., Optical fibre lasers and amplifiers,1991, Blakie and Sons Ltd.
    94.聂秋华,光纤激光器和放大器技术,1997,电子工业出版社.
    95.郭玉彬,霍佳雨,光纤激光器及其应用,2008,科学出版社.
    96. Adolfo V.T. Cartaxo, Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators, Journal of Lightwave Technology,1999,17(2):178-190.
    97. Yongdan Hu, Shibin Jiang, Tao Luo, Karine Seneschal, Mike Morrell, Frederic Smektala, Seppo Honkanen, Jacques Lucas, and N. Peyghambarian, Performance of high-concentration Er3+-Yb3- codoped phosphate fiber amplifiers, Photonics Technology Letters,2001,13(7):657-659.
    98. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, Ultra-wide-band tellurite-based fiber raman amplifier. Journal of Lightwave Technology,2003,21(5):1300-1306.
    99. G. A. Ball and W. W. Morey, Compression-tuned single-frequency Bragg grating fiber laser, Optics Letters,1994,19 (23):1979-1981.
    100.J. L. Archambault, and S. G. Grubb, Fiber Gratings in Lasers and Amplifiers, Journal of Lightwave Technology,1997,15(8):1378-1390.
    101.江毅,高级光纤传感技术,2009,科学出版社.
    102.苑立波,杨军,光纤白光干涉传感技术,2011,北京航空航天大学出版社.
    103.饶云江,王义平,朱涛, 光纤光栅原理及应用,2006,科学出版社.
    104.W. W. Morey, G. Meltz, and W. H. Glenn, Fiber optic Bragg grating sensors. Proc. SPIE, 1989.1169:98-107.
    105.Kenneth O. Hill, and Gerald Meltz, Fiber Bragg grating technology fundamentala and overview, Journal of Lightwave Technology,1997,15(8):1263-1276.
    106.K. T. V. Grattan, Dr. T. Sun, Fiber optic sensor technology:an overview, Sensors and Actuators,2000,82(2000):40-61.
    107.A. D. Kersey, Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry, IEICE Transactions on Electronics,2000, E83-C (3):400-404.
    108.M. G. Shlyagin, S. V. Miridonov, V. V. Spirin, and J. Mendieta, Fiber Bragg grating sensor for liquid hydrocarbon detection, Proc. SPIE,2000,4074:108-115.
    109.D. Reilly, A. J. Willshire, G. Fusiek, P. Niewczas, and J. R. McDonald, A Fiber-Bragg-Grating-Based Sensor for Simultaneous AC Current and Temperature Measurement, IEEE Sensors Journal,2006,6 (6):1539-1542.
    110.P. J. Henderson, N. E. Fisher, D. A. Jackson, Current metering using fibre-grating based interrogation of a conventional current transformer, Proc. OFS-12,1997,186-189.
    111.H. N. Li, D. S. Li, and G. B. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering, Engineering Structures,2004,26 (11):1647-1657.
    112.T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu, W. H. Chung and L. K. Cheng, Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation, Engineering Structures,2006,28 (5), 648-659.
    113.H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, Fiber Bragg grating sensors for structural and railway applications, Proc. SPIE,2004,5634: 85-97.
    114.A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water, Applied Physics Letters,2005,87, 234105.
    115.D. J. Webb, Y. J. Rao, M. W. Hathaway, Medical temperature profile monitoring using multiplexed fibre Bragg gratings. Proc. SPIE,1998,3541:256-262.
    116.N. E. Fisher D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, Medical ultrasound detection using fiber Bragg gratings, Proc. SPIE,1999,3541:27-32.
    117.于秀娟,余有龙,张敏,廖延彪,光纤光栅传感器在航空航天复合材料/结构健康监测中的应用,激光杂志,2006年第27卷第1期,1-3。
    118.P. Foote,I. Read, Applications of optical fibre sensors in aerospace:the achievements and challenges, Proc. SPIE,2000,4074:246-261.
