用户名: 密码: 验证码:
甘蓝型油菜硼高效近等基因系的构建及硼高效基因BnBE2的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼是高等植物生长发育所必需的矿质元素。甘蓝型油菜是需硼较多的作物,对硼缺乏比较敏感。我国油菜主产区土壤普遍缺硼,缺硼导致油菜“花而不实”,大量减产。农业生产上主要依赖增施硼肥解决耕地缺硼问题,然而硼是不可再生的矿质资源。不同甘蓝型油菜品种的硼效率性状存在显著差异,而且受遗传控制,这为硼效率性状的遗传改良提供基础。我们课题组在筛选获得甘蓝型油菜硼效率种质资源的基础上,开展硼高效基因的初步定位工作,研究表明甘蓝型油菜硼效率受多个基因控制。为了精细定位和克隆甘蓝型油菜硼高效基因,本论文建立了营养液培养条件下甘蓝型油菜苗期硼效率的鉴定体系,以甘蓝型油菜苗期硼效率性状为基础,采用随机的分子标记辅助背景选择构建了硼高效近等基因系;并在此基础上开展了硼高效位点BnBE2的定位研究,主要获得以下结果:
     1甘蓝型油菜苗期硼效率鉴定体系的建立
     在不同硼水平的营养液培养条件下,调查不同基因型甘蓝型油菜苗期的生长势,结果表明在大量和微量元素分别采用优级纯和分析纯化学试剂、营养液母液和工作液均用去离子水配制(>12 MΩ)时,在0.25μMB水平下不同基因型甘蓝型油菜的生长势表现出明显的差异,硼高效基因型生长较好,而硼低效基因型植株矮小且表现出明显的缺硼症状。该鉴定体系不但适合不同基因型甘蓝型油菜品种苗期硼效率的鉴定,也适合分离群体各单株硼效率差异的研究,其实验条件易控制,重复性好。
     2甘蓝型油菜硼高效近等基因系的构建
     在营养液培养条件下(0.25μMB),通过连续四代回交,且在每一回交世代的苗期进行硼效率鉴定,采用分子标记对回交世代中硼高效单株进行遗传背景辅助选择,构建了甘蓝型油菜硼高效近等基因系。并证明在回交过程中采用随机分子标记辅助背景选择的有效性和必要性,且适宜在回交早世代进行。
     3硼高效基因的定位
     3.1回交群体中硼效率性状的遗传分析
     采用营养液培养(0.25μM B)对回交分离群体苗期硼效率性状进行调查,根据I_(18)株系的BC_4S_1,BC_5和BC_6三个回交分离群体中高、低效单株的分离比例,表明I_(18)株系的硼效率性状受单个孟德尔因子控制。该株系中目标位点纯合的单株与轮回亲本组成了一对硼高效近等基因系,可供开展硼高效基因的精细定位和克隆、以及硼高效位点生理功能等的研究。
     3.2硼高效基因连锁标记的筛选与定位
     在I_(18)株系的BC_5回交群体苗期硼效率鉴定的基础上,以极端硼效率表型分组构建了近等基因池,结合AFLP和SRAP分子标记技术,筛选到6个与目标基因连锁的分子标记。利用BC_6、TNDH和BQDH两个双单倍体遗传群体对连锁标记进行定位,结果表明目标基因位于甘蓝型油菜N14连锁群上,该硼高效位点被命名为BnBE2。对这些连锁的分子标记进行测序并与Brassica数据库中的序列进行BLAST分析,发现与连锁标记序列高度同源的克隆均来自甘蓝(Brassica oleracea),从侧面证明了本实验定位结果的可靠性。
     3.3连锁的AFLP标记向SSCP标记的转化
     将与目标基因连锁的AFLP标记S6M32的序列在Brassica数据库进行比对,发现它与甘蓝的一个BAC克隆BOHZW41高度同源,根据目标片段的侧翼序列设计引物,将该AFLP标记成功地转化为SSCP标记,证明了该转化标记方法的可行性。通过对该SSCP标记的片段测序并采用软件RNA structure 3.2对该SSCP标记的序列进行二级结构预测,发现两个亲本之间因为3个碱基的差异导致了构象的改变,并揭示了产生该SSCP标记的理论依据。
     3.4利用比较作图发展连锁标记
     甘蓝型油菜的基因组由A、C基因组组成,分别起源于白菜和甘蓝,且甘蓝与白菜基因组间序列具有高度同源性,将不同亲本构建的甘蓝型油菜遗传图谱A4上的3个SSR标记定位在C4上,且与目标基因BnBE2连锁。
     4.硼高效基因BnBE2的生理功能
     比较I_(18)株系的硼高效回交单株(BC_4S_1,BC_5)以及硼高效亲本青油10号和硼低效亲本Bakow在0.25μMB水平条件下硼吸收累积、生物学产量等性状,推测该株系硼高效QTL位点的硼高效生理基础可能为硼利用高效。
     5.连锁标记与甘蓝型油菜硼效率的关联分析
     通过分析目标基因BnBE2侧翼的连锁分子标记在不同硼效率甘蓝型油菜品种中的带型,发现该连锁标记的多态性与硼效率表型没有较好的相关性,进一步证明甘蓝型油菜硼效率是一个受多基因位点控制的复杂性状。
Boron(B) is an essential mineral nutrient for the growth and development in higher plants.Rapeseed(Brassica napus) is acutely sensitive to B deficiency.The main production area of rapeseed in China is deficient in soil available B.Boron deficiency causes the symptom of "flowering without seed setting",or even no seed harvest.At present,applying B fertilizer is the main method to settle this problem.However,B isn't a regenerated mineral resource.Considerable genotypic variations in response to B deficiency exist among rapeseed varieties.This raises the possibility of genetic improvement for the trait tolerant to low B stress.Based on the identification of B efficiency for some rapeseed cultivars with different genotype and QTL mapping for B efficiency,the B efficiency was proved to be controlled by quantitative trait loci in Brassica napus.To free mapping and clone these genes,this study was involved in developing a stable and available solution culture method to validate the B efficiency of Brassica napus at the seedling stage,constructing B-efficient near isogenic lines with random markers assisted background selection,mapping a B-efficient locus,named BnBE2.The main results were as follows:
     1.Development a system for evaluating B efficiency at the seedling stage
     The growth of several genotypes was investigated under different B levels with solution culture.The results showed that significant difference in the phenotype growth among the different genotypes was found at the B level of 0.25μM.Thus,the B concentration is defined as a critical B stress level at which B-efficient cultivars had normal growth without B-deficient symptom while B-inefficient cultivars showed typical signs of B deficiency.The system is suitable for B efficiency evaluation not only for different rapeseed cukivars but also for a genetic segregating population.Under the optimum experiment conditions the method has good repeatability.
