用户名: 密码: 验证码:
基于海洋遥感和GIS的黄海鳀鱼种群时空动态及对海洋环境因子的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是人类赖以生存和发展的基础,鱼类作为海洋生态系统的重要组成部分,为人类提供大量的优质蛋白,在食物保障方面发挥了重要作用。但随着捕捞力量加剧和气候变化的影响,海洋渔业资源遭到严重破坏。为应对人类活动和气候变化对海洋生物资源和环境的影响,国际组织推出了一系列全球性的海洋研究计划,海洋渔业资源对全球变化和人类活动的响应是目前正在进行的IMBER计划的重要内容之一。本研究以黄海生态系统的关键种鳀鱼为研究对象,基于1986-2010年其在我国重要的渔业海域黄海的底拖网调查数据,借助遥感获取的海洋环境因素数据,分析在捕捞压力和气候变化的双重影响下,其种群分布时空变动及其与海洋环境因素的关系,对于探索我国近海生态系统如何响应气候变化和人类活动具有重要意义,同时也为该海区的渔业管理和资源养护提供科学依据。在对黄海海洋环境因子进行遥感分析的基础上,本文主要进行了以下几方面的研究:
     首先,分析了黄海鳀鱼相对资源密度的季节变化和年际变化。季节变化结果显示,相对资源密度秋季最低,多数年份冬季最高;出现率冬季最高,多数年份秋季最低;相对资源密度和出现率均在春季到夏季时变化幅度最小。年际变化分析表明,1986年以来,鳀鱼相对资源密度在四个季节均呈下降趋势,以夏季下降幅度最小;但出现率的年际变化不大,冬、春季节略下降,夏、秋季节反呈上升趋势。
     其次,对黄海鳀鱼空间分布的季节变化和年际变化进行了深入研究。在利用资源丰度分布图定性分析的基础上,利用边界分布直方图定量分析了鳀鱼捕获站位及资源密度聚集区的年际变化,并结合GIS的空间统计和地统计,应用趋势面分析、热点分析、标准差椭圆等方法多角度、全方位阐明鳀鱼空间分布的季节变化和年际变化,并利用资源密度重心法分析了鳀鱼资源密度的迁移规律。结果表明,鳀鱼空间分布季节变化明显,冬季,鳀鱼资源密度由深水区向岸边逐渐递减;春季,与冬季相反,资源密度由岸边向深水区递减;夏季,整体上为由北向南递减趋势,但资源密度高值点散乱分布;秋季,与冬季相似,由深水区向岸边环形递减。自1986-2010年,春、夏、秋三个季节鳀鱼在空间上均向北移动,冬季无明显变化趋势;不同年份不同季节鳀鱼均沿经度123.5°-124°E范围内分布最多,但资源密度聚集区无明显分布趋势。
     第三,利用探索性空间数据分析(ESDA)方法分析鳀鱼空间分布特征的基础上,结合GIS技术,以Moran散点地图分析鳀鱼空间分布格局。大多数年份,鳀鱼呈空间集聚分布,但集聚程度各不相同。不同季节,鳀鱼空间分布格局年际变化差异显著,春季,鳀鱼分布呈“北高南低”趋势,但高高类型和低低类型站位数量比例年际变化较大;夏季,高高类型站位数量呈年际递增趋势;秋季,高高类型分布区北移;冬季高高类型主要集聚在深水区,低低类型则分布在沿岸浅水区和调查区域的北部,无明显年际变化趋势。
     第四,分析了鳀鱼分布和遥感获取的水温、叶绿素浓度的关系,结果表明,不同季节,鳀鱼分布在不同的适温范围内,1月份,鳀鱼分布与水温关系最为明显,主要分布在黄海暖流暖水舌右侧;尽管叶绿素浓度混有泥沙等其他信息,但冬季和春季鳀鱼分布与叶绿素浓度关系比较密切。在此定性分析基础上,利用广义可加模型(GAM)定量分析了海洋环境要素与各季节鳀鱼资源密度(CPUE)、出现率(P/A)的关系,以区分环境要素对鳀鱼资源量和地理分布的影响,并揭示不同季节的影响差异。对海洋环境要素与CPUE的关系分析发现:下网时间对四个季节的CPUE影响均较大,但不同季节影响方式不同;除秋季外,水深对CPUE均存在不同程度的影响;海表温度在冬季影响显著,夏秋季节次之,春季不存在相关性;叶绿素浓度在春季影响显著,冬季次之,夏秋季节无相关性;海表温度梯度仅在冬季有影响。
     对海洋环境要素与P/A的关系分析发现:除夏季外,下网时间对鳀鱼P/A存在显著影响,但影响趋势与CPUE不同;春夏水深对鳀鱼P/A影响显著,且影响趋势与CPUE相同;海表温度在冬季和夏季、叶绿素浓度在春季和冬季、海表温度梯度在冬季与P/A显著相关,影响程度较大。
     第五,利用鳀鱼适宜温度因子作为特征温度,研究越冬鳀鱼空间分布年际变动、空间分布格局与遥感获得的海表水温的关系,结果表明,水温变化影响越冬鳀鱼在纬度方向上的分布,而向岸分布程度则由黄海暖流年际变动决定;海水温度变化影响越冬鳀鱼资源密度的高高类型聚集区沿纬度方向的分布。
Marine is the foundation of human survival and development, as an important part ofmarine ecosystem, fish plays a significant role in ensuring food security and provides a largeamount of high-quality protein for human being. With the increasing of fishing effort andeffects of climate change, marine fishery resource has been seriously damaged. As an react tothe effects of anthropogenic activities and climate changes on marine living resources andenvironmet, international organizations have launched a series of global ocean researchprogram, the response of marine fishery resources to global change and human activities is animportant part of the ongoing IMBER plan now. In the present study, under the doubleinfluences of fishing pressure and climate change, spatioemporal dynamics of anchovy(Engraulis japonicus)population and its relationship with environmental factors in theYellow Sea were analyzed. The data for this study were fom the1986-2010bottom trawl datain the Yellow Sea and related marine environmental data obtained by remote sensing. Thisstudy will be of great significance to explore how China coastal ecosystems respond toclimate changes and human activities, and also offer a scientific evidence for fisherymanagement and resource conservation in the Yellow Sea. On the basis of marineenvironmental factors being analyzed by remote sensing in the Yellow Sea, this paper mainlystudied the following several aspects.