    119.D. Betz, L. Staudigel, and M. N. Trutzel, Test of a Fiber Bragg Grating Sensor Network for Commercail Aircraft Structures, Proc. OFS-16,2002,55-58.
    120.R. Willsch, Application of optical fiber sensors:technical and market trends, Proc. SPIE,2000,4074:24-31
    121.Y. Zhang, S.G. Li, Z. F. Yin, B. Q. Chen, and H. L. Cui, Fiber-Bragg-grating-based seismic geophone for oil/gas prospecting, Optical Engineering,2006,45 (8):084404.
    122.L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, Photonic crystal fiber long-period gratings for biochemical sensing, Optics Express,2006.14(18): p.8224-8231.
    123.X. D. Fan,I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Sensitive optical biosensors for unlabeled targets:A review, Analytica Chimica Acta,2008,620 (1-2):8-26.
    124.A. P. Zhang, L. Y. Shao, J. F. Ding, and Sailing He, Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature, IEEE Photonics Technology; Letters,2005,17(11):2397-2399.
    125. Al-Chalabi S A, Chlshaw B, David D E N, Partially coherent sources in interferometric sensors, Proceedings of the First International Conference on Optical Fiber Sensors, London,1983,132-135.
    126.Velluet M T, Graindorge P. Arditty H J, Fiber optic pressure sensor using white-light interferometry, Proc. SPIE,1987,838:78-83.
    127.Farahi F., Newson T. P., Jones J. D. C., and Jackson D. A., Coherence multiplexing of remote fiber Fabry-Perot sensing system. Optics Communications,1988,65(5): 319-321.
    128.Kotrotsios G, Parriaux, White light interferometry for distributed sensing on dual mode fibers monitoring, Proc.6th International Conference on Optical Fiber Sensors, Paris, 1989:568-574.
    129.Kexing Liu, Suzanne M. Ferguson, and Raymond M. Measures, Fiber-optic interferometric sensor for the detection of acoustic emission within composite materials, Optics Letters,1990,15(22):1255-1257.
    130.Hae Young Choi, Myoung Jin Kim, and Byeong Ha Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber, Optics Express,2007, 15(9):5711-5720.
    131.Masahiko Jinno, and Takao Matsumoto, Ultrafast, low power and highly stable all-optical switching in an all polarization maintaining fiber sagnac interferometer, IEEE Photonics Technology Letters,1990,2(5):349-351.
    132.Yun-Jiang Rao, Bing Xu, Zeng-Ling Ran, and Yuan Gong, Novel in-line fiber optic Fabry-Perot sensors based on etched erbium-and boron-doped optical fibers, IEEE Sensors,2009 Conference,861-864.
    133.L. M. N. Amaral, O. Frazao, J. L. Santos, and A. B. L. Ribeiro, Fiber-optic inclinometer based on taper michelson interferometer. IEEE Sensors Journal,2011,11(9): 1811-1814.
    134.Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technology Letters,2008, 20 (5-8):626-628.
    135.D. W. Kim, Y. Zhang, K. L. Cooper, and A. B. Wang, In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Applied Optics,2005,44 (26):5368-5373.
    136.J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim. and B. H. Lee, Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Optics Letters,2004,29 (4):346-348.
    137.K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, and H. Horinaka, Balanced polarization maintaining fiber Sagnac interferometer vibration sensor. Optics Express, 2011,19(22),21467-21474.
    138.H. P. Gong, C. C. Chan, L. H. Chen, and X. Y. Dong, Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop. IEEE Photonics Technology Letters,2010.22 (16):1238-1240.
    139.K. M. Zhou, Z. J. Yan, L. Zhang, and I. Bennion, Refractometer based on fiber Bragg grating Fabry-Perot cavity embedded with a narrow microchannel. Optics Express, 2011,19(12):11769-11779.
    140.Yun-Jiang Rao, Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors, Optical Fiber Technology,2006,12(2006):227-237.
    141.V.R. Machavaram, R.A. Badcock, G.F. Fernando, Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibers using hydrofluoric acid etching, Sensors and Actuators A,2007,138(2007):248-260.
