用户名: 密码: 验证码:
新疆北山地区笔架山岩带镁铁—超镁铁质岩体岩石成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆塔里木板块东北部的北山地区分布着许多镁铁-超镁铁质杂岩体,主要有罗东岩体、坡北岩体、以及由红石山、漩涡岭和笔架山东等岩体组成的笔架山岩带。其中,坡北岩体出露面积近200km~2,是我国境内目前已知出露面积最大的镁铁-超镁铁质层状岩体之一;笔架山岩带长约90km,出露面积约1000km~2,该岩带中多数岩体也属于典型的层状岩体。本文选取笔架山岩带中的红石山岩体、漩涡岭岩体和笔架山东岩体作为主要研究对象,通过系统的岩体地质特征、岩石学、矿物学和地球化学等方面的研究,深入探讨层状岩体的结构构造成因、岩浆演化过程、原生岩浆性质、岩浆源区性质与地幔动力学机制。主要取得了以下认识:
     1、笔架山岩带由红石山、漩涡岭和笔架山东等岩体组成,岩体堆晶结构和堆晶层理发育,属典型的层状岩体。岩石类型丰富,主要有纯橄岩、橄长岩、(含长)单辉橄榄岩、橄榄辉长岩、(淡色)辉长岩和斜长岩等;此外,在红石山岩体中有少量的橄榄辉石岩和辉石岩,在漩涡岭岩体中还有橄榄苏长岩、橄榄辉长苏长岩和辉长苏长岩。岩石结构类型多样,主要有正堆晶结构,此外还有补堆晶结构、中堆晶结构、包含结构、反应边结构和熔蚀结构等。
     2、红石山岩体和漩涡岭岩体发育韵律性层理,具有多个堆晶旋回,是岩浆多次注入的产物。堆晶结构和堆晶层理的成因可以归结为以下几方面:(a)岩浆房内的扩散对流对韵律性层理的形成起作用;(b)晶体成核速率和生长速率的波动、压力的震荡变化、在固相线下的冷却过程对韵律性层理的形成起到了重要作用,此外,压力的变化也使得熔蚀结构广泛发育;(c)当系统以液体为主时,重力分异对堆晶结构的形成起重要作用;(d)在固结过程中,压实作用对补堆晶结构的形成、斜长石等晶体的面理的形成以及晶体的变形等起到重要作用。
     3、红石山岩体、漩涡岭岩体和笔架山东岩体的超镁铁岩属于拉斑玄武岩系列,而镁铁质岩石多属钙碱性系列。元素地球化学特征和Nd、Sr同位素组成的演化趋势充分证明了同化混染作用随着岩浆演化过程的进行而逐渐增强,并不断促进了岩浆的分异,而且导致了岩石化学系列由拉斑玄武岩系列向钙碱性系列转化。
     4、笔架山岩带镁铁-超镁铁质岩体的原生岩浆有两类:苦橄质原生岩浆和高镁拉斑玄武质岩浆。其中,红石山岩体和漩涡岭岩体的原生岩浆属高温(~1350℃)高镁(MgO~14.00%)的苦橄质岩浆,笔架山东岩体的原生岩浆为高镁拉斑玄武岩浆(MgO~11.22%)。岩浆演化过程中主要发生了橄榄石和斜长石的分离结晶作用,此外还有少量斜方辉石和单斜辉石等的分离结晶。
     5、笔架山岩带受混染较弱的岩石的εNd(t)和εSr(t)值分别为+5.2~+7.5,-11.66~-2.9,属于洋岛玄武岩范围,其源区应为洋岛型地幔源区,源区物质应该是石榴石辉石岩。
     6、通过对笔架山二叠纪侵入岩和火山岩的时空关系、岩石地球化学特征和岩浆演化程度的研究认为,二者是同源岩浆分异的产物,岩浆进入现存岩浆房后,大量的堆晶相形成侵入岩,而演化的岩浆沿岩浆房顶部或旁侧的断层带溢出而形成火山岩。
     7、塔里木东北部二叠纪的幔源岩浆岩应是塔里木大火成岩省的组成部分,应该是地幔柱与岩石圈相互作用的产物:以漩涡岭、红石山、罗东等为代表的镁铁质-超镁铁质层状岩体是地幔柱轴部部分熔融的产物,坡北岩体镁铁质岩系和笔架山东岩体为地幔柱上涌诱发的岩石圈地幔部分熔融的产物,而柳园玄武岩带是在地幔柱影响下卷入的软流圈地幔的部分熔融形成的。
The mafic-ultramafic intrusions are well developed in northeastern Tarim plate, inBeishan, Xinjiang, such as the Luodong intrusion, Pobei intrusion and Bijiashan belt. ThePobei intrusion, nearly200km~2, is one of the largest mafic-ultramafic layered intrusions inChina. The Bijiashan belt, about90km in length and nearly1000km~2, is composed of theHongshishan intrusion, Xuanwoling intrusion, Bijiashandong intrusion and so on. Mostintrusions are typical layered intrusions. This paper selects the Hongshishan, Xuanwoling andBijiashandong intrusion of the Bijiashan belt as a key object of study. With the petrology,mineralogy and geochemistry of the intrusions, the paper explored the origin oftexture-structure of the layered intrusions, magmatic evolution and the nature of the primarymagma, magma source and mantle dynamics mechanism. The main cognitions gained fromthe research are as follows:
     The Hongshishan, Xuanwoling, and Bijiashandong intrusions are layered intrusions withcumulate texture and cumulate layering. Rock types are mainly dunite, troctolite,plagioclase-bearing wehrlite, olivine gabbro, gabbro-lecuogabbro, and anorthosite. In addition,the Hongshishan intrusion has a small amount of olivine pyroxenite and pyroxenite and theXuanwoling intrusion has olivine norite, olivine gabbronorite and gabbronorite. There arediverse types of textures, which is mainly ortho-cumulatic texture, and other texture are less,such as adcumulatic texture, mesocumulatic texture, poikilitic texture, corona texture andcorroded texture.