     First, seasonal and interannual changes in the relative stock density of anchovy in theYellow Sea were analyzed. As for seasonal changes, the lowest value of the relative stockdensity appeared in autumn, and the highest value appeared in winter in most years, thefrequency of occurrence was the highest in winter and lowest in autumn in most years, andboth the relative stock density and frequency of occurrence changed minimally from spring tosummer. As for interannual variations, the relative stock density of anchovy declined in allseasons after1986, and the decrease was the smallest in summer, but the interannual variationin frequency of occurrence was relative small, which had a slight drop in winter and spring,and an upward trend in summer and autumn.
     Second, seasonal and interannual variations in spatial distribution of anchovy in the Yellow Sea were studied thoroughly. On the basis of qualitative analysis using resourceabundance maps, the interannual variations in centralized distribution regions of theanchovy’s capture locations and stock density were quantitatively studied using borderhistogram. And combining with spatial statistic and geostatistic technique of GIS, with themethod of trend surface analysis, hot analysis and standard deviational ellipse, seasonal andinterannual changes in spatial distribution were clarified comprehensively and in multi-angle,and the migration trend of anchovy was analyzed by the change of stock density center. Thespatial distribution changed obviously in different seasons. The stock density of anchovydropped gradually from the eastern deep waters to the shore in winter, but in spring whichwas contrary to the winter trend and decreased gradually from the shore to the deep waters,and in summer which dropped from the north to the south with the high stock densityscattered, in autumn which was similarity to the winter and decreased from the deep waters tothe shore. About spatial distribution, anchovy moved northward in spring, summer andautumn, and there was not obvious change trend in winter from1986to2010. The anchovy’scapture locatons mainly distributed between123.5°E and124°E in longitudinal direction indifferent years and different seasons, but the centralized distribution regions of anchovy’sstock density had not apparent trend.
     Third, spatial distribution characteristics of anchovy were analyzed using exploratoryspatial data analysis (ESDA) method, and combining with GIS, we had a further study ofspatial distribution configuration by moran scattered maps. Anchovy was located with spatialcluster in most years, but the degree of centralization was different. And the spatialdistribution configuriation of anchovy had apparent interannual variations. The relatilve stockdensity of anchovy had a trend of “high in north and low in south” in spring, but there was alarger interannual change in the proportion of station numbers of high-high type and low-lowtype. The station numbers of high-high type had an interannual increase in summer, and thehigh-high type regions moved northward in autumn. In winter, the high-high type regionscentralized in the eastern deep waters, but the low-low type regions was distributed in theshore shallow waters and the north of studied area, and neither of them had significantinterannual change.
     Fourth, the relationship between anchovy’s distribution and sea surface temperature(SST), chlorophyll concentration was studied. The result indicated that the anchovy wasdistributed between different suitable temperature range in different seasons, the relationshipbetween anchovy’s distribution and SST was most significant and mainly located on theright of warm tongue of the Yellow Sea Warm Current in January. Despite the chlorophyll concentration value was mixed with other information such as sediment, there was a closerelation between anchovy distribution and chlorophyll concentration in winter and spring.After qualitative analysis, the relationship between marine environmental factors and catchper unit effort (CPUE), presence/absence (P/A) of anchovy of all seasons were exploredquantitatively using generalized additive models (GAMs), in order to distinguish the impactof environmental factors on the stock density and geographical distribution of anchovy, andreveal the differences of the influence in different seasons. The relationship between marineenvironmental factors and CPUE of anchovy indicated that the netting time had a greaterimpact on the CPUE in all four seasons, but the affecting way was different in differentseasons. The water depth had impacts of different degree on the CPUE except in autumn.The influence of SST on CPUE was significant in winter, the summer and autumn followedby, and there was no correlation in spring. The influence of chlorophyll concentration onCPUE was significant in spring, the winter followed by, and there was no correlation insummer and autumn. The sea surface temperature gradient (TGR) affected the CPUE only inwinter.