    142.W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Note:Optical fiber milled by focused ion beam and its application for Fabry-Perot refractive index sensor. Review of Scientific Instruments,2011,82 (7).
    143.Anuj K. Sharma, Rajan Jha, and B. D. Gupta, Fiber-optic sensors based on surface plasmon resonance:a comprehensive review, IEEE Sensors Journal,2007,7(8): 1118-1129.
    144.B. D. Gupta, and R. K.Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications, Journal of Sensors,2009,979761: 1-12.
    145.Byoungho Lee, Sookyoung Roh, and Junghyun Park, Current status of micro- and nano-structured optical fiber sensors, Optical Fiber Technology,2009,15(2009): 209-221.
    146.Stijn Scheerlinck, Peter Dubruel, Peter Bienstman, Etienne Schacht, Dries Van Thourhout, and Roel Baets, Metal grating patterning on fiber facets bt UV-based nano imprint and transfer lithography using optical alignment, Journal of Lightwave Technology,2009,27(10):1415-1420.
    147.Lei Lei, Hao Li, Jian Shi, and Yong Chen, Microfluidic refractometer with intergrated optical fibers and end-facet transmission gratings, Review of Scientifiv Instruments, 2010,81(023103):1-3.
    148.Sajeev John, Strong localization of photonics in certain disordered dielectric superlattices, Physical Review Letters,1987,58(23):2486-2489.
    149.Eli Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters,1987,58(20):2059-2062.
    150.1noue K, Ohtaka K., Photonic crystals:physics. fabrication, and applications. Spring-Verlag Berlin Heidelberg New York,2004.
    151.Johnson S. G., Joannopoulos J. D., Photonics crystals:the road from theory to practice, Kluwer Academic Publishers, Boston,2002.
    152.Joannopoulos J. D., Meade R., Winn J. N., Photonic crystals modling the flow of light, Princeton university press,1995.
    153.温熙森等编著,光子/声子晶体理论与技术,科学出版社,2006.
    154.Philip ST J Russell, Photonic band gaps, Physics World,1992,5(8):37-42.
    155.J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters,21(19):1547-1549.
    156.J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa, W. J. Wadsworth, and P. St. J. Russell, Anomalous dispersion in photonic crystal fiber, IEEE Photonics Technology Letters, 2000,12(7):807-809.
    157.N. A. Mortensen, and M. D. Nielsen, Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters,2003,28(6):393-395.
    158.T. A. Birks, J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Optics Letters,1997,22(13):961-963.
    159.B, J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Experimental study of dual-core photonic crystal fibre, Electronics Letters,2000, 36(15):1358-1359.
    160.J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, Heike Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, Holey fibers for efficient 1-um pumped supercontinuum generation, Journal of Lightwave Technology,2006,24(1):183-190.
    161.J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, Photonic band gap guidencc in optical fibers. Science,1998,282:1476-1478.
    162.R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Single-mode photonic band gap guidance of light in air, Science,1999,285: 1537-1539.
    163.G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, Hollow core photonic crystal fibers for beam delivery,Optics Express,2004,12(8):1477-1484.
    164.F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science,2002, 298:399-402.
    165.Saikat Ghosh, Jay E. Sharping, Dimitre G. Ouzounov, and Alexander L. Gaeta, Resonant optical interactions with molecules confined in photonic bandgap fibers, Physical Review Letters,2005,94(093902):1-3.
    166.D. Torres, O. Weisberg, G. Shapira, C. Anastassiou, B. Temelkuran, et al, Omniguide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery, SPIE, Bellingham,2005,310-321.
    167.Marin Soljacic, Mihai Ibanescu, Steven G. Johnson, and J. D. Joannopoulos, and Yoel Fink, Optical bistability in axially modulated omniguide fibers, Optics Letters,2003, 28(7):516-518.
    168.M. Born and E. Wolf, Principles of Optics,7th ed. New York:Pergamon,1987, sec. 8.6.1.
    169.A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron., Vol. QE-9, pp.919-933,1973.