     2.Constructing B efficient near isogenic lines
     Based on the identification for B efficiency of each BC generation at the critical B level(0.25μM B),B efficient NIL were developed with random marker assisted background selection.It was proved that random molecular marker assisted background selection is effective and necessary in an early backcrossing generation to accelerate the construction of NILs.
     3.Mapping B-efficient gene,BnBE2
     3.1 Genetic analysis for B efficiency in BC populations
     According to the result of phenotypic investigation in three BC populations(BC_4S_1, BC_5,BC_6) under the low B level at the seedling stage,the ratio of B-efficient individuals to B-inefficient individuals was 1:1 in the BC_5 and BC_6 population and 3:1 in the BC_4S_1 population,respectively.These results indicated that the B efficiency in the BC line was considered as Mendel factor,controlled by a single locus.Thus the homozygous of the B-efficient BC plants and the recurrent parent would be considered to be NILs for B efficiency,which should be useful for further free mapping and cloning the B-efficient gene.
     3.2 Identification of linked markers and mapping the B efficient gene Based on the B efficiency identification of BC_5 population,DNA bulks were constructed from ten extreme B-efficient and ten extreme B-inefficient plants, respectively.Six markers were identified linked to BnBE2 using bulked segregant analysis(BSA) in combination with molecular markers AFLP and SRAP techniques.The six markers were all mapped in a region of C4.All of the most homologous sequences were from the Brassica oleracea genome based on the analysis of sequence BLAST against the Brassica database,which was an indication of the correctness of the mapping.
     3.3 Conversion of the linked AFLP marker into an SSCP marker
     The sequence of the linked marker $6M32 was performed a BLAST against the Brassica database and found to be high homologous to a BAC clone BOHZW41 of Brassica oleracea(CC).Primer was designed based on the flanking sequence and the PCR product was resolved on an 8%nondenaturing polyacrylamide gel and an SSCP marker was successfully detected.The AFLP marker was converted into an SSCP marker successfully,which proved the feasibility of this method in converting markers.The secondary structure was predicted for the sequences of the two parents using the software of RNA structure 3.2.The sequence difference,including 3 base pairs difference between the two parents,revealed the reason producing the difference of conformation.
     3.4 Development of linked markers by comparative mapping
     The genome of Brassica napus(AACC) includes A and C genome,which originated from Brassica rapa and Brassica oleracea.A genome and C genome share orthologous regions in the genus Brassica.Therefore three SSR markers within A4 on other Brassica napus genetic map were mapped on the target region of BriBE2 on C4.
     4.Physiological mechanism for the B efficient locus,BnBE2
     The result obtained from study on uptake,accumulation and utilization of B showed that the B-efficient NIL has lower B content and higher B utilization efficiency under the low B condition as compared with the B-inefficient recurrent parent,and the B efficiency is attributed to the higher B utilization efficiency or less demand for B,and this locus is different from BE1 and thus named as BnBE2.
     5.Association analysis of molecular markers flanked to BnBE2 for several lines of Brassica napus with different B efficiency
     An analysis of the flanking markers linked to BnBE2 in different B efficiency rapeseed cultivars was illustrated and the result showed that there is poor correlation between the flanking markers polymorphism bands and B efficiency,which indicates that the B efficiency is a complex trait controlled by multiple loci in Brassica napus.
