用户名: 密码: 验证码:
导电型聚氨酯海绵的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以聚醚多元醇为基体,以超细的高结构炭黑为导电填料,以三乙烯二胺和二月桂酸二丁基锡为复合催化剂,以螯合型钛酸酯偶联剂为偶联剂(界面改性剂),采用全水发泡配方,经过自由发泡合成了体积电阻率在10~8~10~9Ω.cm之间的导电型聚氨酯海绵。此种材料既有导电性又具有聚氨酯海绵的优良特性,是一种有着重要研究价值和广阔应用前景的新型功能材料。
     炭黑在整个反应过程中除作为导电填料外还起着固体粉末乳化剂、成核剂(气泡成核剂,晶体成核刑)、固体粉末稳泡剂等作用。针对这些情况,本论文着重研究了导电海绵的配方、炭黑与聚醚多元醇的界面相溶性、炭黑在混合体系中的分散、炭黑对海绵的力学和电学性能的影响以及对发泡行为和微相分离的影响等,在此基础上建立了炭黑的乳化和稳泡模型。本论文运用表(界)面化学原理对偶联剂的界面改性作用进行了研究,运用红外光谱分析法(IR)和动态热机械分析法(DMA)对海绵的微相分离情况进行了研究,并用力学实验法研究了导电海绵的力学性能,用测定电阻率的方法研究导电海绵的电学性能。
     结果表明:炭黑的加入大幅度提高了体系的粘度,严重影响了发泡过程和海绵的可加工性。并且炭黑的粒径越小,结构性越高,这种影响越显著。高结构炭黑在赋予海绵良好导电性的同时,也会导致力学性能的下降。作为气泡成核剂,炭黑能破坏基体海绵的发泡和凝胶反应之间的平衡;作为晶体成核剂,它能影响基体海绵的微相分离和分离程度,导致海绵的开孔率较低;另外,炭黑粒子分布的不均匀性导致了海绵的体积电阻率较高。研究表明:在基体中加入2%(聚醚三元醇的质量百分数)的超导电炭黑,用2%~3%(炭黑的质量百分数)的螯合型钛酸酯偶联剂改善固液两相的界面相溶性,适当地提高二月桂酸二丁基锡的用量,选用高活性的匀泡剂,可以缓和炭黑给发泡过程带来的不利影响,获得物性和导电性均较理想的导电海绵。
With polyether polyol as matrix, high structure nano-carbon black as electrical conductive filler, triethylenediamine and dibutyltin dilaurate as compound catalyst, chelating coupling agent of organic titanate as interface modifier, a new kind of water blown free rise electrical conductive foam, the volume resistivity of which is 108-109Q .cm is obtained. Characterized by electrical conductivity and excellent polyurethane foam quality , the new functional material is worth studying and enjoys a promising application future.
    Serving as the electrical conductive filler , CB, for its special surface quality, seriously affects the reaction process, and mechanical or electrical properties . And CB also functions as solid powder emulsifer , nucleating agent (bubble nucleating agent crystal nucleating agent) , solid powder stabilizer agent and so on through the whole reaction process .Considering disadvantageous effects of CB , we focus our study on the formula ,the interface intermiscibility of CB / polyether polyol , the dispersion and the influence of CB to the properties of the foam, and the influence on foaming behavior and microphase separation .We also build a model of emulsion and stabilization .Our experiment is subdivided into study on modifying function of coupling agent through surface(interface) chemical principal, the degree of microphase separation through IR and DMA,the mechanical properties through tensile test and the electrical property through measuring the volume resistivity, respectively.
    The results indicate that CB greatly enhances the viscosity of the disperse system, and also seriously affects the foaming behavior and workability. And the affection will be greater with smaller size and higher structure endowing foam with good electrical conductivity .As bubble nucleating agent, CB causes the number of the bubbles in foam to increase, breaks the equilibrium between foaming reaction and gelatination , and decreases the mechanical properties of the foam; As crystal nucleating agent ,CB brings about the early arrival of microphase separation, increases the separation level, and finally leads to a low opening rate.