    170.C. Dix, P. F. Mckee, High accuracy electron-beam grating lithography for optical and optoelectronic devices, Journal of Vacuum Science and Technology, Vol.10(6), pp. 2667-2669,1992.
    171.J. E. Curran, Production of surface patterns by chemical plasma etching, Journal of Physics E, Vol.14, pp.393-407,1981.
    172.P. E. Dyer, R. J. Farley, and R. Giedl, Analysis and Application of 0/1 order Talbot Interferometer for 193 nm laser Grating Formation, Optics Communications, Vol.129, pp.98-108,1996.
    173.B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, Cladding-mode-resonances in air-silica microstructure optical fibers, Journal of Lightwave Technology,2000,18(8):1084-1100.
    174.N. Groothoff, J. Canning, E. Buchley, K. Lyttikainen, and J. Zagari, Bragg gratings in air-silica structured fibers, Optics Letters.2003,28(4):233-235.
    175.G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Structural long-period gratings in photonic crystal fibers. Optics Letters,2002,27(12):1013-1015.
    176.Yinian Zhu, Ping Shum, Joo-Hin Chong. M. K. Rao. and Chao Lu, Deep-notch, ultracompact long-period grating in a lardge-mode-area photonic crystal fiber, Optics Letters,2003,28(24):2467-2469.
    177.Jong H. Lim, Kyung S. Lee, Jin C. Kim, and Byeong H. Lee, Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure, Optics Letters,2004, 29(4):331-333.
    178.G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, Arc-induced long-period gratings, Fiber and Integrated Optics,2005,24:245-259.
    179.Boris T. Kuhlmey, Feng Luan, Libin Fu, Dong-Ⅱ Yeom, Benjamin J. Eggleton, Aimin Wang, and Jonathan C. Knight, Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings, Optics Express,2008,16(18): 13845-13856.
    180.A. Ping Zhang, Guofeng Yan, Shaorui Gao, Sailing He, Bongkyun Kim, Jooeun Im, and Youngjoo Chung, Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings, Applied Physics Letters,2011,98(221109): 1-3.
    181.A. Ping Zhang, Shaorui Gao, Guofeng Yan, and Yinbing Bai, Advances in optical fiber Bragg grating sensor technologies, Photonic Sensors,2012,2(1):1-13.
    182.A. Yariv, Coupled-mode theory for guided-wave optics, IEEE J. Quantum Electron. 1973,9(9):919-933
    183.Renaud Bachelot, Carole Ecoffet, Denis Deloeil, Pascal Royer, and Daniel-Hoseph Lougnot, Integration of micrometer-size polymer elements at the end of optical fibers by free-radical photopolymerization, Applied Optics,2001,40(32):5860-5871.
    184.Renaud Bachelot, Abdesslame Fares, Radouane Fikri, Dominique Barchiesi, Gilles Lerondel, and Pascal Royer, Coupling semiconductor lasers into single-mode optical fibers by using of tips grown by photopolymerization, Optics Letters,2004,29(17): 1971-1973.
    185.C. Pang, F. Gesuele, A. Bruyant, S. Blaize, G. Lerondel, and P. Royer, Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides, Optics Express,2009.17(9):6939-6945.
    186.Limin Xiao, Wei Jin, M. S. Demokan, Hoi L. Ho, Hwa-yaw Tam, and Jian Ju, Photolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers, Optics Letters,2006,31(12):1791-1793.
    187.X. H. Zeng, J. Plain, S. Jradi, P. Renaud Goud, R. Deturche, P. Royer, and R. Bachelot, High speed sub-micrometric microscopy using optical polymer microlens, Chinese Optics Letters,2009,7(10):901-903.
    188.O. Frazao, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, Fabry-Perot refractometer based on an end-of-fiber polymer tip, Optics Letters,2009,34(16):2474-2476.
    189.Meng Jiang, A. Ping Zhang, Yang-Chun Wang, Hwa-Yaw Tam, and Sailing He, Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber ebd-face mirror, Optics Express,2009,17(20): 17976-17978.
