用户名: 密码: 验证码:
聚丙烯成核及交联改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了聚丙烯(PP)的成核改性和交联改性。两种方法都是通过改变PP的微观结构从而改变其宏观性能。其中前者的改性效果是由于PP球晶形态的变化,而后者则是由于交联网络的生成。另外,本文也对PP收缩率的控制研究作了一些初步的探讨。
     在成核改性的研究中,主要采用差示扫描量热法、偏光显微镜和广角X衍射详细表征了成核PP的结晶结构及其对力学性能的影响。结果表明:α和β两种成核剂的加入均使结晶向高温方向偏移,结晶速度加快。α成核剂的加入主要是细化了球晶尺寸,结晶规整均匀,从而使结晶度增大,刚性增加,冲击强度总体呈下降趋势;β成核剂的加入则诱导了相当部分的α晶型向β晶型转变,β晶独特的束状晶片聚集结构是其具有较高韧性的主要原因,束状结构在受力时产生银纹带,从而使拉伸强度和拉伸模量下降,而韧性大大增加。在β成核剂质量分数为0.6%时,β晶相对含量最高,简支梁缺口冲击强度和断裂伸长率达到最大值,皆为纯PP的2倍多。
     通过对β成核PP热处理的研究发现,随着热处理温度的升高,材料的结晶度增大,结晶形态由β晶型逐渐转变为α晶型。当热处理温度为142℃时,材料完全转化为α晶型,其拉伸强度及弯曲强度增大,而悬臂梁缺口冲击强度和断裂伸长率却降至最低,由韧性材料转变为刚性材料。
     在交联改性的研究中,采用过氧化物引发剂和多官能团助交联剂对共聚PP进行交联改性。研究了加工工艺、引发剂及助交联剂对改性效果的影响。结果表明,随着引发剂A_1及助交联剂B_1用量的增大,改性PP的交联程度逐渐增大,强度及韧性都显著增强。当A_1用量为0.05%、B_1用量为1.0%时,在双螺杆挤出机上进行反应挤出,制得了高抗冲PP材料。在保持其它力学性能良好的前提下,它的悬臂梁缺口冲击强度高达360.73J/m,为纯共聚PP的3倍多。
    
    聚丙烯成核及交联改性的研究
    摘要
     收缩率的研究表明,控制PP的结晶度是控制PP收缩率的关键所在。在注射
    工艺中,熔体温度的提高会增大收缩率;注射压力的提高可明显减小收缩率;适
    当延长保压时间也可减小收缩率。成核改性PP由于结晶度的增大,收缩率也相应
    增大。
This paper mainly discussed the nucleation and crosslinking modification of polypropylene (PP). These two methods both change the macroscopic properties of PP by change its microstructure. The former method put emphasis on the change of spherulite morphology, but the latter method stresses the formation of crosslinking network. Also, the control of shrinkage of PP was studied.
    During the study of nucleation modification, the influence of two different nucleating agents on the mechanical properties of PP was studied, which corresponded to the change of crystallization behavior reveled by differential scanning calorimetry (DSC) -, polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). Compared with pure PP, nucleated PP showed a higher crystallization temperature and a faster crystallization rate. With the addition of a nucleating agent, the spherulites became so small and even that the crystalline degree of nucleated PP increased, which resulted in higher rigidity and lower impact strength than those of pure PP. While the addition of β nucleating agent, induced a large part of a crystalline form to converted to β crystalline form. The special sheaf-like structure of β crystalline form accounted for its high toughness. Craze strip was formed when external force was exerted on β nucleated PP, which resulted in decrease of tensile strength and tensile modulus of β
     nucleated PP, but an increase of toughness. When 0.6% β nucleating agent was added, the relative β crystalline fraction was the highest, so the Charpy notched impact strength and the elongation at break came up to the highest level, being more than two times of that of pure PP.
    
    
    The influence of thermal treatment on the properties of β nucleated PP was studied. The results showed that with the increase of the thermal treatment temperature, the crystalline degree increased and the initial β crystalline form converted to a crystalline form gradually. When the material was totally composed of a crystalline form at 142癈, the tensile strength and flexural strength were both very high, and the elongation at break and the notched impact strength were the lowest, which meant the tough material had turned to be brittle.