     The relationship between marine environmental factors and P/A of anchovy showed thatthe netting time had significant influence on the P/A except in summer, but the influencingtrend was different from the CPUE. It was obvious of the impact of water depth on the P/Ain spring and summer, and the influencing trend was the same to the CPUE. SST in winterand summer, chlorophyll concentration in spring and winter, and TGR in winter were allrelated to the P/A significantly, and which influenced the P/A of anchovy on great degree.
     Fifth, by way of anchovy’s suitable temperature being as the characteristic temperature,we studied the relationship between interannual variations in spatial distribution, spatialconfiguration of wintering anchovy and SST obtained by remote sensing. The resultsuggested that the variations in water temperature had effects on the latitudinal distributionof the wintering anchovy, and whether the anchovy distributed shoreward or not wasdetermined by the interannual variations of the Yellow Sea Warm Current. And the high-hightype centralized regions of wintering anchovy’s stock density in the latitudinal distributionwas affected by the variations in water temperature.
引文
蔡建堤,杜琦.应用地理信息系统对福建海洋渔业资源进行管理的初步探讨.福建水产,2003,(2):26-28
    陈楚群,施平,毛庆文.南海海域叶绿素浓度分布特征的卫星遥感分析.热带海洋学报,2001,20(2):66-70
    陈新军,田思泉,钱卫国.月相对北太平洋海域柔鱼钓获率的影响.海洋渔业,2006,28(2):136-140
    陈新军,田思泉.利用GAM模型分析表温和时空因子对西北太平洋海域柔鱼资源状况的影响.海洋湖沼通报,2007,(2):104-112
    陈新军,田思泉.西北太平洋柔鱼资源丰度时空分布的GAM模型分析.集美大学学报(自然科学版),2006,11(4):295-300
    杜培军,张海荣,冷海龙等译.地理空间分析—原理、技术与软件工具(第二版).北京:电子工业出版社,2009,133
    杜云艳,周成虎,崔海燕,苏奋振,刘宝银.遥感与GIS支持下的海洋渔业空间分布研究-以东海为例.海洋学报,2002,24(5):57-63
    杜云艳,周成虎,邵全琴,苏奋振,王盛.东海区海表温度与中上层渔获量关系的时空分析.高技术通讯,2001,11(2):56-60
    樊伟,程炎宏,沈新强.全球环境变化与人类活动对渔业资源的影响.中国水产科学,2001,8(4):91-94
    樊伟,崔雪森,沈新强.西北太平洋巴特柔鱼渔场与环境因子关系研究.高技术通讯,2004,14(10):84-89
    樊伟,周甦芳,沈建华.卫星遥感海洋环境要素的渔场渔情分析应用.海洋科学,2005,29(1):67-72
    高郭平,钱成春,鲍献文,侍茂崇.中国东部海域卫星遥感PFSST和现场观测资料的差异.海洋学报,2001,23(4):121-126
    官文江,陈新军,潘德炉.遥感在海洋渔业中的应用与研究进展.大连水产学院学报,2007,1:62-66
    郭炳火,黄振宗,李培英等.中国近海及邻近海域海洋环境.北京:中国海洋出版社,2004
    何宜军,陈戈,郭佩芳.高度计海洋遥感研究与应用.北京:科学出版社,2002,1-26
    赫崇本,汪圆祥,雷宗友,徐斯.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼,1959,2(1):11-15
    洪华生,商少凌,张彩云,黄邦钦,胡建宇,黄加祺,卢振彬.台湾海峡生态系统对海洋环境年际变动的响应分析.海洋学报,2005,27(2):63-69
    胡东方.黄海鳀鱼的摄食生态研究.中国海洋大学硕士论文,2009
    黄长江,董巧香,林俊达.全球变化对海洋渔业的影响及对策.台湾海峡,1999,18(4):481-493
    金显仕,Hamre J.,赵宪勇,李富国.黄海鳀鱼限额捕捞的研究.中国水产科学,2001,8(3):27-30
    金显仕,赵宪勇,孟田湘,等著.黄、渤海生物资源与栖息环境.北京:科学出版社,2005,262-322
    李富国.黄海中南部鳀鱼生殖习性的研究.海洋水产研究,1987,8:41-50
    李四海,王宏,许卫东.海洋水色卫星遥感研究与进展.地球科学进展,2000,15(2):190-196
    李显森,赵宪勇,李凡,李富国,戴芳群,朱建成.山东半岛南部产卵场鳀鱼生殖群体结构及其变化.海洋水产研究,2006,27(1):46-53
    李小恕,李继龙,贾静.基于GIS的东黄海渔场影响因子分析.湛江海洋大学学报,2005,25(4):44-48
    李峣,赵宪勇,张涛,李显森,魏皓.黄海鳀鱼越冬洄游分布及其与物理环境的关系.海洋水产研究,2007,28(2):104-112
    林德芳.东、黄海鳀鱼集群分布模式的研究.水产学报,1997,21(1):44-48
    林德芳.我国的鳀鱼渔业.海洋渔业,1995,(2):69-74
    刘玉洁,杨忠东.MODIS遥感信息处理原理与算法.北京:科学出版社,2001