引文
1.曹享云.对缺硼反应不同的油菜基因型根系生理特性的研究.[博士学位论文].武汉:华中农业大学图书馆,1996
    2.邓其明,王世全,郑爱萍,张红宇,李平.利用分子标记辅助育种技术选育高抗白叶枯病恢复系.中国水稻科学,2006,20:153-158
    3.丁效华.作物数量性状基因图位克隆研究进展.植物遗传资源学报,2005,6:464-468
    4.杜昌文,徐芳森,王火焰,王运华.不同硼效率的甘蓝型油菜品种中硼的运输差异.贵州大学学报,2002,21:157-162
    5.段红梅,王文秀,常汝镇,张孟臣,邱丽娟.大豆SSR标记辅助遗传背景选择的效果分析.植物遗传资源学报,2003,4:36-42
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2001
    7.冯芳君,罗利军,李荧,周立国,徐小艳,吴金红,陈宏伟,陈亮,梅捍卫.水稻InDel 和SSR标记多态性的比较分析.分子植物育种,2005,3:725-730
    8.耿明建.不同硼效率棉花品种对缺硼反应差异及其机理研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    9.韩燕来.拟南芥硼营养高效的生理基础和遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    10.何云刚,谭德勇,钱伟,赖建华,谢咏芳.DNA单链二级结构预测与单链构象多态性分析的一致性研究.生物化学与生物物理进展,2001,28:848-852
    11.李海生.ISSR分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,2004,2:23-25
    12.李宏伟.小麦EST-SSRs在其他作物中的通用性及96份小麦材料的遗传多样性检测.[硕士学位论文].西安:西北农林科技大学,2003
    13.刘建丰,王志德,刘艳华,牟建民.应用SRAP标记研究烟草种质资源的遗传多样性.中国烟草科学,2007,28:49-53
    14.刘鹏.钼、硼对大豆产量和品质影响的营养和生理机制研究.[博士学位论文].杭州:浙江大学图书馆,2000
    15.刘鹏,杨玉爱.油菜在低硼胁迫下的生理反应研究进展.中国油料作物学报,1999,21:74-78
    16.刘志文,傅廷栋,刘雪平,涂金星,陈宝元.作物分子标记辅助选择的研究进展、影响因素及其发展策略.植物学通报,2005,22(增刊):82-90
    17.龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    18.陆景陵.植物营养学(上册).北京:中国农业大学出版社,2003
    19.潘存红,王子斌,马玉银,殷跃军,张亚芳,左示敏,陈宗祥,潘学彪.InDel和SNP标记在水稻图位克隆中的应用.中国水稻科学,2007,21:447-453
    20.潘海军,王春连,赵开军,章琦,樊颖伦,周少川,朱立煌.水稻抗白叶桔病基因Xa23的PCR 分子标记定位及辅助选择.作物学报,2003,29:501-504
    21.沈康,沈振国,徐汉卿,黄清渊.油菜(B.napus L.)硼素营养与结实性的研究.作物学报,1993,19:539-545
    22.沈振国,沈康,张秀省.油菜幼苗对硼的吸收与运转及钙的影响.植物学通报,1992,9:33-37
    23.沈振国,张秀省,王震宇,沈康.硼素营养对油菜花粉萌发的影响.中国农业科学,1994,27:51-56
    24.施益华,刘鹏.硼在植物体内生理功能研究进展.亚热带植物科学,2002,31:64-69
    25.石磊,杨玉华,徐芳森,王运华.硼对作物细胞膜功能影响的研究进展.华中农业大学学报,2002,21:395-400
    26.石磊.甘蓝型油菜硼高效的生理基础及硼高效基因的定位.[博士学位论文].武汉:华中农业大学图书馆,2004
    27.唐玉海.郭春芳,张木清.相关序列扩增多态性(SRAP)标记及其应用研究进展.生物技术通报,2006,S:237-241
    28.万建民.作物分子设计育种.作物学报,2006,32:455-462
    29.王国英.缺硼诱导豌豆侧芽生长的机理.[博士学位论文].北京:中国农业大学图书馆,2005
    30.王火焰,王运华.硼与其它元素的相互作用.土壤农化通报,1997,12:548-561
    31.王磊,陈景堂,张祖新.主要禾谷类作物比较基因组学研究策略与进展.遗传,2007,29:1055-1060
    32.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746
    33.王毅.玉米本地化生物信息库的构建和QTL的整合、比较及元分析.[硕士学位论文].武汉:华中农业大学图书馆,2006
    34.王运华,黄竹根,张晓钟.硼肥.北京:化学工业出版社,1988
    35.王运华,兰莲芳.甘蓝型油菜品种对缺硼敏感性差异的研究(Ⅰ,Ⅱ,Ⅲ),.华中农业大学学报,1995,21:71-84
    36.王运华,周晓峰.硼对棉花叶柄中无机营养、酚、酶活性和激素影响的研究.植物营养与肥料学报,1994,1:61-66
    37.吴礼树,刘武定,皮美美.硼钾营养及其相互关系对棉花光合作用的影响.华中农业大学学报,1995,增刊21:24-27
    38.吴平.植物营养与分子生理学.科学出版社,2001
    39.忻雅,崔海瑞,张明龙,姚艳玲,卢美贞,金基强,林容杓,崔水莲.白菜EST-SSR标记的通用性.细胞生物学杂志,2006,28:248-252
    40.邢晓为.傅俊江,李麓芸.SSCP突变分析技术新进展.国外医学(遗传学),2001,24:296-297
    41.徐芳森,年夫照,王运华,孟金陵.不同拟南芥生态型对缺硼反应的初步研究.华中农业大学学报,2003,22:138-141
    42.薛建明,杨玉爱.不同油菜基因型对缺硼反应的差异.浙江农业大学学报,1994,20:422-426
    43.鄢慧民,宋运淳,李立家,毕学知,付彬英.水稻抗稻瘟病、绿叶蝉和黄萎病基因BAC克隆的物理定位.武汉大学学报(自然科学版),1998,144:469-473
    44.严小龙,张福锁.植物营养遗传学.北京:中国农业出版社,1997
    45.杨锦鹏.利用TN群体定位甘蓝型油菜硼高效QTLs的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    46.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33:523-530
    47.杨晓冬,孙素琴,李一勤.硼缺乏导致花粉管细胞壁多糖分布的改变.植物学报,1999,41:1169-1176
    48.杨玉华,杜昌文,吴礼树,王运华.不同硼效率甘蓝型油菜品种细胞壁中硼的分配.植物生理与分子生物学学报,2002,28:339-343
    49.喻敏,褚海燕,吴礼树,王运华.甘蓝型油菜不同硼利用效率基因型对硼的吸收、分配的影响.中国油料作物报,1999,21:49-52
    50.俞治国,赖寿强.植物激素对离子膜运输的调节控制.植物生理学通讯,1984,5:8.12
    51.曾长英.拟南芥硼高效QTLAtBE1-2的定位和基因表达谱分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    52.张福锁,张亚科.植物矿质营养遗传性状的改良与利用.世界农业,1994,11:32-34
    53.张秀省,沈振国,沈康.硼对油菜花器官发育和结实性的影响.土壤学报,1994,31:146.152
    54.张照远,甘四明,李发根,李梅,翁启杰,胡哲森.EST-CAPS标记在尾叶桉和细叶桉遗传图谱构建中的应用.林业科学研究,2007,20:230-234
    55.赵竹青.硼与生长素、乙烯及其它激素相互作用的研究.[博士学位论文].武汉:华中农业大学图书馆,1998
    56.周晓峰,王运华.硼对棉花叶柄解剖结构的影响.华中农业大学学报,1993,12:122.125
    57.Ahn S,Anderson J A,Sorrells M E,Tanksley S D.Homoeologous relationships of rice,wheat and maize chromosomes.Mol Gen Genet,1993,241:483-490
    58.Alwala S,Suman A,Arro J A,Veremis J C,Kimbeng C A.Target region amplification polymorphism(TRAP) for assessing genetic diversity in sugarcane germplasm collections.Crop Sci.2006,46:448-455
    59.Blevins D G,Lukaszewski K M.Boron in plant structure and function.Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:481-500
    60. Bonierbale M W, Plaisted R L, Tanksley S D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120:1095-1103