     The Hongshishan intrusion and Xuanwoling intrusion develop rhythmic layers andcumulate cycles, which represent the product of multiple magmas pulses. The origins ofcumulate textures and cumulate layers can be attributed to the following aspects:(a) Diffusiveconvection in magma chamber has effects on the formation of the rhythmic layer;(b)Nucleation rate fluctuations and growth rate fluctuations, the oscillatory change of pressureand the supercooling process in subsolidus are also important to form rhythmic layer, inaddition, the pressure change also makes the corroded texture extensively developed;(c)Gravitational differentiation plays an important role in the formation of cumulate structurewhen the system is mainly composed of liquids;(d)In the consolidation process, compactionplays an important role to the formation of adcumulate structure, the formation of the foliationof plagioclase crystals and crystal deformation.
     Ultramafic rocks of the Hongshishan, Xuanwoling and Bijiashandong intrusion belong totholeiite series, and mafic ones are mostly calc-alkalic series. The geochemical characteristics and the evolutionary trend of Nd and Sr isotopic composition, fully demonstrate that thecontamination increased as magma evolving. At the same time, contamination promotedmagmatic differentiation and brought about the transformation of geochemical series fromtholeiitic series to calc-alkaline series.
     The primary magmas of mafic-ultramafic intrusions of the Bijiashan belt have picriticmagma and high-Mg tholeiitic magma. The primary magmas of the Hongshishan andXuanwoling intrusion are high-Mg (MgO~14.00%) picritic ones with high temperature(~1350°C); the primary magma of the Bijiashandong intrusion is high-Mg tholeiitic magma(MgO~11.22%) with the temperature to1280°C. And the magmas have mainly undergonefractional crystallization of olivine and plagioclase, and a small amout of orthopyroxene andclinopyroxene in the magmatic evolution. The εNd(t) and εSr(t) values of weak contaminationrocks are+5.2~+7.5,-11.66~-2.9respectively, belonging to the range of oceanic island basalts,so its source should be oceanic island-type mantle source, and the material of magmaticsource should be garnet-pyroxenolite.
     Through studies on the temporal relationships, geochemical characteristics and thedegree of magmatic evolution between Bijiashan intrusive rocks and volcanic rocks webelieve that the Bijiashan mafic-ultramafic intrusive rocks and the volcanics are derived fromthe same magma, the numerous cumulations form intrusive rocks after magma entered presentchamber, whereas the evolved magma overflowed along the faulted zones or the upperboundary of magma chamber.
     The Permian mantle-derived igneous rocks in northeastern Tarim Plate, should be a partof the Tarim large igneous province (LIP) and the products of interaction between mantleplume and lithosphere: the Xuanwoling, Hongshishan and Luodong intrusions are products ofpartial melting of plume axis, mafic layered series of Pobei intrusion and Bijiashan intrusionsare derived from partial melting of lithosphere mantle induced by mantle plume upwelling,and Liuyuan basalt belt is the products of asthenosphere mantle partial melting.
引文
[1] Wager L.R., Brown G.M. Layered igneous rocks [M]. Edinburgh&London: Oliver&Boyd,1968,1-588
    [2] Naldrett A.J. Magmatic sulfide deposits[M]. New York: Oxford University Press,1989,1-186
    [3] Naldrett A.J. Magma Sulfide Deposits: Geology, Geochemistry and Exploration [M].Berlin: Springer,2004,1-17
    [4] MacDonald A.J. Ore deposit models:12. The platinum group element deposits:classification and genesis [J]. Geoscience Canada,1987,14(3):1-20
    [5] Charlier B., Duchesne J.C., Sakoma E. Magma chamber processes in the Tellnes ilmenitedeposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti oresin massif-type anorthosites[J]. Chemical Geology,2006,234(3-4):264-290
    [6] Charlier B., Sakoma E., Sauvé M., et al. The Grader layered intrusion (Havre-Saint-PierreAnorthosite, Quebec) and genesis of nelsonite and other Fe–Ti–P ores [J]. Lithos,2008,101(3-4):359-378
    [7] Zhou M.F., Robinson P.T., Lesger C.M., et al. Geochemistry, petrogenesis andmetallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxidedeposits, Sichuan province, SW China[J]. Journal of Petrology,2005,46(11):2253-2280
    [8] Zhou M.F., Arndt N.T., Malpas J., et al. Two magma series and associated ore deposittypes in the Permian Emeishan large igneous province, SW China [J]. Lithos,2008,103:352-368
    [9]周美夫.攀西地区层状辉长岩体及钒钛磁铁矿床的成因[J].2005,24(5):381-384
    [10] Lee C.A. A review of mineralization in the Bushveld Complex and some other layeredintrusions [A]. In: Cawthorn R.G.(eds.). Layered intrusions [M]. Amsterdam: ElsevierScience,1996,103-145
    [11]王登红,应汉龙,骆耀南,陈毓川,朱明玉.试论与布什维尔德杂岩体有关的铂族元素—铬铁矿矿床成矿系列及其对中国西南部的意义[J].地质与资源,2002,11(4):243-249
    [12]钟宏,胡瑞忠,朱维光,等.层状岩体的成因及成矿作用[J].地学前缘,2007,14(2):159-172
    [13] Barling J., Weis D., Demaiffe D. A Sr-, Nd-and Pb-isotopic investigation of thetransition between two megacyclic of the Bjerkreim-Sokndal layered intrusion, southNorway [J]. Chemistry Geology,2000,165:47-65
    [14] Stewart B.W., Depaolo D.J. Isotopic studies of processes in mafic magma chambers:Ⅱ.The Skaergaard intrusion, East Greenland[J]. Contributions to Mineralogy and Petrology,1990,104:125-141
    [15] Kruger F.J., Marsh J.S. Significance of87Sr/86Sr ratios in the Merensky cyclic unit of theBushveld Complex [J]. Nature,1982,298:53-55
    [16] Irvine T.N. Crystallization sequences in the Muskox intrusion and other layeredintrusions-Ⅱ. Origin of chromitite layers and similar deposit s of other magmatic ores[J]. Geochim Cosmochim Acta,1975,39:991-1020
    [17] Irvine T.N., Keith D.W., Todd S.G. The J-M platinum palladium reef of the StillwaterComplex, Montana. II. Origin by double convective magma mixing and implications forthe Bushveld Complex [J]. Economic Geology,1983,78:1287-1334
    [18]李华芹,梅玉萍,屈文俊,蔡红,杜国民.新疆坡北基性-超基性岩带10号岩体SHRIMP U-Pb和矿石Re-Os同位素定年及其意义[J].矿床地质,2009,28(5):633-642
    [19]姜常义,程松林,叶书锋,等.新疆北山地区中坡北山北镁铁质岩体地球化学与岩石成因[J].岩石学报,2006,22(1):115-126
    [20]李华芹,陈富文,梅玉萍,等.新疆坡北基性-超基性岩带1号岩体Sm-Nd和SHRIMPU-Pb同位素年龄及其地质意义[J].矿床地质,2006,25(4):463-469
    [21]孙赫,秦克章,唐冬梅,等.新疆北山罗东岩体橄榄石特征对岩浆演化和硫化物熔离的指示[J].科技导报,2010,28(18):21-26
    [22]苏本勋,秦克章,孙赫,等.新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征:对同化混染和结晶分异过程的启示[J].岩石学报,2009,25(4):873-887.