    刘允芬.气候变化对我国沿海渔业生产影响的评价.中国农业气象,2000,21(4):1-5
    马健,赵宪勇,朱建成,李显森,戴芳群,张立敬.黄海鳀鱼的卵巢发育.渔业科学进展,2009,30(6):7-17
    马绍赛.黄、东海越冬鳀鱼的分布与水温条件的关系.水产学报,1989,13(3):201-206
    马绍赛.南黄海和东海冬季水文状况及其与鳀鱼渔场的关系.海洋预报,1987,4(4):37-44
    马晓冬,马荣华,徐建刚.基于ESDA-GIS的城镇群体空间结构.地理学报,2004,59(6):1048-1057
    毛志华,朱乾坤,龚芳.卫星遥感北太平洋渔场叶绿素α浓度.水产学报,2005,29(2):270-274
    孟田湘.黄海中南部鳀鱼(Engraulis japonicus)各发育阶段对浮游动物的摄食.海洋水产研究,2003,24(3):1-9
    孟田湘.山东半岛南部产卵场鳀鱼幼体日龄组成与生长.海洋水产研究,2004,25(2):1-5
    孟田湘.山东半岛南部鳀鱼产卵场鳀鱼仔、稚鱼摄食的研究.海洋水产研究,2001,22(2):21-25
    牛明香,李显森,徐玉成.基于广义可加模型的时空和环境因子对东南太平洋智利竹筴鱼渔场的影响.应用生态学报,2010,21(4):1049-1055
    牛明香,李显森,徐玉成.基于广义可加模型和案例推理的东南太平洋智利竹筴鱼中心渔场预报.海洋环境科学,2012,31(1):30-33
    牛明香,李显森,徐玉成.智利外海竹筴鱼中心渔场时空变动的初步研究.海洋科学,2009,33(11):105-109
    牛文元.持续发展导论.北京:科学出版社,1997
    潘德炉,李淑菁,毛天明.卫星海洋水色遥感的辐射模式研究.海洋与湖沼,1997,28(6):652-658
    潘竟虎,张佳龙,张勇.甘肃省区域经济空间差异的ESDA-GIS分析.西北师范大学学报(自然科学版),2006,42(6):83-88
    钱莉,刘文岭,郑小慎.基于MODIS数据反演的渤海叶绿素浓度时空变化.海洋通报,2011,30(6):683-687
    沙慧敏,李小恕,杨文波,李继龙.用MODIS遥感数据反演东海海表温度、叶绿素a浓度年际变化的研究.大连水产学院学报,2009,24(2):151-156
    商少凌,洪华生,商少平,张学敏,张彩云.台湾海峡1997-1998年夏汛中上层鱼类中心渔场的变动与表层水温的关系浅析.海洋科学,2002,26(11):27-30
    邵帼瑛,张敏.东南太平洋智利竹筴鱼渔场分布及其与海表温关系的研究.上海水产大学学报,2006,15(4):468-472
    邵全琴,马巍巍,陈卓奇,游智敏,王文宇.西北太平洋黑潮路径变化与柔鱼CPUE的关系研究.海洋与湖沼,2005,36(2):111-122
    邵全琴,戎恺,游智敏,马巍巍,陈卓奇.海洋渔业GIS中温度水平梯度计算的误差分析和新算法研究.遥感学报,2005,9(2):148-157
    邵全琴,周成虎,沈新强,杨崇俊.海洋渔业遥感地理信息系统应用服务技术和方法.遥感学报,2003,7(3):194-200
    邵全琴,周成虎,张明金.海洋渔业电子地图软件设计与实现.水产学报,2001,25(4):367-372
    沈新强,樊伟,崔雪森.西北太平洋柔鱼渔场分布与水温关系的研究.海洋水产研究,2004,25(3):10-14
    苏奋振,张甲珅,杜云艳,周成虎,邵全琴.东海区中上层鱼类资源的时空分异.自然资源学报,2004b,19(5):591-596
    苏奋振,周成虎,邵全琴,杜云艳,仉天宇.海洋渔业地理信息系统的发展、应用与前景.水产学报,2002,26(2):169-174
    苏奋振,周成虎,邵全琴,杜云艳.东海区鱼类资源变化GIS时空分析.高技术通讯,2001,11(5):60-63
    苏奋振,周成虎,史文中,杜云艳.东海区底层及近底层鱼类资源的空间异质性.应用生态学报,2004a,15(4):683-686
    苏奋振,周成虎,仉天宇,杜云艳,姚长青.东海水域中上层鱼类资源的空间异质性.应用生态学报,2003,14(11):1971-1975
    苏奋振.海洋渔业资源时空动态研究.中国科学院地理科学与资源研究所博士论文,2001
    苏纪兰,唐启升.我国海洋生态系统基础研究的发展-国际趋势和国内需求.地球科学进展,2005,20(2):139-143
    苏纪兰,袁耀初,姜景忠.建国以来我国物理海洋学的进展.地球物理学报,1994,37(增刊1):86-95
    孙耀,刘勇,于淼,唐启升.东、黄海鳀鱼的胃排空率及其温度影响.生态学报,2005,25(2):215-219
    汤毓祥,邹娥梅,李兴宰,李载学.南黄海环流的若干特征.海洋学报,2000,22(1):1-16
    唐启升,苏纪兰,张经.我国近海生态系统食物产出的关键过程及其可持续机理.地球科学进展,2005,20(12):1280-1287
    唐启升,苏纪兰等著.中国海洋生态系统动力学研究I:关键科学问题与研究发展战略.北京:科学出版社,2000,252
    田思泉,陈新军,冯波,钱卫国.西北太平洋柔鱼资源丰度与栖息环境的关系及其时空分布.上海海洋大学学报,2009,18(5):586-592
    万瑞景,黄大吉,张经.东海北部和黄海南部鳀鱼卵和仔稚幼鱼数量、分布及其与环境条件的关系.水产学报,2002,26(4):321-330
    万瑞景,魏皓,孙珊,赵宪勇.山东半岛南部产卵场鳀鱼的产卵生态I.鳀鱼鱼卵和仔稚幼鱼的数量与分布特征.动物学报,2008,54(5):785-797
    万瑞景,赵宪勇,魏皓.山东半岛南部产卵场鳀鱼的产卵生态II.鳀鱼的产卵习性和胚胎发育特性.动物学报,2008,54(6):988-997
    王文宇,周成虎,邵全琴,薛允传,仉天宇,戎太宗.RS/GIS支持下的柔鱼中心渔场时空动态迁移研究.高技术通讯,2003,13(11):90-93
    韦晟,姜卫民.黄海鱼类食物网的研究.海洋与湖沼,1992,23(2):182-191
    温仲明,赫晓慧,焦峰,焦菊英.延河流域本氏针茅(Stipa bungeana)分布预测-广义相加模型及其应用.生态学报,2008,28(1):192-201
    邢小罡,赵冬至,刘玉光,杨建洪,沈红,赵玲,王林.叶绿素a荧光遥感研究进展.遥感学报,2007,11(1):137-144
    熊薇,徐逸伦,王迎英.江苏省县域经济差异时空演变.地理科学进展,2011,30(2):224-230
    许一,于非,张志欣,郭景松.冬季黄海暖流的诊断计算.海洋科学进展,2005,23(4):398-407
    薛莹.黄海中南部主要鱼种摄食生态和鱼类食物网研究.中国海洋大学博士论文,2005