    61. Bonilla I, Mergold-Villasenor C, Campos M E, Sanchez N, Perez H, Lopez L, Castrejon L, Sanchez F, Cassab G I. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/proline-rich proteins. Plant Physiol, 1997,115:1329-1340
    62. Brenchley W E, Warington K. The role of boron in the growth of plants. Annals of Botany, 1927, 41:167-187
    63. Brown P H, Shelp B J. Boron mobility in plants. Plant and Soil, 1997,193:85-101
    64. Brown P H, Bellaloui N, Hu H N. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol, 1999, 119:17-20
    65. Cakmak I, Kurz H, Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability on boron deficient leaves, but not in phosphorus-deficient leaves of sunflower. Plant Physiol, 1995, 95:11 -18
    66. Cakmak I. Boron deficiency-induced impairment of cellular functions in plants. Plant Soil, 1997, 193:71-83
    67. Camacho-Cristobal J J, Gonzalez-Fontes A. Boron deficiency decreases plasmalemma H~+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta, 2007, 226:443-451
    68. Camacho-Cristobal J J, Herrera-Rodriguez M B, Beato V M, Rexach J, Navarro-Gochicoa M T, Maldonado J M, Gonzalez-Fontes A. The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environmental and Experimental Botany, 2008, 63:351-358
    69. Chen S, Lin X H, Xu C G, Zhang Q F. Improvement of bacterial blight resistance of Minghui63, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Science, 2000, 40:239-244
    70. Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalski A J. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2002,3:19 (page number not for citation purposes)
    71. CTC (Members of the Complex Trait Consortium). The nature and identification of quantitative trait loci: a community's view. Nature Rev Genet, 2003, 4:911-916
    72. Dannel F, Pfeffer H, Romheld V. Update on boron in higher plants-uptake, primary translocation and compartmentation. Plant Biol, 2002, 4:193-204
    73. Devos K M, Gale M D. The genetic maps of wheat and their potential in plant breeding. Outl Agric, 1993,22:93-99
    74. Doebley J, Gustus C. Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995,141:333-346
    75. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386:485-488
    76. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12:13-15
    77. Drenkard E, Richter B G, Rozen S, Stutius L M, Angell N A, Mindrinos M, Cho R J, Oegner P J, Davis R W, Ausubel F M. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol, 2000, 124:1483-1492
    78. Dannel F, Pfeffer H , Romheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. Plant Physiol, 1998, 153:615-622
    79. Fernie A R, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality. Current opinion in Plant Biology, 2006, 9:196-202
    80. Fraser L G, Harvey C F, Crowhurst R N, DeSilva H N. EST-derived micrrosatellites from Actinidia species and their potential for mapping. Theor Appl Genet, 2004, 108:1010-1016
    81. Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley SD. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88
    82. Garcia-Gonzales M, Mateo P, Bonilla I. Effect of boron deficiency on photosynthesis and reductant sources and their relationship with nitrogenase activity in Anabaena PCC 7119. Plant Physiol, 1990, 93:560-565
    83. Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson R D, Bonierbale M W, Ganal M W, Tanksley S D, Salamini F. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet, 1991, 83:49-57
    84. Giovannoni J J, Wing R A, Ganal M W, Tanksley S D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 1991,19:6553-6558
    85. Goldbach H E, Wimmer M A, Findeklee P. Discussion paper: Boron-How can the critical level be defined? J Plant Nutr Soil Sci, 2000, 163:115-121
    86. Gupta U C, Jame Y M, Campbell C A, Leyshon A J, Nicholaichuk W. Boron toxicity and deficiency: a review. Can J Soil Sci, 1995, 65:381-409
    87. Hirsch A M, Pengelly W L, Torrey J G. Endogenous IAA levels in boron-deficient and control root tips of sunflower. Bot Gaz, 1982, 143:15-19
    88. Hirsch A M, Torrey J G. Ultrastructural changes in sunflower root cell in relation to boron deficiency and added auxin. Can J Bot, 1980, 58:856-866