    [23]苏本勋,秦克章,孙赫,等.新疆北山地区漩涡岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究[J].岩石学报,2010,26(11):3283-3294.
    [24]敖松坚.北山造山带古生代增生构造演化:来自蛇绿岩与阿拉斯加型杂岩体的证据[D].北京:中国科学院地质与地球物理研究所,2010.
    [25] Ao S.J., Xiao W.J., Han C.M., Mao Q.G., Zhang J.E. Geochronology and geochemistryof Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China:Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. GondwanaResearch,2010,18:466-478
    [26] Qin K.Z., Su B.X., Sakyi P.A., et al. SIMS zircon U-Pb geochronology and Sr-Ndisotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishanin correlation with flood basalts in Tarim Basin (NW China): Constraints on A ca.280Mamantle plume[J].American Journal of Science,2011,311(3):237-260
    [27] Su B.X., Qin K.Z., Sakyi P.A., et al. U-Pb ages and Hf-O isotopes of zircons from LatePaleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonicimplications and evidence for an Early-Permian mantle plume [J]. Gondwana Research,2011,20:516-531
    [28] Su B.X., Qin K.Z., Sakyi P.A., et al. Geochronologic-petrochemical studies of theHongshishan maficultramafic intrusion, Beishan area, Xinjiang (NW China):petrogenesis and tectonic implications [J]. International Geology Review,2012,54(3):270-289
    [29]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997,1-438
    [30]孙林华,王岳军,范蔚茗,等.新疆巴楚辉绿岩岩脉的岩石成因和大地构造意义[J].岩石学报,2007,23(6):1369-1380
    [31]凌锦兰,夏明哲,郭娜欣,等.新疆北山地区罗东镁铁质-超镁铁质层状岩体岩石成因[J].地球化学,2011,40(6):499-515
    [32] Miller J.D.J., Rippley E.M. Layered intrusions of the Duluth Complex, Minnesota, USA[A]. In: Cawthorn R.G.(Ed.), Layered Intrusions [M]. Developments in Petrology,Amsterdam: Elsevier Science,1996,257-301
    [33] Iljina M., Karinen T., R s nen J. The Koillismaa Layered Igneous Complex: generalgeology, structural development and related sulphide and platinum-group elementmineralization [A]. In: Piestrzynski A., et al.(Ed.), Proceedings of the Sixth BiennialSGA–SEG meeting[C]. Balkema Publishers, Lisse,2001,649-652
    [34] McBirney A.R. The Skaergaard intrusion[A]. In: Cawthorn R.G.(Ed.), LayeredIntrusions [M]. Developments in Petrology, Amsterdam: Elsevier Science,1996,147-180
    [35] Gladczenko T.P., Hinz K., Eldholm O., et al. South Atlantic volcanic margins [J]. Journalof the Geological Society of London,1997,154(3):465-470
    [36] White R.S., Smith L.K., Roberts A.W., et al. Lower-crustal intrusion on the NorthAtlantic continental margin [J]. Nature,2008,452:460-464
    [37] Ferris, J., Johnson, A., Storey, B. Form and extent of the Dufek intrusion, Antarctica,from newly compiled aeromagnetic data [J]. Earth and Planetary Science Letters,1998,154(1-4):185-202
    [38] Ferré E.C., Bordarier C., Marsh J.S. Magma flow inferred from AMS fabrics in a layeredmafic sill, Insizwa, South Africa [J]. Tectonophysics,2002,354:1-23
    [39] McCallum I.S. The Stillwater Complex [A]. In: Cawthorn R.G.(Ed.), Layered Intrusions.Developments in Petrology [M], Amsterdam: Elsevier Science,1996,441-483
    [40] Eales H.V., Cawthorn R.G. The Bushveld Complex [A]. In: Cawthorn R.G. Layeredintrusions [M]. Amsterdam: Elsevier Science,1996,181-229
    [41] Walraven F., Armstrong R.A., Kruger F. J. A chronostratigraphic framework for thenorth-central Kaapvaal Craton, the Bushveld Complex and Vredefort structure[J].Tectonophysics,1990,171:23-48
    [42] Buick I.S., Maas R., Gibson R. Precise U-Pb titanite age constraints on the emplacementof the Bushveld Complex, South Africa[J]. Journal of the Geological Society (London),2001,158:3-6
    [43] Hatton C.J. Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces[J]. Journal African Earth Sciences,1995,21(4):571-577
    [44] Depaolo D.J., Wasserburg G.J. Sm-Nd age of the Stillwater Complex and the mantleevolution curve for neodymium[J]. Geochimica et Cosmochimica Acta,1979,43:999-1008
    [45] Nunes P.D. The age of the Stillwater Complex-a comparison of U-Pb zircon and Sm-Ndisochron systematics [J]. Geochimica et Cosmochimica Acta,1981,45:1961-1963
    [46] Premo W.R., Helz R.T., Zientek M.L., et al. U-Pb and Sm-Nd ages for the StillwaterComplex and its associated dikes and sills, Beartooth Mountains, Montana: dentificationof a parent magma[J]. Geology,1990,18:1065-1068