    190.Sandor Valkai, Laszlo Oroszi, and Pal Ormos, Optical tweezers with tips grown at the end of fibers by photopolymerization, Applied Optics,2009,48(15):2880-2883.
    191.Yinbing Bai, A. Ping Zhang, Guofeng Yan, and Sailing He, Selective excitation and coupling of high-order optical modes of a microstructured optical fiber by using a fiber-end microtip, Optics Letters,2011,36(20):4074-4076.
    192.Lucas B. Soldano, and Erik C. M. Pennings, Optical multi-mode interference devices based on self-imaging:principles and applications. Journal of Lightwave Technology, 1995,13(4):615-627.
    193.Denis Donlagic. and Miha Zavrsnik, Fiber-optic microbend sensor structure, Optics Letters.1997,22(11):837-839.
    194.David Barrera, Joel Villatoro, Vittoria P. Finazzi, Guillermo Alejandro Cardenas-Sevilla, Vladimir P. Minkovich, Salvador Sales, and Valerio Pruneri, Low-Loss Photonic Crystal Fiber Interferometers for Sensor Networks, Journal of Lightwave Technology-, 2010,28(24):3542-3547.
    195.Linh Viet Nguyen, Du-sun Hwang, Dae Seung Moon, and Youngjoo Chung, Tunable comb-filter using thermally expanded core fiber and ytterbium doped fiber and its application to multi-wavelength fiber laser, Optics Communications,2008,281(2008): 5793-5796.
    196.Bo Dong. Da-Peng Zhou. Li Wei, Wing-Ki Liu. and John W. Y. Lit, Temperature-and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer. Optics Express,2008.16(23):19291-19296.
    197.Tian-Hao Xia, A. Ping Zhang, Bobo Gu, and Jing-Jing Zhu. Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers, Optics Communications,2010,283(2010):2136-2139.
    198.Jing-Jing Zhu, A. Ping Zhang, Tian-Hao Xia, Sailing He, and Wei Xue, Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer, IEEE Sensors Journal,2010,10(9):1415-1418.
    199.Bobo Gu, Mingjie Yin, A. Ping Zhang, Jinwen Qian, and Sailing He, Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer, Optics Express,2011,19(5):4140-4146.
    200.A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature. IEEE Photonics Technology Letters,2005,17 (11),2397-2399.
    201.G. Decher, Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science,1997,277(5330),1232-1237.
    202.R. K. ller, Multilayers of colloidal particles. Journal of Colloid and Interface Science, 1966,21 (6),569-594.
    203.W. B. Stockton and M. F. Rubner, Molecular-level processing of conjugated polymers.4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules,1997,30 (9),2717-2725.
    204.J. Y. Chen, L. Huang, L. M. Ying, G. B. Luo, X. S. Zhao, and W. X. Cao, Self-assembly ultrathin films based on diazoresins. Langmuir,1999,15 (21),7208-7212.
    205.W. Muller, H. Ringsdorf, E. Rump, G. Wildburg, X. Zhang, L. Angermaier, W. Knoll, M. Liley, and J. Spinke, Attempts to mimic docking processes of the immune system: recognition-induced formation of protein multilayers. Science,1993,262 (5140), 1706-1708.
    206.V.R. Machavaram, R.A. Badcock, and G.F. Fernado, Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching, Sensor and Actuators,2007,138(2007):248-260.
    207.Y.C. Wang, M. Jiang, A.Ping Zhang, Weisheng Liu, and Yinbing Bai, Fabrication of Long-Period Grating Based Fiber-Optic Biosensors, International conference on Advanced Infocomm Technology (ICAIT),2009 (Xi'an. Chian).
    208.Y.C. Wang, A.P. Zhang, M.Jiang, B. Gu, and S. He, Core mode scatterer and fibre end-face mirror incorporated reflective long-period grating sensors, Electronics Letters, 2010,46(10).
    209.Limin Tong, Jingyi Lou, and Eric Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Optics Express,2004, 12(6):1025-1035.
    210.Yuhang Li, and Limin Tong, Mach-Zehnder interferometers assembled with optical microfibers or nanofibers, Optics Letters,2008,33(4):303-305.