    During the study of crosslinking modification, copolymerization PP was modified by peroxide initiator and multifunctional assistant crosslinker. The influence of the machining technology , initiator and assistant crosslinker on the mechanical properties of modified PP was studied. The results showed that with increasing initiator and assistant crosslinker concentration, the crosslinking degree increased, followed by increased strength and toughness. When 0.05% initiator A1 and 1.0% assistant crosslinker B1 were added, high-impact PP was prepared by twin-screw extruder. The modified PP had good mechanical properties. Its Izod notched impact strength was particularly high to 360.73J/m, as over three times as that of pure PP.
    The study of the shrinkage of PP showed that the control of crystalline degree was the key factor. During the molding technology, the increase of the molding temperature would increase the shrinkage, and the shrinkage could be decreased by increasing the molding pressure or prolonging the holding time. Nucleated PP has higher shrinkage because of its higher crystalline degree.
引文
[1] 许健南,塑料材料[M],第1版,北京:中国轻工业出版社,1999,73-74.
    [2] Norton D R, Keller A. Spherulitic and Lamellar Morphology of Melt-crystallized Isotactic Polypropylene[J]. Polymer, 1985, 26(5) , 704-716.
    [3] 王克智,李训刚,代燕琴,成核剂与聚烯烃的结晶改性[J],中国塑料,2001, 15(11) , 1-5.
    [4] 马承银,杨翠纯,陈红梅等,聚丙烯成核剂研究的进展[J],现代塑料加工应用,2002, 14(1) , 41-44.
    [5] 王朝晖,王锡臣,李涛,聚丙烯透明改性[J]中国塑料,2000, 14(11) , 22-26.
    [6] Khanna Y P. Rheological Mechanism and Overview of Nucleated Crystallization Kinetics[J]. Macromolecules, 1993, 26(14) , 3639-3643.
    [7] Smith T L, Masilamani D, Bui L K, et al. The Mechanism of Action of Sugar Acetals as Nucleating Agents for Polypropylene[J]. Macromolecules, 1994, 27(12) , 3147-3155.
    [8] Shepard T A, Delsorbo C R, Louth R M, et al. Self-Organization and Polyolefin Nucleation Efficacy of 1,3:2,4-Di-p-Methylbenzylidene Sorbitol[J]. J Polym Sci Part B: Polym Phys, 1997, 35(16) , 2617-2628.
    [9] Thorsten B, Ralf T, Rolf M. Two-Component Gelators and Nucleating Agents for Polypropylene Based upon Supramolecular Assembly[J]. Macromolecules, 1998, 31(22) , 7651-7658.
    [10] Millner O, Titus G. Effect of DBS Nucleating Agents on Isotactic Polypropylene[J]. Chemical Design Automation News, 1990, (5) , 10-16.
    [11] Garg S N, Stein R S, Su T K, et al. Kinetics of Aggregation and Gelation[M]. Edition 1st. 1984, 229-230.
    [12] Thierry A, Straupe C, Lotz B, et al. Physical Gelation: A Path towards 'Ideal' Dispersion of Additive in Polymers[J]. Polym Commun, 1990, 31(7) , 299-301.
    [13] Huang M R, Li X G, Fang B R. β-Nucleators and β-Crystalline Form of Isotactic Polypropylene[J] J Appl Polym Sci, 1995,56(10) , 1323-1337.
    [14] Lotz B. a and p Phases of Isotactic Polypropylene: A Case of Growth Kinetics 'Phase
    
    Reentrency'in Polymer Crystallization[J]. Polymer, 1998, 39(19), 4561-4567.
    [15] Hamada, Kenzo, Uchiyama, et al. Polyolefin Plastic compositions[P]. U. S. Patent 4016118,April 5,1977
    [16] 苗迎春.聚丙烯透明剂的现状与发展趋势[J].中国塑料,2000,14(3),19-23.
    [17] 陈祖敏,张彦芝,张增冬,等.聚烯烃透明改性剂研制及应用[J].塑料科技,2000,(1),10-11.
    [18] 于英宁,张宏放,莫志深,等.茂金属间规立构聚丙烯结晶动力学研究[J].高分子学报,1999,(3),302-308.
    [19] Kim Y C, Kim C Y, Kim S C. Crystallization Characteristics of Isotactic Polypropylene With and Without Nucleating Agent[J]. Polym Eng Sci, 1991, 31 (14), 1009-1014.
    [20] Feng Y, Jin X, Hay J N. Effect of Nucleating Agent Addition on Crystallization of Isotactic Polypropylene[J]. J Appl Polym Sci, 1998, 69(10), 2089-2095.