    89. Hu H, Brown P H, Labavitch J M. Species variability in boron requirement is correlated with cell wall pectin. J Exp Bot, 1996, 47:227-232
    90. Hu H N, Brown P H. Localization of boron in cell walls of squash and tobacco and its associaton with pectin, Evidence for a structural role of boron in the cell wall. Plant Physiol, 1994, 105:681-689
    91. Hu H N, Perm S C, Lebrilla C B, Brown P H. lsolation and characterization of soluble boron complexes in higher plants.Plant Physiol,1997,113:649-655
    92.Hu.I G,Vick 13 A.Target region amplification polymorphism:a novel marker technique for plant genotyping.Plant Molecular Biology Reporter,2003,21:289-294
    93.Huang L B,Bell R W,Dell B.Evidence of phloem boron transport in response to interrupted boron supply in white lupin(Lupinus albus L.cv.Kiev Mutant) at the reproductive stage.J Exp Bot,2008,59:575-583
    94.Hulbert S H,Richter T E,Axtell J D,Bennetzen J L.Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes.Proc Natl Acad Sci USA,1990,87:4251-4255
    95.licla S,Terada R.Modification of endogenous natural genes by gene targeting in rice and other higher plants.Plant Mol Biol.2005,59:205-219
    96.Ishii T,Matsunaga T.Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp,Carbohydr.Res,1996,284:1-9
    97.Ishii T,Matsunaga T.Pectic polysaccharide rhamnogalacturonan-Ⅱ is covalently linked to homogalacturonan.Phytocheraistry,2001,57:969-974
    98.Ishii T,Matsunaga T,Hayashi N.Formation of rhamnogalacturonan-Ⅱ-borate dimer in pectin determines cell wall thickness of pumpkin tissue.Plant Physiol,2001,126:1698-1705
    99.Ishii T,Ono E.NMR spectroscopic analysis of the borate diol esters of methyl apiofuranosides.Carbohydr Res,1999,321:257-260
    100.Iwai H,Hokura A,Oishi M,Chida H,Ishii T,Sakai S,Satoh S.The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-lI is required for plant reproductive tissue development and fertilization.Proc NatlAcad Sci USA,2006,103:16592-16597
    101.Iwai H,Masaoka N,lshii T,Satoh S.A pectin giueuronyltransferase gene is essential for intercellular attachment in the plant meristcm.Proc Natl Acad Sci USA,2002,99:16319-16324
    102.Jamjod S,Rerkasem B.Genotypic variation in response of barley to boron deficiency.Plant Soil,1999,215:65-72
    103.Jamjod S,Niruntrayagul S,Rerkasem B.Genetic control of boron efficiency in wheat(Triticum aestivum L.).Euphytica,2004,135:21-27
    104.Jefferies S P,Barr A R,Karakouisis A,Kretschmer J M,Manning S,Chalmers K J,Islam A K M,Nelson J C,Langridge P.Mapping of chromosome regions conferring boron toxicity tolerance in barley(Hordeum vulgate).Theor Appl Genet,1999,98:1293-1303
    105.Jeffefies S P,Paull J G,Paull J G.Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat(Triticum aestivum).Theor Appl Genet,2000,101:767-777
    106.Karakousis A,Barr A R,Kretschmer J M.,Manning S,Jefferies S P,Chalmers K J,Islam A K M,Langridge P.Mapping and QTL analysis of the barley population Clipper × Sahara.Australian J of Agricultural Research,2003,54:1137-1140
    107.Kato K,Nakamura W,Tabiki T,Miura H.Detection of loci controlling seed dormancy on group 4chromosomes of wheat and comparative mapping with rice and barley genomes.Theor Appl Genet,2001,102:980-985
    108.Kobayashi M,Matoh T,Azuma J.Two chains of Rhamnogalacturonan Ⅱ are cross-1 inked by borate-diol ester bonds in higher plant cell walls.Plant Physiol,1996,110:1017-1020
    109.Kobayashi M,Mutoh T,Matoh T.Boron nutrition of cultured tobacco BY-2 cells.IV.Genes induced under low boron supply.J Exp Bot,2004,55:1441-1443
    110.Kobayashi M,Naksgawa H,Asaka T.Borate-Rharnnogalacturonan Ⅱ bonding reinforced by Ca~(2+)retains pectic polysaccharides in higher-plant yell wall.Plant Physiol,1999,119:199-203
    111.Kobayashi Y,Koyama H.QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana.Plant Cell Physiol,2002,43:1526-1533
    112.Lan T H,Del Monte T A,Reischmann K P,Hyman J,Kowalski S P,McFerson J,Kresovich S,Paterson A H.An EST-enriehed comparative map of Brassica oleracea and Arabidopsis thaliana.Genorne Research,2000,10:776-788
    113.Lauchli A.Functions of boron in higher plants:recent advances and open questions.Plant Biol.2002,4:190-192