    211.Shan-shan Wang, Zhi-Fang Hu, Yu-Hang Li, and Li-Min Tong, All-fiber Fabry-Perot resonators based on microfiber sagnac loop mirrors, Optics Letters,2009,34(3): 253-255.
    212.Wu Yu, Zeng Xu, Hou Changlun, Bai Jian, and Yang Guoguang, A tunable all fiber filter based on microfiber loop resonator, Applied Physics Letters,2008,92,191112.
    213.Xiaoshun Jiang, Qing Yang, Guillaume Vienne, Yuhang Li, and Limin Tong, Demonstration of microfiber knot laser, Applied Physics Letters,2006,89,143513.
    214.Wei Liang, Yanyi Huang, Yong Xu, Reginald K. Lee, and Amnon Yariv, Highly sensitive fiber Bragg grating refractive index sensors, Applied Physics Letters,2005,86, 151122.
    215.Raja Ahmad, Martin Rochette, and Chams Baker, Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires, Optics Letters,2011, 36(15):2886-2888.
    216.Gaoye Zhai, and Limin Tong, Roughness-induced radiation losses in optical micro or nanofibers, Optics Express,2007,15(21):13805-13816.
    217.A.V. Kovalenko, V. N. Kurashov, and A.V. Kisil, Radiation losses in optical nanofibers with random rough surface, Optics Express,2008,16(8):5797-5806.
    218.Eric J. Zhang, Wesley D. Sacher, and Joyce K. S. Poon, Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers, Optics Express,2010, 18(21):22593-22598.
    219.Jared C. Mikkelsen, and Joyce K.S. Poon, Microdroplet-highly birefringent low-loss fiber tapers, Optics Letters,2012,37(13):2601-2603.
    220.Yinbing Bai, A. Ping Zhang, Shaorui Gao, and Guiying Ma, Fabircation of low-loss microfiber Bragg gratings for highly sensitive sensor applications, Sensor Letters, 2012,10:1-4
    221.H. Kuwahara, M. Sasaki, and N. Tokoyo, Efficient coupling from semiconductor lasers into single-mode fibers with tapered hemispherical ends, Optics Letters, 1980,19(15):2578-2583.
    222.W. H. Cheng, C. S. Wang, and C. J. Hwang, Highly efficient power coupling between GaAIAs lasers and tapered-hemispherical-end multimode fibers, Applied Optics,1982, 21(19):3409-3410.
    223.G. D. Khoe, J. Poulissen, and H. M. de Vrieze, Efficient coupling of laser diodes to tapered monomode fibres with high-index end, Electronics Letters.1983,19(6): 205-206.
    224.Huei-Min Yang, Sun-Yuan Huang, Chao-Wei Lee, Tsong-Sheng Lay, and Wood-Hi Cheng, High-coupling tapered hyperbolic fiber microlens and taper asymmetry effect. Journal of Lightwave Technology,2004,22(5):1395-1401.
    225.Chun-Ching Wu, Yi-Dun Tseng, Su-Ming Kuo, and Che-Hsin Lin, Fabrication of asperical lensed optical fibers with an electro-static pulling of Su-8 Photoresist, Optics Express,2011,19(23):22993-22998.
    226.G. Eisenstein, and D. Vitello, Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers, Applied Optics,1982,21(19):3470-3474.
    227.Vera Russo, Giancarlo C. Righini, Stefano Sottini, and Silvana Trigari, Lens-ended fibers for medical applications:a new fabrication technique. Applied Optics,1984, 23(19):3277-3283.
    228.Bernd Hillerich. Shape analysis and coupling loss of microlenses on single-mode fiber tips, Applied Optics,1988,27(15):3102-3106.
    229.Minoru SASAKI, Tomokazu ANDO, Shinichiro NOGAWA, and Kazuhiro HANE, Direct photolithography on optical fiber end, Japanese Journal of Applied Physics,2002, l(6):4350-4355.