    [47] Pirajno F. Hotspots and mantle plumes: global intraplate tectonics, magmatism and oredeposits [J]. Mineralogy and Petrology,2004,82:183-216
    [48] Hamilton J. Strontium isotope and trace element studies on the Great Dyke and Bushveldmafic phase and their relation to early Proterozoic magma genesis in southern Africa[J].Journal of Petrology,1977,18:24-52
    [49] Paces J.B., Miller Jr J.D. Precise U-Pb ages of Duluth Complex and related maficintrusions, northeastern, Minnesota: new insights for physical, petrogenetic,paleomagnetic and tectonomagmatic processes associated with1.1Ga Midcontinentrifting [J]. Journal of Geophysical Research,1993,98:13997-14013
    [50] Nicholson S.W., Shirey S.B. Midcontinent rift volcanism in the Lake Superior region: Sr,Nd and Pb isotopic evidence for a mantle plume origin [J]. Journal of GeophysicalResearch,1990,95:10851-10868
    [51] Hoatson D.M., Sun S.S. Archean layered mafic-ultramafic intrusions in the west PilbaraCraton, western Australia: a synthesis of some of the oldest orthomagmatic mineralizingsystems in the world [J]. Economic Geology,2002,97:847-872
    [52] Alapieti T.T., Lahtinen J.J. Stratigraphy, petrology, and platinum-group elementmineralization of the early Proterozoic Penikat layered intrusion, northern Finland[J].Economic Geology,1986,81:1126-1136
    [53] Alapieti T.T., Lahtinen J.J. Platinum-group element mineralization in layered intrusion ofnorthern Finland and the Kola Peninsula, Russia[A]. In: Cabri L.J. The geology,geochemistry, mineralogy, mineral beneficiation of the platinum-group elements [M].Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume,2002,54:507-546
    [54] Hanski E., Walker R.J., Huhma H., et al. The Os and Nd isotopic systematics of c.2.44Ga Akanvaara and Koitelainen mafic layered intrusions in northern Finland [J].Precambrian Research,2001,109:73-102
    [55] Amelin J.U.V., Heamann L.M., Semenov V.S. U-Pb geochronology of layered maficintrusions in the Eastern Baltic Shield: implications for the timing and duration ofPaleoproterozoic continental rifting [J]. Precambrian Research,1995,75(1-2):31-46
    [56] Hamilton M.A., Pearson D.G., Thompson R.N., et al. Rapid eruption of Skye lavasinferred f rom precise U-Pb and Ar-Ar dating of the Rum and Cuillin plutonic complexes[J]. Nature,1998,394:260-263
    [57] Zhong H., Hu R.Z., Wilson A.H., et al. Review of the link between the Hongge layeredintrusion and Emeishan flood basalts, southwest China [J]. International GeologyReview,2005,47:971-985
    [58] Zhong H., Zhu W.G. Geochronology of layered mafic intrusions from the Pan-Xi area inthe Emeishan large igneous province, SW China [J]. Mineralium Deposita,2006,41:599-606
    [59]赵莉,张招崇,王福生,等.一个开放的岩浆房系统:攀西新街镁铁-超镁铁质层状岩体[J].岩石学报,2006,22:1565-1578
    [60] Zhong H., Zhou X.H., Zhou M.F., et al. Platinum-group element geochemistry of theHongge Fe-V-Ti deposit in the PanXi Area, southwestern China[J]. Mineralium Deposita,2002,37:226-239
    [61] Zhong H., Yao Y., Prevec S.A., et al. Trace-element and Sr-Nd isotopic geochemistry ofthe PGE-bearing Xinjie layered intrusion in SW China [J]. Chemical Geology,2004,203:237-252
    [62] Naslund H.R., McBirney A.R. Mechanisms of formation of igneous layering[A]. In:Cawthorn R.G. Layered intrusions [M]. Amsterdam: Elsevier Science,1996,1-41
    [63] McBirney A.R., Nicolas A. The Skaergaard layered series. PartⅡ.Magmatic flow anddynamic layering [J]. Journal of Petrology,38(5):569-580
    [64] Boudreau A.E., McBirney A.R. The Skaergaard layered series. PartⅢ. Non-dynamiclayering[J]. Journal of Petrology,38(8):1003-1020
    [65] Campbell I.H. Fluid dynamic processes in basaltic magma chambers [A]. In: CawthornR.G. Layered intrusions [M]. Amsterdam: Elsevier Science,1996:45-76
    [66]Kruger F.J., Marsh J.S. The mineralogy, petrology and origin of the Merensky Cyclic Unitin the western Bushveld Complex [J]. Economic Geology,1985,80(4):958-974
    [67]Davies G., Tredoux M. The platinum-group element and gold content of marginal rocksand sills of the Bushveld Complex[J]. Economic Geology,1985,80:838-848
    [68]Harmer R.E., Sharpe M.R. Field relations and st rontium isotope systematics of t hemarginal rocks of the Eastern Bushveld Complex [J]. Economic Geology,1985,80:813-837