    杨奇勇,杨劲松,余世鹏,黄标,孙维侠.不同尺度下耕地土壤Cr含量的空间自相关性分析.应用与环境生物学报,2011,17(3):393-397
    杨晓明,陈新军,周应祺,田思泉.基于海洋遥感的西北印度洋鸢乌贼渔场形成机制的初步分析.水产学报,2006,30(5):669-675
    杨宇,刘毅,董雯,李莉.新疆城镇化与土地资源产出效益的空间分异及其协调性.生态学报,2011,31(21):6568-6578
    叶施仁,史忠植.基于CBR的中心渔场预报.高技术通讯,2001,11(5):64-68
    于非,张志欣,刁新源,郭景松,汤毓祥.黄海冷水团演变过程及其与邻近水团关系的分析.海洋学报,2006,28(5):26-34
    于海圆.鳀鱼目标强度的模型法研究.中国海洋大学硕士论文,2007
    于杰,李永振.海洋渔业遥感技术及其渔场渔情应用进展.南方水产,2007,3(1):62-68
    恽才兴.海岸带及近海卫星遥感综合应用技术.北京:海洋出版社,2005:61-64
    曾玲,李显森,赵宪勇,李富国,金显仕.黄海中南部鳀鱼的生殖力及其变化.中国水产科学,2005,12(5):569-574
    张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究.海洋科学进展,2004,22(4):393-404
    张波.中国近海食物网及鱼类营养动力学关键过程的初步研究.中国海洋大学博士论文.2005
    张寒野,程家骅.东海区小黄鱼空间格局的地统计学分析.中国水产科学,2005,12(4):419-423
    张衡,张波,金显仕,赵宪勇.黄海鳀鱼鱼体能值的季节变化.海洋水产研究,2004b,25(6):7-12
    张衡,张波,金显仕,赵宪勇.黄海中南部水域鳀鱼脂肪含量的季节变化.海洋水产研究,2004a,25(1):9-14
    张衡,张波,金显仕,赵宪勇.越冬和产卵洄游期黄海鳀鱼对能量的利用差异.中国水产科学,2005,12(2):144-149
    张加晋.近岸II类水体叶绿素浓度遥感反演的算法综述.福建水产,2009,1:43-47
    张甲珅,苏奋振,杜云艳.东海区中上层鱼类资源与海表温度关系.资源科学,2004,26(5):147-152
    张俊.基于声学数据后处理系统的黄海鳀鱼资源声学评估.硕士论文.上海:上海海洋大学,2011
    张学敏,商少平,张彩云,卢振彬,商少凌,李雪丁.闽南-台湾浅滩渔场海表温度对鲐鲹鱼类群聚资源年际变动的影响初探.海洋通报,2005,24(4):91-96
    仉天宇,邵全琴,周成虎.卫星测高数据在渔情分析中的应用探索.水产科学,2001,20(6):4-8
    赵宪勇.黄海鳀鱼种群动力学特征及其资源可持续利用.中国海洋大学博士论文,2006
    赵业婷,常庆瑞,陈学兄,马廷刚.县域耕地土壤速效磷空间格局研究-以武功县为例.西北农林科技大学学报,2011,39(3):157-162
    郑波,陈新军,李纲.GLM和GAM模型研究东黄海鲐资源渔场与环境因子的关系.水产学报.2008,32(3):379-386
    郑芳,刘群,王艳君.环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究.南方水产,2008,4(2):15-20
    朱德山,Iversen,S.A.(主编).黄、东海鳀鱼及其他经济鱼类资源声学评估的调查研究.海洋水产研究,1990,11:1-141
    朱建成,赵宪勇,李富国.黄海鳀鱼的生长特征及其年际与季节变化.海洋水产研究,2007,28(3):64-72
    朱建成.黄海鳀鱼的年龄鉴定与生长特征研究.中国海洋大学硕士论文,2007
    朱清澄,花传祥,许巍,朱国平,夏辉.西北太平洋公海7-9月秋刀鱼渔场分布及其与水温的关系.海洋渔业,2006,28(3):228-233
    邹晓荣,朱清澄.西北太平洋秋刀鱼渔场分布及与海水表层温度的关系分析.湛江海洋大学学报,2006,26(6):26-30
    Anselin L.. Interactive techniques and exploratory spatial data analysis. In: Longley P A,Godchild M F, Maguire D J(eds), Geographical Information Systems(2ndedn.). NewYork: John Wiley&Sons,1999.253-266
    Anselin L. Local indicators of spatial association-LISA. Geographical Analysis,1995,27(2):93-115
    Anselin L., Sridharan S. and Gholston S.. Using exploratory spatial data analysis to leveragesocial indicator database: the discovery of interesting patterns. Soc. Indic. Res.,2007,82:287-309
    Beardsley R.C., Limeburner R. and Yu H.S.. Discharge of the Changjiang(Yangtze River)into the East China Sea. Continental shelf Res.,1985,4:57-76
    Benzie J. A. H.. The detection of spatial variation in widespread marine species: methods andbias in the analysis of population structure in the crown of thorns starfish(Echinodermata:Asteroidea). Hydrobiologia,2000,420:1-14
    Brander K.. Impacts of climate change on fisheries. Journal of Marine Systems,2010,79:389-402
    Brown O.B. and Minnett P.J.. Modis infrared sea surface temperature algorithm[EB/OL].Algorithm theoretical basis document version2.0. Miam: University of Miam,1999