    230.Olivier Soppera, Colette Turck, and Daniel J. Lougnot, Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR, Optics Letters,2009, 34(4):461-463.
    231.R. A. Modavis, and T. W. Webb, Anamorphic microlens for laser diode to single-mode fiber coupling, IEEE Photonics Technology Letters,1995,7(7):798-780.
    232.Micea Udrea, Hamdi Orun, and All Alacakir, Laser polishing of optical fiber end surface, Optical Engineering,2001,40(9):2026-2030.
    233.Lasse Orsila, Robert Herda, and Oleg G. Okhotnikov, High repetition rate mode-locked ytterbium fiber laser using dichroric fiber mirrors and photonic bandgap fiber technology, SPIE,2008,6873,68731N.
    234.G. Kostovski, D. J. White. A. Mitchell, M. W. Austin, P. R. Stoddart, Nanoimprinted optical fibres:Biotemplated nanostructures for SERS sensing, Biosensors and Bioelectronics,2009,24(2009):1531-1535.
    235.Yongbin Lin, Yang Zou, Yuanyao Mo, Junpeng Guo, and Robert G. Lindquist, E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resnance biochemiacl sensing, Sensors,2010,10(10):9397-9406.
    236.Michael A. Butler, Fiber optic sensor for hydrogen concentrations near the explosive limit, Journal of the Electrochemical Society,1991,138(9):46-47.
    237.Jorge J. Alcoz, C. E. Lee, and Hendy F. Taylor, Embedded fiber-optic Fabry-Perot ultrasound sensor, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 1990,37(4):302-306.
    238.Frederik Ceyssens, Maarten Driesen, and Robert Puers, An optical absolute pressure sensors for high-temperature applications, fabricated directly on a fiber, Journal of Micromechanics and Microengineering,2009,19(2009):115017-115024.
    239.Khashayar Babaei Gavan, Jan H. Rector, Kier Heeck, Dhwajal Chavan, Grzegorz Gruca, Tjerk H. Oosterkamp, and Davide Iannuzzi, Top-down approach to fiber-top cantilevers, Optics Letters,2011,36(15):2898-2890.
    240.C. Viets, and W. Hill, Comparision of fibre SERS sensors with differently prepared tips. Sensors and Actuators B,1998,51(1998):92-99.
    241.Y. Zhu, R. A. Dluhy, and Y. Zhao, Development of siliver nanorod array based fiber optic probes for SERS detection, Sensors and Actuators B:Chemical,2011,157(1): 42-50.
    242.Gustavo F.S. Andrade, Meikun Fan, and Alexandre G. Brolo, Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing, Biosensors and Bioelectronics,2010,25(2010):2270-2275.
    243.Xuan Yang, Nazar Ileri, Cindy C. Larson, Thomas C. Carlson, Jerald A. Britten, Allan S. P. Chang, Claire Gu, and Tiziana C. Bond, Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering, Optics Express,2012,20(22): 24819-24826.
    244.Min Wang, Minghong Yang,Jie Cheng, Guilin Zhang, C. R. Liao, and D. N. Wang, Fabry-Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing, IEEE Photonics Technology Letters,2013,(Accepted)
    245.Huaibin Zhang, Shuai Nie, Candice M. Etson, Raymond M. Wang, and David R. Walt, Oil-sealed femtoliter fiber-optic arrays for single molecule analysis, Lab on a Chip, 2012,10.1039.
    246.Haitao Yan, Ming Wang, and YiXian Ge, Ping Yu, Colloidal crystals self-assembled on the end face of fiber:Fabrication and characterizations, Optical Fiber Technology,2009, 15(2009):324-327.
    247.A Petrusis, J H Rector, K Smith, S de Man, and D Iannuzzi, The align-and-shine technique for series production of photolithography patterns on optical fibres, Journal of Micromechanics and Microenginnering,19(2009) 047001.
    248.Yinbing Bai, A. Ping Zhang, Novel periodic microstructures fabricated by multi-exposure two-beam interference lithography, Asia Communications and Photonics Conference and Exhibition (ACP),2010(Shanghai China).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700