    [69] Barnes S.J., Maier W.D. Platinum-group element s and microstructures of normalMerensky Reef from Impala platinum mines, Bushveld Complex[J]. Journal ofPetrology,2002,43:103-128
    [70] Kruger F.J. Filling the Bushveld Complex magma chamber: lateral expansion, roof andfloor interaction, magmatic unconformities, and the formation of giant chromitite, PGEand Ti-V-magnetitite deposits[J]. Mineralium Deposita,2005,40:451-472
    [71]Thorpe R.S., Francis P.W., O’ Callagham L. Relative role of source compositions,fractional crystallization and crustal contamination in the petrogenesis of Andeanvolcanic rocks[J]. Philosophical Transactions of the Royal Society of London,1984,A310:675-692
    [72] Spera F.J., Bohrson W.A. Open-system magma chamber evolution: anenergy-constrained geochemical model incorporating the effects of concurrent eruption,recharge, variable assimilation and fractional crystallization (Ec-E’RAxFC)[J]. Journal ofPetrology,2004,45(12):2459-2480
    [73] Maier W.D., Arndt N.T., Curl E. Progressive crustal contamination of the BushveldComplex: evidence from Nd isotopic analyses of the cumulus rocks [J]. Contributions toMineralogy and Petrology,2000,140:328-343
    [74] McCallum I.S. Evidence for crustal recycling during the Archean: the parental magmasof t he Stillwater Complex, Montana[J]. Lunar Planet Inst Tech Rep,1988,88:92-94
    [75] Ripley E.M., Alawi J. Petrogenesis of politic xenoliths at the Babbitt Cu-Ni deposit,Duluth Complex, Minnesota [J]. Lithos,1988,21:143-159
    [76] Ripley E.M., Bulter B.K., Taib N.I. Effects of devolatilization the hydrogen isotopiccompositeon of politic rocks in the contact aureole of t he Duluth Complex, northeasternMinnesota, USA [J]. Chemical Geology,1992,102:185-197
    [77] Ripley E.M., Bulter B.K., Taib N.I., et al. Hydrothermal alteration in the Babbit Cu-Nideposit, Duluth Complex: mineralogy and hydrogen isotopic systematics [J]. EconomicGeology,1993,88:679-696
    [78] Lambert D.D., Walker R.J, Morgan J.W., et al. Re-Os and Sm-Nd isotope geochemistryof the Stillwater Complex, Montana: implications for the petrogenesis of the J-M Reef[J]. Journal of Petrology,1994,35:1717-1753
    [79] Palacz Z.A. Sr-Nd-Pb isotopic evidence for crustal contamination in the Rhum intrusion[J]. Earth and Planetary Science Letters,1985,74:35-44
    [80] Carr H.W., Kruger F.J., Groves D.I., et al. The petrogenesis of Merensky Reef potholes atthe Western Patinum Mine, Bushveld complex: Sr-isotopic for synmagmaticdeformation[J]. Mineralium Deposita,1999,34:335-347
    [81] Lambert D.D., Morgan J.W., Walker R.J., et al. Rhenium-osmium andsamarium-neodymium isotopic systematics of the Stillwater Complex, Montana[J].Science,1989,244:1169-1174
    [82] Emslie R.F., Hegner E. Reconnaissance isotopic geochemistry of anorthositemangerite-charnockite-granite (AMCG) complexes, Grenville Province, Canada [J].Chemical Geology,1993,106(3-4):279-298
    [83] Coffin M.F., Eldholm O. Large Igneous Provinces: JOI/USSAC workshop report[R]. TheUniversity of Texas at Austin Institute for Geophysics Technical Report,1991,1-114
    [84] Coffin M.F., Eldholm O. Volcanism and continental break-up: a global compilation oflarge igneous provinces [A]. In: Storey B.C., Alabaster T., Pankhurst, R.J.(Eds.),Magmatism and the Causes of Continental Break-up[M]. Geological Society of LondonSpecial Publication,1992,68:17-30
    [85] Coffin, M.F., Eldholm, O.,1993a. Scratching the surface: estimating dimensions of largeigneous provinces. Geology21,515-518
    [86] Coffin M.F., Eldholm O. Large igneous provinces [J]. Scientific American,1993,269:42-49
    [87] Coffin M.F., Eldholm O. Large igneous provinces: crustal structure, dimensions, andexternal consequences [J]. Reviews of Geophysics,1994,32:1-36
    [88]王德滋,周金城.大火成岩省研究新进展[J].高校地质学报,2005,11(1):1-8
    [89] Bryan S.E., Ernst R.E. Revised definition of Large Igneous Provinces(LIPs)[J].Earth-Science Reviews,2008,86:175-202
    [90] Lightfoot P.C., Hawkesworth C.J., Hergt J., et al. Remobilisation of the continentallithosphere by a mantle plume: major-, trace-element, and Sr-,Nd and Pb-isotopeevidence from picritic and tholeiitic lavas of the Noril’sk District. Mexico. Contributionsto Mineralogy and Petrology,1993,114:171-188.