    114.Lei S L,Yao X Q,Yi B,Chen W,Ma C Z,Tu J X,Fu T D.Towards map-based cloning:fine mapping of a recessive genic male-sterile gene(BnMs2) in Brassica napus and syntenic region identification based on the Arabidopsis thaliana genome sequences.Theor Appl Genet,2007,115:643-651
    115.Li C,Pfeffer H,Dannel F,Rtimheld V,Bangerth F.Effects of boron starvation on boron compartmentation,and possibly hormone-mediated elongation growth and apical dominance of pea(Pisum sativum) plants.Physiol Plant.2001,111:212-219
    116.Li G,Quiros C F.Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,103:455-461
    117.Liu J,Eck J V,Cong B,Tanksley S D.A new class of regulatory genes underlying the cause of pear-shaped tomato fruit.Proc NatIAcad Sci USA,2002,99:13302-13306
    118.Liu Z H,Anderson J A,Hu.l,Friesen T L,Rasmussen J B,Faris J D.A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci.TheorAppl Genet,2005,111:782-794
    119.Livingstone K D,Lackney V K,Blauth J IL Wijk R,Jahn M K.Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae.Genetics,1999,152:1183-1202
    120.Loomis W D,Durst R W.Chemistry and biology of boron.Biofactors.1992,3:229-239
    121.Mateo P,Bonilla I,Fernandez-Valiente E,Sanehez-Maseo E.Essentiality of boron for dinitrogen fixation in Anabaena sp PCC 7119.Plant Physiol.1986,81:430-433
    122.Matoh T,Ishigaki K,Ohno K Azurna J.Isolation and characterization of a boron-polysaccharide complex from radish roots.Plant cell Physiol,1993,34:639-642
    123.Matoh T,Kawaguchi S,Kobayashi M.Ubiquity of a borate-rhamnogalaacuronan-II complex in the cell walls of higher plant.Plant Cell Physiol,1996,37:636-640
    124.Matsunaga T,Ishii T,Matsumoto S,Higuchi M,Darvill A,Albersheim P,O′Neill M A.Occurrence of the primary cell wall polysaccharide rhamnogalacturonan-Ⅱ in pteridophytes,lycophytes,and bryophytes.Implications for the evolution of vascular plants.Plant Physiol,2004,134:339-351
    125.Michelmore R W,Paran I,Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA,1991,88:9828-9832
    126.Miwa K,Takan J,Fujiwara T.Improvement of seed yields under boron-limiting conditions through overexpression of BOR1,a boron transporter for xylem loading,in Arabidopsis thaliana.Plant,J,2006,46:1084-1091
    127.Miwa K,Takano J,Omori H,Seki M,Shinozaki K,Fujiwara T.Plant tolerant of high boron level.Science,2007,318:1417
    128.Muehlbauer G L,Specht J E,Thomas-Compton M A,Staswick P E,Bernard R L.Near-isogenic lines-A potential resource in the integration of conventional and molecular marker linkage maps.Crop Sci,1988,28:729-735
    129.Nachiangmai D,Dell B,Bell R,Huang LB,Rerkasem B.Enhanced boron transport into the ear of wheat as a mechanism for boron efficiency.Plant Soil,2004,264:141-147
    130.Nagamura Y,Tanaka T,Takiguchi T,Toyonaga R,Nozawa H,Takamatsu M,Sotome T,Yano M,Sasaki T.Hybridization of rice DNA markers to other plant genomes.Rice Genome,1995,2:5-7
    131.Nataraj A J,Olivos-Glander I,Kusukawa N,Highsmith WE Jr.Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection.Electrophoresis,1999,20:1177-1185
    132.Noguchi K,Yasmori M,Imai T,Naito S,Matsunaga T,Oda H,Hayashi H,Chino M,Fujiwara.borl-1,an Arabidopsis thaliana mutant that requires a high level of boron.Plant Physiol,1997,115:901-906
    133.Noumi T,Mosher M E,Natori S,Futai M,Kanazawa H.A phenylalanine for serine substitution in the β subunit of Escherichia coli F1-ATPase affects dependence of its activity on divalent cations.J Biol Chem,1984,259:10071-10075
    134.Olson M,Hood L,Cantor C,Botstein D.A common language for physical mapping of the human genome.Science,1989,245:1434-1435
    135.O'Neill M A,Eberhard S,Albersheim P,Darvill A G.Requirement of borate cross-linking of cell wall rhamnogalaacuronan-Ⅱ for,4rabidopsis growth.Science,2001,294:849-849
    136.O′Neill M A,Warrenfeltz D,Kates K,Pellerin P,Doco T,Darvill A G,Albersheim E Rhamnogalacturonan-Ⅱ,a pectic polysaccharide in the walls of growing plant cell,forms a dimer that is covalently cross-linked by a borate ester.J Biol Chem,1996,271:22923-22930
    137.Orita M,Iwahana H,Kanazawa H.Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.Proc Natl Acad Sci USA,1989,86:2766-2770