    Buja A., Cook D. and Swayne D.. Interactive high dimensional data visualization. J. Comput.Graph. Stat.,1996,5:78-99
    Burnham K.P. and Anderson D.R.. Model Selection and Multimodel Inference: a PracticalInformation-Theoretic Approach.2nd ed. New York: Springer,2002
    Chen Y. and Zhao X. In situ target strength measurements on anchovy(Engraulis japonicus)and sardine(Sardinops melanostictus). In: Proceedings of International Workshop onMarine Acoustics, March26-30,1990, Beijing, China. Beingjing: China Ocean Press,1990.329-332
    Cheung W., Close C., Lam V. Watson R. and Pauly D.. Application of macroecological theoryto predict effects of climate change on global fisheries potential. Marine Ecology ProgressSeries,2008,365:187-197
    Cheung W., Lam V., Sarmiento J., Keamey K., Watson R. and Pauly D.. Projecting globalmarine biodiversity impacts under climate change scenarios. Fish and Fisheries,2009,10:235-251
    Ciannelli L., Chan K.S., Bailey K.M. and Stenseth N.C.. Nonadditive effects of theenvironment on the survival of a large marine fish population. Ecology,2004,85:3418-3427
    Cliff A.D. and Ord J.K.. Spatial processes: models and applications.London, UK: Pion,1981,17
    Collins N. and Hurlbut S.. Environmental risk analysis of salvaging the Irving whale. GIS93.Ottawa: The Canadian Institute of Geomatics,1993:326-336
    Corten A.. The role of “conservatism” in herring migrations. Reviews in Fish Biology andFisheries,2002,11:339-361
    Crec’hriou R., Bonhomme P., Criquet G., Cadiou G., Lenfant P., Bernard G., Roussel E.,Direach L.L. and Planes D.. Spatial patterns and GIS habitat modeling of fish in twoFrench Mediterranean coastal areas. Hydrobiologia,2008,612:135-153
    Cushing D.H.. Plankton production and year-class strength in fish populations-an update ofthe match/mismatch hypothesis. Advances in Marine Biology,1990,26:249-293
    Damalas D., Megalofonou P. and Apostolopoulou M.. Environmental, spatial, temporal andoperational effects on swordfis(hXiphias gladius)catch rates of eastern Mediterranean Sealongline fisheries. Fisheries Res.,2007,84:233-246
    Dingstor G.E., Ciannelli L., Chan K.S., Ottersen G. and Stenseth N.C.. Density dependenceand density independence during the early life stages of four marine fish stocks. Ecology,2007,88:625-634
    Dufour F., Arrizabalaga H., Irigoien X. and Santiago J.. Climate impacts on albacore andbluefin tunas migrations phenology and spatial distribution. Progress in Oceanography,2010,86:283-290
    FAO. Review of the state of world marine fishery resources. FAO Fisheries Technical paper,No.457. Rome, FAO.2005.235pp
    Fauchald P., Erikstad K.E. and Skarsfjord H.. Scale-dependent predator-prey interactions: thehierarchical spatial distribution of seabirds and prey. Ecology,2000,81:773-783
    Gordon H.R. and Wang M.H.. Surface-roughness considerations for atmospheric correction ofocean color sensors. Applied Optics,1992,31(21):4247-4266.