    [91]杨树锋,陈汉林,冀登武,等.塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义[J].高校地质学报,2005,11(4):504-511
    [92]姜常义,张蓬勃,卢登蓉,等.柯坪玄武岩的岩石学、地球化学、Nd、Sr、Pb同位素组成与岩石成因[J].地质论评,2004,50(5):492-500
    [93]姜常义,贾承造,李良辰,等.新疆麻扎尔塔格地区铁富集型高镁岩浆的源区[J].地质学报,2004,78(6):770-780
    [94]姜常义,张蓬勃,卢登荣,等.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区[J].岩石学报,2004,20(6):1433-1444
    [95]姜常义,姜寒冰,叶书锋,等.新疆库鲁克塔格地区二叠纪脉岩群岩石地球化学特征,Nd、Sr、Pb同位素组成与岩石成因[J].地质学报,2005,79(6):823-833
    [96]Rogers N., MeDonald R., Fitton J.G., et al. Two mantle Plumes beneath the EastAfriean rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts[J]. EarthPlanet. Sei. Lett.,2000,176:387-400
    [97]徐义刚,钟孙霖.峨眉山大火成岩省:地慢柱活动的证据及其熔融条件[J].地球化学,2001,30(1):l-9
    [98]张招崇,王福生.峨眉山玄武岩区两类玄武岩的地球化学:地慢柱-岩石圈相互作用的证据[J].地质学报,2002,2:229-237
    [99]姜常义,钱壮志,姜寒冰,等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报,2007,23(4):777-792
    [100] Jone A.P. Meteorite impacts as triggers to large igneous provinces [J]. Elements,2005,1:277-281
    [101] Jones A.P, Wunemann K., Price G.D. Modeling impact volcanism as a possible originfor the Ontong Java Plateau [A]//Foulger G R, Natland J H, Presnall D C, et a.l Plates,Plumes and Paradigms [M]. Boulder: GeologicalSociety of America, Special Paper,2005,388:711-720
    [102] Alvarez W. Comparing the evidence relevant to impact and flood basalt at times ofmajor mass extinctions [J]. Astrobiology,2003,3:153-161
    [103]校培喜,王兴安,王育习,等.笔架山幅1:25万区域地质调查(修测)k46c004002[R].西安地质矿产研究所,2005,1-291
    [104]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993,1-580
    [105]夏明哲.新疆东天山二叠纪黄山岩带镁铁-超镁铁质岩石成因及成矿作用[D].长安大学,2009,1-137
    [106] Wager L.R., Brown G.M., Wadsworth W.J. Types of igneous cumulates [J]. Journal ofPetrology,1960,1,73-85
    [107] Wyllie, P.J.. Ultramafic and related rocks [M]. New York: Wiley,1967,1-238
    [108] Poldervaart A., Hess H.H. Pyroxenes in the crystallization of basaltic magmas [J]. TheJournal of Geology,1951,59:472-489
    [109]张旗.镁铁-超镁铁岩与威尔逊旋回.岩石学报,1992,8(2):168-176
    [110] Barnes S.J., Roeder P.L. The range of spinel compositions in terrestrial mafic andultramafic rocks [J]. Journal of Petrology,2001,42:2279-2302
    [111] Barnes S.J., Tang Z.L.Chrome spinels from the Jinchuan Ni-Cu sulphide deposit,Gansu Province, People's Republic of China. Economic Geology,1999,94:343-356
    [112] Zhou M.F., Robinson P.T. Origin and tectonic setting of podiform chromitedeposits[J].Economic Geology,1997,92:259-262
    [113] Wang C.Y., Zhou M.F., Zhao D.G. Mineral chemistry of chromite from the PermianJinbaoshan Pt-Pd-sulphide-bearing ultramafic intrusion in SW China with petrogeneticimplications[J]. Lithos,2005,83:47-66
    [114]路凤香,桑隆康.岩石学[M].北京:地质出版社,2002,130-137
    [115] McKenzie D. The generation and compaction of partially molten rock [J]. Journal ofPetrology,1984,25:713-765
    [116] Murase T., McBirney A.R. Properties of some common igneous rocks and their melts athigh temperature [J]. Geological Society of America Bulletin,1973,84(11):3563-3592
    [117]宋谢炎,王玉兰,张正阶,等.层状侵入体韵律层理形成过程的定量模拟-以四川攀枝花层状岩体为例[J].地质学报,1999,73(1):37-46
    [118]Morse S.A. Is the cumulate paradigm at risk? An extended discussion of Hunter&Sparks [J]. Journal of Petrology,1998,106:367-370
    [119]Viliger S., Ulmer P., Müntener O., Thompson A.B. The liquid line of descent ofanhydrous, mantle-derived, tholeiitic liquids by fractional and equilibriumcrystallization—an experimental study at1.0GPa [J]. Journal of Petrology,2004,45:2369-2388
    [120]Villiger S., Ulmer P., Müntener O. Equilibrium and fractional crystallizationexperiments at0.7GPa; the effect of pressure on phase relations and liquid compositionsof tholeiitic magmas [J]. Journal of Petrology,2007,48:159-184
    [121]Osborn E.F. Changes in phase relations in response to change in pressure from1atm to10kbar for the system Mg2SiO4-iron oxide-CaAl2Si2O8-SiO2[J]. Carnegie Institution ofWashington,1978,77:784-790
    [122]Panjasawatwong Y., Danyushevsky L.V., Crawford A.J., et al. An experimental study ofthe effects of melt composition on plagioclase-melt equilibria at5and10kbar:implications for the origin of magmatic high-An plagioclase[J]. Contributions toMineralogy and Petrology,1995,118:420-432
    [123]Lin B.R. Pressure increases, the formation of chromite seams, and the development ofthe ultramafic series in the Stillwater Complex, Montana[J]. Journal of Petrology,1993,34:955-976
    [124]吴利仁.论中国基性、超基性岩的成矿专属性[J].地质科学,1963,1:29-41
    [125]Miyashiro A. Classification, characteristics and origin of ophiolites [J]. Journal ofGeology,1974,83:249-281
    [126]McDonough W.F., Sun S.S. The composition of the Earth[J]. Chemical Geology,1995,120:223-253
    [127]Zindler A., Hart S.R. Chemical geodynamics[J]. Annual Review of Earth and PlanetarySciences,1986,14:493-571
    [128]Le Maitre R.W.火成岩分类及术语辞典[M].北京:地质出版社,1991,42-46
    [129]Kuno H. Lateral variation of basalt magma types across continental margins and islandarcs[J]. Bulletin of Volcanology,1966,29:195-222
    [130]Miyashiro A. Volcanic rock series in island arcs and continental margins. AmericanJournal of Science,1974,274:321-355
    [131]Allegre C.J., Lewin E., Dupre B. A coherent crust-mantle model for theuranium-thorium-lead isotopic system[J]. Chemical Geology,1988,70:211-234