    138.Paran I,Michelmore R W.Development of reliable PCR-based markers linked to downy mildew resistence genes in lettuce.Theor Appl Genet,1993,85:985-933
    139.Parkin I A P,Gulden S M,Sharpe A G,Lukens L,Trick M,Osborn T C,Lydiate D J.Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana.Genetics,2005,171:765-781
    140.Paterson A H,Bowers J E,Burrow M D,Draye X,Elsik C G,Jiang C X,Katsar C S,Lan T H.Comparative genomics of plant chromosomes.Plant Cell,2000,12:1523-1539
    141.Patterson J,Ford K,Cassin A,Natera S,Bacic A.Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley.Plant Physiology,2007,144:1612-1631
    142.Peng J,Richards D E,Hartley N M,Munrphy G P,Devos K M,Flintham J E,Beales J,Fish L J,Worland A J,Pelica F,Sudhakar D,Christou P,Snape J W,Gale M D,Harberd N P.'Green revolution' genes encode mutant gibberellin response modulators.Nature,1999,400:256-261
    143.Pfeffer H,Dannel F,Romheld V.Boron compartmentation in roots of sunflower plants of different boron status:A study using the stable isotopes ~(10)B and ~(11)B adopting two independent approaches.Physiol Plant,2001,113:346-351
    144.Piquemal J,Cinquin E,Couton F,Rondeau C,Seignoret E,Doucet I,Perret D,Villeger M J,Vincourt P Blanchard P.Construction of an oilseed rape(Brassica napus L.) genetic map with SSR markers.Theor Appl Genet,2005,111:1514-1523
    145.Poulsen D M E,Henry R J,Johnston R P,Irwin J A G.,Rees R G.The use of bulk segregant analysis to identify a RAPD marker linked to leaf rust resistance in barley.Theor Appl Genet,1995,91:270-273
    146.Rerkasem B,Netsangtip R,Lordkaew S,Cheng C.Grain set failure in boron deficient wheat.Plant Soil,1993,155/156:309-312
    147.Reuhs B L,Glenn J,Stephens S B,Kim J S,Christie D B,Glushka J G,Zablackis E,Albersheim P,Darvill A G,O′Neill M A.L-Galactose replaces L-fucose in the pectic polysaccharide rhamnogalacturonan Ⅱ synthesized by the L-fueose-deficient mur1 Arabidopsis mutant.Planta,2004,219:147-157
    148.Ribaut J M.Edmeades G,Perotti E,Hoisington D.QTL analyses,MAS results,and perspectives for drought-tolerance improvement in tropical maize.JIRCAS Working Report,2002,131-136
    149.Roessner U,Patterson J H,Forbes M G,Fincher G B,Bacic A.An investigation of boron toxicity in barley using metabolomics.Plant Physiol,2006,142:1087-1101
    150.Salse J,Piegu B,Cooke R,Delseny M.New in silica insight into the synteny between rice(Oryza sativa L.) and maize(Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome.Plant J,2004,38:396-409
    151.Shaked H,Melamed-Bessudo C,Levy A A.High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene.Proc Natl Acad Sci USA,2005,102:12265-12269
    152.Sharma P N,Ramchandra T.Effects of boron deficiency and recovery on water and photosynthesis in cauliflower.Indian J of Exper Biology,1991,29:967-970
    153.Shen Y J,Jiang H,Jin J P,Zhang Z B,Xi B,He Y Y,Wang G,Wang C,Qian L,Li X,Yu Q B,Liu H J,Chen D H,Gao J H,Huang H,Shi T L,Yang Z N.Development of genome-wide DNA polymorphism database for map-based cloning of rice genes.Plant Physiol,2004,135:1198-1205
    154.Shorrocks V M.The occurrence and correction of boron deficiency.Plant Soil,1997,193:121-148
    155.Sommer A L,Lipman C B.Evidence on the indispensable nature of zinc and boron for higher green plants.Plant Physiol,1926,1:23 1-249
    156.Srivastava S P,Bhandari T M S,Yadav C R,Joshi M,Erskine W.Boron deficiency in lentil:Yield loss and geographic distribution in a germplasm collection.Plant Soil,2000,219:147-151
    157.Stangoulis J C R,Brown P H,Bellaloui N,Reid R J,Graham R D.The efficiency of boron utilisation in canola.Aust.J.Plant Physiol.2001,28:1109-1114
    158.Stangoulis J C R,Grewal H S,Bell R W,Graham R D.Boron efficiency in oilseed rape:Ⅰ.Genotypic variation demonstrated in field and pot grown Brassica napus L.and Brassica juncea L.Plant Soil,2000a,225:243-251
    159.Stangoulis J C R,Grewal H S,Bell R W,Graham R D.Boron efficiency in oilseed rape:Ⅱ.Development of a rapid lab-based screening technique.Plant Soil,2000b,225:253-261
    160.Sutton T,Baumann U,Hayes J,Collins N C,Shi B J,Schnurbusch T,Hay A,Mayo G,Pallotta M,Tester M,Langridge P.Boron toxicity tolerance in barley arising from efflux transporter amplification.Science,2007,318:1446-1449