    Grubesic T. and Mack E.. Spatio-temporal interaction of urban crime. Journal of QuantitativeCriminology.2008,24(3):285-306.
    Guan B.X.. Patterns and structures of the currents in Bohai, Huanghai and East China Seas.Oceanology of China Seas.1994,1:17-26
    Guisan A., Edwards T.C. and Hastie T.J.. Generalized linear and generalized additive modelsin studies of species distributions: setting the scene. Ecology model,2002,157:89-100
    Hastie T.J.. Generalized additive models In: Statistical models in S, Chambers JM and HastieTJ (eds). Pacific Grove: Wadsworth and Brooks,1992
    Hastie T.J. and Tibshirani R.J.. Generalized Additive Models. Chapman and Hall. London.1990.
    Hazin H. and Erzini K.. Assessing swordfish distribution in the South Atlantic from spatialpredictions. Fisheries Research,2007,90:45-55
    IMBER. Science Plan and Implementation Strategy. IGBP Report No.52.Stockholm: IGBPSecretariat,2005:76
    IMBER. Supplement to the Science Plan and Implementation Strategy. IGBP Report No.52A.Stockholm: IGBP Secretariat,2010:36
    Jiang X.J., Qu G.S. and Li S.Q.. Features of clay minerals in the YSDP102core on thecontinental shelf of the Southeast Yellow Sea. Journal of Ocean University of China,2004,3(2):201-207
    Jumars P.A.. Spatial autocorrelation with RUM(Remote Underwater Manipulator): Verticaland horizontal structure of a bathyal benthic community. Deep sea Res.,1978,25(7):589-604
    Keeken O.A., Hoppe M., Grift R.E. and Rijnsdorp A.D.. Changes in the spatial distribution ofNorth Sea plaice(Pleuronectes platessa)and implications for fisheries management.Journal of Sea Research,2007(57):187-197
    Lasker R., Pelaez J. and Laurs R.M.. The use of satellite infrared imagery for describing ocean processes inrelation to spawning of the northern anchovy(Engraulis mordax). Remote Sensing Environ.,1981,11(3):439-453
    Laurs R.M., Fiedler P.C. and Montgomery D.R.. Albacore tuna catch distributions relative toenvironmental features observed from satellites. Deep-Sea Res.,1984,31(9):1085-1099
    Lin C., Ning X., Su J., Lin Y. and Xu B.. Environmental changes and the responses of theecosystems of the Yellow Sea during1976-2000. Journal of Marine Systems,2005,55:223-234
    Maravelias C.D. and Reid D.G.. Identifying the effects of oceanographic features andzooplankton on prespawning herring abundance using generalized additive models. Mar.Ecol. Prog. Ser.,1997,147:1-9
    Meaden G.J.. Application of GIS to fisheries management. In: Wright D and Bartlett D eds.Marine and Coastal Geographic Information Systems. London: Taylor&Francis.2000,205-206
    Montgomery D.R.. The applications of satellite-derived ocean color products to commercialfishing operations. Marine Technology Society Journal,1986,20(2):72-86
    Moran P.A.P.. Notes on continuous stochastic phenomena. Biometrika,1950,37(1):17-23
    Jing N. and Cai W.. Analysis on the spatial distribution of logistics industry in the developedEast Coast Area in China. Ann. Reg. Sci.,2010,45:331-350
    Oskarsson G.J., Gudmundsdottir A. and Sigurdsson T.. Variation in spatial distribution andmigration of Icelandic summer-spawning herring. ICES Journal of Marine Science,2009,66:1762-1767
    Overholtz W.J.. The Gulf of Maine-Georges Bank Atlantic herring(Clupea harengus): spatialpattern analysis of the collapse and recovery of a large marine fish complex. FisheriesResearch,2002(57):237-254
    Pauly D. and Watson R.. Counting the last fish. Scientific American,2003,7:42-47
    Planque B., Fromentin J.M., Cury P., Drinkwater K.F., Jennings S., Perry R. and Kifani S..How does fishing alter marine populations and ecosystems sensitivity to climate. Journalof Marine Systems,2010,79:403-417
    Reid P.C., Edwards M., Hunt H.G. and Warner A.J.. Phytoplankton change in the NorthAtlantic. Nature,1998,391:546
    Schick R.S., Goldsten J. and Lutcavage M.E. Bluefin tuna(thunnus thynnus) distribution inrelation to sea surface temperature fronts in the gulf of marine(1994-1996). FishOceanogr.2004,13:225-238
    Sissener E.H. and Bjorndal T.. Climate change and the migratory pattern for Norwegianspring-spawning herring-implications for management. Marine Policy,2005,29:299-309