    [132]Bacon C.R., Druitt T.H. Compositional evolution of the zoned calcalkaline magmachamber of mount Mazama, Crater Lake, Oregon[J]. Contribution to Mineralogy andPetrology,1988,98:224-256
    [133]Ingle S., Weis D., Frey F.A. Indian continental crust recovered from Elan Bank,Kerguelen Plateau (ODP Leg183, Site1137)[J]. Journal of Petrology,2002,43(7):1241-1257
    [134]Sun S.S., McDonough W.F.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[A]. In: Saunders AD, Norry MJ (eds)Magmatism in the Ocean Basins[M]. Geological Society of London Special Publication,London,313-345
    [135]Roberts M.P., Clemens J.D. Origin of high-potassium talc-alkaline I-type granitoids [J].Geology,1993,21(9):825-828
    [136]Tepper J.H., Nelson B.K., Bergantz G.W., et al. Petrology of the Chilliwack batholith,North Cascades, Washington: Generation of calc-alkaline granitiods by melting of maficlower crust with variable water fugacity [J]. Contribution to Mineralogy and Petrology,1993,113:333-351
    [137]Guffanti M., Clynne M.A., Muffler L.J.P. Thermal and mass implications of magmaticevolution in the Lassen volcanic region, California, and constraints on basalt influx tothe lower crust[J]. Journal of Geophysical Research,1996,101(B2):3003-3013
    [138]Hofmann W. Chemical differentiation of the earth: the relationship between mantle,continental crust, and oceanic crust[J]. Earth and Planetary Science Letters,1988,90:297-314
    [139]Campbell I.H. Implications of Nb/U,Th/U and Sm/Nd in plume magma for therelationship between continental and oceanic crust formation and the depleted mantle[J].Geochmica et Cosmochimics Acta,2002,66:1651-1661
    [140]Furman T.Y., Bryce J.G., Karson J., et al. East African rift system (EARS) plumestructure: insight from quaternary mafic lavas of Turkana, Kenya [J]. Journal ofPetrology,2004,45:1069-1088
    [141]Kimura J.I., Manton W.I., Sun C.H., et al. Chemical diversity of the Ueno Basalts,Central Japan: identification of mantle and crustal contributions to arc basalts [J]. Journalof Petrology,2002,43(1):1923-1946
    [142]姜常义,夏明哲,余旭,等.塔里木板块东北部柳园粗面玄武岩带:软流圈地幔减压熔融的产物[J].岩石学报,2007,22(1):1777-1790
    [143]McKenzie D., O’Nions K. Partial melt distribution from inversion of rare earth elementconcentrations[J]. Journal of Petrology,1991,32:1021-1091
    [144]Sharma M., Basu A.R., Nesterenko G.V. Temporal Sr-, Nd-, and Pb-isotopic variationsin the Siberian flood basalts: Implications for the plume-source characteristics[J]. Earthand Planet Science Letters,1992,113(3):365-381
    [145]Wang K., Plant T., Walker J.D., et al.2002. A mantle melting profile across the basinand range, SW USA [J]. Journal of Geophysical Research,107,10.1029/2001JB000209
    [146]Aldanmaz E., Pearce J.A., Thirlwall M.F., et al. Petrogenetic evolution of Late Cenozoic,post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology andGeothermal Research,2000,102:67-95
    [147]Spáth A., Le Roex A.P., Opiyo-Akech N. Plume-lithosphere interaction and the origin ofcontinental rift-related alkaline volcanism-the Chyulu Hills Volcanic Province, SouthernKenya [J]. Journal of Petrology,2001,42:765-778
    [148] Morse S.A. Basalts and phase diagrams. An introduction to the quantitative use of phasediagrams in igneous petrology [M]. Malabar, FL: Krieger,1994
    [149] Bowen N.L. The evolution of the igneous rocks[M]. Princeton Univ. Press,1928,1-332
    [150]Forster J.G., Lambert D.D., Frick L.R., et al. Re-Os isotopic evidence for genesis ofArchaean nickel ores from uncontaminated komatiites[J]. Nature,1996,382:703-706
    [151]李文渊. Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J].地球科学进展,1996,1(6):580-584
    [152]Hunter A.G. Intracrustal controls on the coexistence of tholeiitic and calc-alkalinemagma series at Aso Volcano, SW Japan [J]. Journal of Petrology,1998,39(7):1255-1284
    [153]Arculus R.J., Johnson R.W. Island-arc magma sources: a geochemicalassessment of theroles of slab-derived components and crustal contamination[J]. Geochemical Journal,1981,15:109-133
    [154]Fujinawa A. Tholeiitic and calc-alkaline magma series at Adatara volcano, northeastJapan:1. Geochemical constraints on their origin [J]. Lithos,1988.22:135-158
    [155]Macdonald R., Rogers N.W., Fitton J.G., et al. Plume-lithosphere interactions in thegeneration of the basalts of the Kenya Rift, East Africa [J]. Journal of Petrology,2001,42:877-900
    [156]Baker J.A.,Menzies M. A., Thirlwall M.F., et al. Petrogenesic of quaternary intraplatevolcanism, Sana’a Yenmen: Implication and polybaric melt hybridization [J]. Journal ofPetrology,1997,38:1359-1390
    [157]Campbell I.H., Griffiths R.W. The evolution of mantle’s chemical structure [J]. Lithos,1993,30:389-399
    [158]Plank T., Langmuir C.H.1998. The chemical composition of subducting sediment andits consequences for the crust and mantle[J]. Chemical Geology145,325-339
    [159]陶琰,罗泰义,高振敏,等.西南暗色岩铜镍硫化物矿化岩体与峨眉山玄武岩的关系[J].地质论评,2004,50(1):9-15
    [160]Brugmann G.E., Naldrett A.J. Siderophle and chalcophile metals as tracers of theevolution of the Sberian Trap in Noril’sk region, Russia [J]. Geochimica etCosmochimica Acta,1993,57:2001-2018
    [161]Roeder P.L., Emslie R.F. Olivine-liquid equilibrium [J]. Contributions to Mineralogyand Petrology,1970,29:275-289