    161.Takahashi Y,Shomura A,Sasaki T,Yano M.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.Proc Natl Acad Sci USA,2001,98:7922-7927
    162.Takano J,Miwa K,Yuan L,von Wiren N,Fujiwara T.Endocytosis and degradation of BOR1,a boron transporter of Arabidopsis thaliana,regulated by boron availability.Proc Natl Acad Sci USA,2005,102:12276-12281
    163.Takano J,Noguchi K,Yasumori M,Kobayashi M,Gajdos Z,Miwa K,Hayashi H,Yoneyama T,Fujiwara T.Arabidopsis boron transporter for xylem loading.Nature,2002,420:337-340
    164.Takano J,Wada M,Ludewig U,Schaaf G,yon Wiren N,Fujiwara T.The Arabidopsis major intrinsic protein NIPS;1 is essential for efficient boron uptake and plant development under boron limitation.Plant Cell,2006,18:1498-1509
    165.Tanksley S D,Bernatzky R,Lapitan N L,Prince J P.Conservation of gone repertoire but not gene order in pepper and tomato.Proc Natl Acad Sci USA,1988,85:6419-6423
    166.Tanksley S D,Ganal M W,Prince J P,Dcvicente M C,Bonicrbale M W,Broun P,Fulton T M,Giovannoni J J,Grandillo S,Martin G B,Messeguer R,Miller J C,Miller L,Paterson A H,Pineda O,Rodcr M S,Wing R A,Wu W,Young N D.High density molecular linkage maps of the tomato and potato genomes.Genetics,1992,132:1141-1160
    167.Terada R,Urawa H,Inagaki Y,Tsugane K,Iida S.Efficient gene targeting by homologous recombination in rice.Nature Biotechnology,2002,20:1030-1034
    168. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E. Dwarf 8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28:286-289
    169. Tikhonov A P, San Miguel P J, Nakajima Y, Gorenstein N M, Bennetzen J L, Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA, 1999, 96:7409-7414
    170. Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P. Grane A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science, 2005, 168:195-202
    171. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23:4407-4414
    172. Wang Z Y, Tang Y L, Zhang F S. Effect of boron and low temperature on membrane integrity of cucumber leaves. J Plant Nutrition, 1999, 22:543-550
    173. Warington K. The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot, 1923,37:629-672
    174. Xu F S, Wang Y H, Meng J L. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001, 120:319-324
    175. Xu Y B, McCouch S R, Zhang Q. How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol, 2005, 59:7-26
    176. Xue J M, Lin M S, Bell R W, Graham R D, Yang X E, Yang Y A. Differential response of oilseed rape (Brassica napus L.) cultivars to low B supply. Plant Soil, 1998, 204:155-163
    177. Yamauchi T, Hara T, Sonada Y. Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall. Plant Cell Physiol, 1986,27:729-732
    178. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100:6263-6268
    179. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12:2473-2484
    180. Yi B, Chen Y N, Lei S L, Tu J X, Fu T D. Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet, 2006, 113:643-650
    181. Young N D, Zamir D, Ganal M W, Tankley S D. Use of isogenic lines and Simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics, 1988,120:579-585
    182. Yu Q, Baluska F, Jasper F, Menzel D, Goldbach H E. Short-term boron deprivation enhances levels of cytoskeletal proteins in maize, but not zucchini, root apices. Physiol Plant, 2003, 117:270-278
    183. Yu Q, Hlavacka A, Matoh T, Volkmann D, Menzel D, Goldbach H E, Baluska F. Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices.Plant Physiol,2002,130:415-421
    184.Yu Q,Wingender R.Schulz M,Baluska F,Goldbach H E.Short-term boron deprivation induces increased levels of cytoskeletal proteins in Arabidopsis roots.Plant Biol.2001,3:335-340
    185.Zeng C Y,Xu F S,Wang Y H,Hu C X,Meng J L.Physiological basis of QTLs for boron efficiency in Arabidopsis thaliana.Plant Soil,2007,296:187-196
    186.Zhu J M,Kaeppler S M.Lynch J P.Mapping of QTL controlling root hair length in maize(Zea mays L.) under phosphorus deficiency.Plant Soil,2005,270:299-310
    187.Zhu Y L,Hyten D L,Van Tassell C P,Matukumalli L K,Grimm D R,Hyatt S M,Fickus E W,Young N D,Cregan P B.Single-nucleotide polymorphisms in soybean.Genetics,2003,163:1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700