    Sissenwine M.P.. Why do fish population vary? In: May, R.M.(Ed.), Exploitation of marinecommunities. Springer, Heidelberg,1984,55-94
    Slotte A.. Differential utilization of energy during wintering and spawning migration inNorwegian spring-spawning herring. Journal of Fish Biology,1999b,54:338-355
    Slotte A.. Effects of fish length and condition on spawning migration in Norwegian springspawning herring(Clupea harengus L.). Sarsia,1999a,84:111-127
    Southward A.J., Hawkins S.J., and Burrouws M.T.. Seventy years’ observations of changes indistribution and abundance of zooplankton and intertidal organisms in the western EnglishChannel in relation to rising sea temperature. J. Thermal Biol.,1995,20(12):127-155
    Stelzenmüller V., Maynou F., Bernard G., Cadiou G., Camilleri M., Crechriou R., Criquet G.,Dimech M., Esparza Q., Hiqqins R., Lenfant P. and Perez-Ruzafa A.. Spatial assessmentof fishing effort around European marine reserves: Implications for successful fisheriesmanagement. Mar.Pollut. Bull,2008,56:2018-2026
    Stenseth N.C., Mysterud A., Ottersen G., Hurrell J.W., Chan K.S.and Lima M.. Ecologicaleffects of climate fluctuations.Science,2002,297:1292-1296
    Stratoudakis Y., Gallego A. and Morrison J.A.. Spatial distribution of developmental egg ageswithin a herring Clupea harengus spawning ground. Mar. Ecol. Prog. Ser.,1998,174:27-32
    Su N.J., Yeh S.Z., Sun C.L., Punt A.E., Chen Y. and Wang S.P.. Standardizing catch andeffort data of the Taiwanese distant-water longline fishery in the western and centralPacific Ocean for bigeye tuna, Thunnus obesus. Fisheries Research,2008,90:235-246
    Tojo N., Kruse G.H. and Funk F.C.. Migration dynamics of Pacific herring(Clupea pallasii)and response to spring environmental variability in the southeastern Bering Sea. Deep-SeaResearch II,2007,54:2832-2848
    Traon L.. Satellite Altimetry. ESA-MOST Dragon Programme2ndAdvanced Training Coursein Remote Sensing,2007, Hangzhou, China
    Upton G. and Fingleton B.. Spatial data analysis by example. New York, USA:Wiley,1985
    Valavanis V.D., Georgakarakos S., Kapantagakis A., Palialexis A. and Katara I.. A GISenvironmental modeling approach to essential fish habitat designation. EcologicalModelling,2004,178:417-427
    Wang M.H., Gordon H.R.. A simple, moderately accurate, atmospheric correction algorithmfor SeaWIFS. Remote Sensing of Environment,1994,50(2):231-239
    Wei H., Su J., Wan R.J., Wang L., and Lin Y.. Tidal front and the convergence of anchovy(Engraulis japonicus)eggs in the Yellow Sea. Fish Oceanography,2003,12(4/5):434-442
    Williams N.. Temperature rise could squeeze salmon. Science,1998,280:1349
    Wood S.N.. Generalized Additive Models-An introduction with R. Chapman and Hall.London.1990.
    Wood S.N.. Stable and efficient multiple smoothing parameter estimation for generalizedadditive models. J. Am. Stat. Assoc,2004,99:637-686
    Xu B. and Jin X. Variations in fish community structure during winter in the southern YellowSea over the period1985-2002. Fish Res.,2005,71(1):79-91
    Ye X. and Wu L.. Analyzing the dynamics of homicide patterns in Chicago: ESDA and spatialpanel approaches. Applied Geography,2011,31:800-807
    Zhang B. Zhao X. and Dai F.. Monthly variation in the fat content of anchovy(Engraulisjaponicus)in the Yellow Sea: implications for acoustic abundance estimation. ChineseJournal of Oceanology and Limmology.2011,29(3):556-563
    Zhao X. Reconstruction of the size structure of fish population using acoustic and trawlsample data. In. lida, K.(ed). International Symposium ACOUSTGEAR2000.2001a.202-206
    Zhao X. The acoustic survey of anchovy in the Yellow Sea in February1999, with emphasison the estimation of the size structure of the anchovy population.海洋水产研究,2001b,22(4):40-44
    Zhao X., Hamre J., Li F., Jin X. and Tang Q.. Recruitment, sustainable yield and possibleecological consequence of the sharp decline of the anchovy (Engraulis japonicus) stockin the Yellow Sea in the1990s. Fisheries Oceanography,2003,12(4/5):495-501
    Zhao X., Wang Y. and Dai F. Depth-dependent target strength of anchovy (Engraulisjaponicus) measured in situ. ICES Journal of Marine Science,2008,65:882-888

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700