    [162]Green D.H. Genesis of archean periodtic magmas and constraints on archean geothermalgradients and tectonics [J]. Geology,1975,3:15-18
    [163]Sato H. Nickel content of basaltic magmas: Identification of primary magmas and ameasure of the degree of olivine fractionation [J]. Lithos,1977,10:113-120
    [164]Frey F.A., Green D.H., Roy S.D. Integrated models of basalt petrogenesis: A study ofquarti tholeiites to olivine melilities from south eastern Australia utilizing geochemicaland experimental petrological data [J]. Journal of Petrology,1978,19:463-513
    [165]Hess P.C. Phase equilibria constraints on the origin of ocean floor basalts [A]. In:Morgan J P, Blackman D K&Sinton JM(eds.). Mantle flow and Melt Generation atMid-Ocean Ridges [M]. Geophysical Monograph, American Geophysical Union,1992,71:67-102
    [166]张招崇,王福生.一种判别原始岩浆的方法-以苦橄岩和碱性玄武岩为例[J].吉林大学学报(地球科学版),2003,33(2):130-134
    [167]Breddam K. Kistufell:Primitive melt from the Iceland mantle plume[J]. Journal ofPetrology,2002,43:1345-1373
    [168]Weaver J.S., Langmuir C.H. Calculation of phase equilibrium in mineral melt systems[J]. Computers&Geosciences,1990,16:1-19
    [169]Carmichael I.S.E., Turner F.J., Verhoogen J. Igneous Petrology[M]. New York:McGraw-Hill,1974,1-739
    [170]Fabriès J. Spinel-olivine geothermometry in peridotites from ultramafic complexes [J].Contributions to Mineralogy and Petrology,1979,69:329-336
    [171]张儒瑗,从柏林.矿物温度计和矿物压力计[M].北京:地质出版社,1983,23-45
    [172]Henderson P. Rare earth element geochemistry [M]. Amsterdam: Elsevier SciencePublishers B. V.,1984,17-28
    [173]谢鸿森,侯渭.地球深部科学中的静态超高压实验研究[J].科学通报,1997,42(8):785-791
    [174]周济元,崔炳芳.甘新北山东段裂谷演化及金矿成矿规律[J].火山地质与矿产,2000,21(1):7-17
    [175]左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社.1990,1-226
    [176]陈哲夫,梁云海.库鲁克塔格-马鬃山地质构造特征及其构造单元归属问题的讨论[J].地质论评,1981,27(4):292-300
    [177]陈哲夫,梁云海.新疆多旋回构造与板块运动[J].新疆地质,1991,9(2):95-107
    [178]左国朝,刘义科,刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报,2003,12(1):1-15
    [179]杨巍然,孙继源,纪克诚,等.大陆裂谷对比——汾渭裂谷系和贝尔加裂谷系例析.武汉:中国地质大学出版社,1994.
    [180]何斌,徐义刚,肖龙,等.攀西裂谷存在吗[J]?地质论评,2003,49(6):572-582
    [181]张云湘,骆耀南,杨崇喜.攀西裂谷[M].北京:地质出版社,1988,1-466
    [182]Pirajno F. Ore Deposits and Mantle Plumes [M]. Kluwer Academic Publishers,2000,1-556
    [183]Campbell I.H., Griffiths R.W. Implications of the mantle plume structure for theevolution of flood basalts[J]. Earth and Planetary Science Letters,1990,99:79-93
    [184]Ernst R.E., Buchan K.L. Recognizing mantle plumes in the geological record[J]. AnnualReviews of Earth and Planetary Sciences,2003,31:469-523
    [185]Mahoney J.J., Coffin M.E. Large igneous provinces: continental, oceanic, and planetaryvolcanism[M]. Geophysics Monograph Series. American Geophysical Union,1997,100:438
    [186]Griffiths R.W., Campbell I.H. Stirring and structure in mantle starting plume [J]. Earthand planetary Sicence Leters,1990,99:66-78
    [187]Lesher C.M., Arndt N.T. REE and Nd isotope geochemistry, petrogenesis and volcanicevolution of contaminated komatiites at Kambalda, Western Australia[J]. Lithos,1995,34:127-157
    [188]Campbell I.H., Griffiths R.W. The changing nature of mantle hotspots through time:Implication for the chemical evolution of the mantle [J]. The Journal of Geology,1992,92:497-523
    [189]Kogiso T., Hirschmann M.M., Frost D.J. High-pressrue partial melting of garnetpyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth andPlanetary Science Letters,2003,216:603-617
    [190]Kogiso T., Hirschmann M.M., Pertermann M. High-pressure partial melting of maficlithologies in the mantle [J]. Journal of petrology,2004,45(12):2407-2422
    [191]Maaloe S. The PT-phase relation of an MgO-rich Hawaiian tholeiite: the compositionsof primary Hawaiian tholeiites [J]. Contributions to Mineralogy and Petrology,2004,148:236-246
    [192]Zhang J., Herzberg C.1994. Melting experiments on anhydrous peridotite KLB-1from5.0to22.5GPa [J]. Journal of geophysical Research,99(B9):17729-17742
    [193]Gibson S.A., Thompson R.N., Dickin A.P. Ferropicrites: geochemical evidence forFe-rich streaks in upwelling mantle plumes [J]. Earth and Planetary Science Letters,2000,174:355-374
    [194]Pertermann M., Hirschmann M.M. Anhydrous partial melting experiments onMORB-like eclogite: phase relations, phase compositions and mineral melt partitiongingof major elements at2-3GPa [J]. Journal of the Petrology,2003.44:2173-2201
    [195]Hirschmann M.M., Kogiso T., Baker M.B., et al. Alkalic magmas generated by partialmelting of garnet pyroxenite [J]. Geology,2003,31:481-484
    [196]Tuff J., Takahashi E., Gibson S.A. Experimental constraints on the role of garnetpyroxenite in the genesis of high-Fe mantle plume derived melts [J]. Journal of thePetrology,2005,46(10):2023-2058
    [197]Lesher C.M., Arndt N.T. REE and Nd isotope geochemistry, petrogenesis and volcanicevolution of contaminated komatiites at Kambalda, Weatern Australia [J]. Lithos,1995,34(1-3):127-157
    [198]Labrosse S. Hotspots, mantle plumes and core heat loss[J]. Earth and Planetary ScienceLetters,2002,199:147-156
    [199]Cserepes L., Yuen D.A. On the possibility of a second kind of mantle plume [J]. Earthand Planetary Science Letters,2000,183:61-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700