    
    
    The uneven dispersion of CB in foam results in higher volume resistivity. The studies show: we can endow the electrical conductive foams with good physical and electrical properties by filling 2%super electrical conductive carbon black into the matrix , using chelating coupling agent of organic titanate with content of 2%-3% to promote the interface intermiscibility, suitably increased the amount of dibutyltin dilaurate and choosing higher activate stabilizer to lessen negative affections to foaming process.
引文
1.唐森,王凡.导电高分子材料的研究与最新进展.化工新型材料.1992,10:1
    2.张雄伟,黄锐.高分子复合材料及其应用发展趋势.功能材料,1994,6:492
    3.章明歅,贾文陶,陈欣方等.炭黑填充聚偏氟乙烯PTC复合材料研究.高分子材料科学与工程.1998,2:58
    4.黄兴.炭黑填充型导电塑料的研究与应用现状.中国塑料,2000,12:17
    5.李百千,陈婧.复合型导电材料的研究.塑料,1996,1:27
    6.章明秋,曾汉民.复合型导电材料的研究.工程塑料应用,1991,2:50
    7.杜仕国.聚合物抗静电材料的研究与发展.工程塑料应用.1998,10:31
    8.张福强.复合型导电高分子材料技术进展.塑料.1995,2:7
    9.张柏生.共混高聚物—炭黑复合材料的导电规律.现代塑料加工.1996,3:59
    10.杨孚标,李永清,肖加余等.炭黑/接枝聚乙烯导电复合材料的研究.功能材料.2001,1:74
    11.宣兆龙,易建政,杜仕国等.高聚物/炭黑复合材料导电性能的研究.塑料科技.1999,6:38
    12.王奇坤,孟凡瑞,郭涛等.塑料用炭黑的性能与应用.塑料科技.1997,6:28
    13.(美)Katz.H Z编,李佐邦译.塑料用填料及增强剂手册.北京,化学工业出版社.1985
    14.彭学成.炭黑在塑料中的分散,现代塑料加工应用.1993,6:59
    15.沈烈,益小苏.聚乙烯/炭黑复合材料导电体系的结构形态.高分子学报.2001,1:130
    16.罗延龄.炭黑填充低密度聚乙烯导电塑料的热敏特性.塑料加工.2000,1:27
    17. Bernhard Wessling. Electrical Conductivity in Heterogeneous Polymer Systems. J. Polym. Eng. Sci. 1991, 31(16): 1200
    18. M Narkis, A. Ram, and Z. Stein, et al. Electrical Properties of Carbon Black Filled Cross Linked Polyethylene. J. Polym. Eng. Sci. 1981, 21(16): 1049
    19.郑裕堃,董晓武.炭黑/聚乙烯复合导电材料的性能研究.中国塑料,2000,12:22
    
    
    20.陈克正,张言波,张军等.纳米导电纤维与导电炭黑填充PVC复合材料的电性能研究.高分子材料科学与工程.2001,5:71
    21.贺鹏,赵安赤.聚合物改性中纳米复合新技术.高分子通报.2001,2:74
    22.王国全.聚合物改性.北京:中国轻工业出版社.2000
    23.刘英俊.塑料填充改性.北京:中国轻工业出版社.1998
    24.冯继云.共混物增韧机理的新进展.塑料.1992,2:7
    25.肖明艳,陈建敏.有机—无机杂化材料研究进展,高分子材料科学与工程.2001,5:6
    26. D Niyogi, R. Kumar and K. S. Gandhi. Water Blown Free Rise Polyurethane Foams. J. Polym. Eng. Sci. 1999, 39(1): 99
    27.李绍雄,朱吕民.聚氨酯树脂.南京:江苏科技出版社.1993
    28.李俊贤.塑料工业手册—聚氨酯.北京:化学工业出版社.1999
    29.陈声宗.化工过程开发教程.湖南大学化学化工学院.
    30.邹开良.网化聚氨酯泡沫塑料的研制.聚氨酯工业.2001,3:31
    31. L Rand and B Thir. Kinetics of Alcohol-Isocyanate Reaction with Metal Catalysts.J. Appl. Polym. Sci. 1965, 9:1787
    32.杜磊,邓剑如,王亚等.表界面化学原理在复合固体推进剂中的应用.推进技术.2000,1:64
    33.胡纪华.胶体与界面化学.广州:华南理工大学出版社.1999
    34.沈钟.胶体与表面化学.北京:化学工业出版社.1997
    35.何曼君.高分子物理.上海:复旦大学出版社.1990
    36. R Olayo and Jorge H Ordoonez. On the Kinetics of Styrene Emulsion Polymerization above CMC. Ⅰ. J. Polym. Sci. (A): Polym. Chem. 2000, 38:2201
    37. R Olayo and Jorge H Ordoonez. On the Kinetics of Styrene Emulsion Polymerization above CMC. Ⅱ. J. Polym. Sci. (A): Polym. Chem. 2000, 38:2219
    38.顾惕人.表面化学.北京:科学出版社.1999
    39. M W Creswick and K D Llee. Urea Domain Structure in Polyurethane Foams. Proceedings of the SPI 31st Annual Technical/Marketing Conference. 1988, 11
    
    
    40.杨军,刘万军,陈广新等.超细CaCO3的粒子尺寸PP结晶行为的影响.高分子学报.2001,3:383
    41.于中振,欧玉春,陈金凤等.尼龙6/高岭土界面相互作用对复合材料力学性能和流变行为的影响.高分子学报.992,6:736
    42.雷鸣,于中振,欧玉春等.无机填料对PET结晶行为,力学性能和流变性能的影响.高分子材料科学与工程.2002,2:105
    43.于中振,欧玉春,刘列等.高岭土填充尼龙6的结晶行为.高分子学报.1994,3:295
    44. Sichel E K. Carbon-Black-Polymer Composites, New York: Macel Dekker. 1982
    45. L D Artavia, C W Macosko, et al. An Integrated View of Reactive Urethane Foaming. Polyurethane World Congress. 1991, 509
    46. Baily F E and Critchfield F E. Chemical Reaction Sequence in the Formation of Water-Blown Urethane Foam. J. Cell. Plast. 1981, 17:333
    47. Rossmy G R, H J Kollmeier, et al. Paper X (B) SPI, International Urethane Conference, Strasbourg, June, 1980
    48. Arimistead J P, G L Wiks and R B Turner. Morphology of Water Blown Flexible PU Foams. J. Appl. Polym. 1988, 35:601
    49. T Nishioka, S Sakai and K Ueno. Soft Flexible PU Foam Without CFCS. Polyurethane World Congress. 1991, 132
    50. Vandichel J C and P Appleyand. Reaction of CFC-11 Usage in Flexible PU Foam though Modification to Polymer Morphology. 33rd Annual PU Technical/Marketing Conference. 1990, 46
    51. Rossmy G R, H J Kollmeier, et al. Flexible Polyether Polyurethane Foams by Siliconbased Surfactants. J. Cell..Plast. 1981, 17:319
    52. Rossmy G R, H J Kollmeier, et al. J. Cell..Plast. 1977.13(1): 26
    53. Van Thuyne A and B Zeegers. Kinetic Study on Flexible Polyurethane Foams Formation. J. Cell. Plast. 1978, 14:150
    54. Kostyzeuski W. Foam Rheometer: its Principle and Applications J. Cell. Plast. 1985, 21:424
    55. Hzuhisa Yano, A Usuri and A Okada, et al. Synthesis and Properties of Polyamide-Clay Hybrid. J. Poly. Sci. (A): Polym. Chem. 1993, 31:2493
    
    
    56. R F Harries, and C E. Habermann, et al. Polyurethane Soft Segments. J. Appl. Polym. Sci. 1992, 44:1561
    57.张美珍.聚合物研究方法,北京:中国轻工业出版社.2000
    58.T.穆腊亚马著,谌福特译.聚合物材料的动态力学分析.北京:轻工业出版社.1988
    59. H V Boening, N Walker and E H. Myers. Aliphatic Polyureas: Melting Points versus Intrinsic Viscosities. J. Appl. Poly. Sci. 1961, 5:384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700