    [21] Kim C Y, Kim Y C, Kim S C. Temperature Dependence of the Nucleation Effect of Sorbitol Derivatives on Polypropylene Crystallization[J]. Polym Eng Sci, 1993, 33(22), 1445-1451.
    [22] Beck H N. Heterogeneous Nucleating Agents for Crystallization of Vinylidene Chloride-Vinyl Chloride Copolymers[J]. JAppl Polym Sci, 1975, 19(2), 371-373..
    [23] Avella M, Dellerba R, Martuscelli E, et al. Influence of molecular mass, thermal treatment and nucleating agent on structure and fracture toughness of isotactic polypropylene[J]. Polymer, 1993, 34(14), 2951-2960.
    [24] Jang G S, Cho W J, Ha C S. Crystallization Behavior of Polypropylene with or without sodium benzoate as a nucleating agent[J], J Polym Sci Part B: Polym Phys, 2001, 39(10), 1001-1016.
    [25] Ozawa T Kinetics of Non-isothermal Crystallization[J]. Polymer, 1971, 12(3), 150-158.
    [26] 汪克风,麦堪成,曾汉民.成核PP注塑样品的非等温结晶行为与熔融特性[J].高分子材料科学与工程,2001,17(2),125-128.
    [27] Mai K C, Wang K F, Han Z W, et al. Study on the Thermal Stability of Heterogeneous Nucleation Effect of Polypropylene Nucleated by Different Nucleating Agents[J]. J Appl Polym Sci, 2002, 84(9), 1643-1650.
    [28] Wang K F, Mai K C, Hah Z W, et al. Interaction of Self-Nucleation and the Addition of a Nucleating Agent on the Crystallization Behavior of Isotactic Polypropylene[J]. J Appl Polym Sci, 2001, 81(1), 78-84.
    
    
    [29] Marco C, Ellis G, Gomez M A, et al. Comparative study of the nucleation activity of third-generation sorbitol-based nucleating agents for isotactic polypropylene[J]. J Appl Polym Set, 2002, 84(13) , 2440-2450.
    [30] Marco C, Gomez M A, Ellis G, et al. Highly Efficient Nucleating Additive for Isotactic Polypropylene Studied by Differential Scanning Calorimetry[J]. J Appl Polym Sci, 2002, 84(9) , 1669-1679.
    [31] Wong A C Y, Leung W W M. Nucleating Agent Effects on Selected Optical and Mechanical Properties of Polypropylene[J]. JEng Appl Sci, 1996, (2) , 2283-2288.
    [32] 谢飞,张祥福,方舫,等,成核剂对增韧聚丙烯力学性能的影响[J],中国塑料,2000, 14(11) , 76-80.
    [33] Labour T, Gauthier C, Seguela R, et al. Influence of the β Crystalline Phase on the Mechanical Properties of Unfilled and CaCO3-filled Polypropylene. I. Structural and Mechanical Characterisation[J]. Polymer, 2001, 42(16) , 7127-7135.
    [34] 陈寿羲,金永泽,全同立树聚丙烯的晶片形态[J],高分子学报,1992, (5) , 592-597.
    [35] Saujanya C, Radhakrishnan S. Structure and Properties of PP/CaSO4 Composite Part III: Effect of the Filler Grade on Properties [J]. J Mater Sci, 2000, 35(9) , 2319-2323.
    [36] Tjong S C, Shen J S, Li R K Y. Mechanical Behavior of Injection Molded β-Crystalline Phase Polypropylene[J]. Polym Eng Sci, 1996, 36(1) , 100-105.
    [37] 沈静姝,任宏燕,况勋,等。β晶型聚丙烯塑性形变过程中的形态变化[J],高分子学报, 1994, (6) , 749-751.
    [38] Li J X, Cheung W L, Jia D. A Study on the Heat of Fusion of β-Polypropylene[J]. Polymer, 1999,40(5) , 1219-1222.
    [39] Li J X, Cheung W L. Conversion of Growth and Recrystallisation of β-Phase in Doped iPP[J]. Polymer, 1999, 40(8) , 2085-2088
    [40] Li J X, Cheung W L. On the Deformation Mechanisms of β-Polypropylene: 1. Effect of Necking on β-Phase PP Crystals[J]. Polymer, 1998, 39(26) , 6935-6940.
    [41] Li J X, Cheung W L, Chan C M. On Deformation Mechanisms of β-Polypropylene 2. Changes of Lamellar Structure Caused by Tensile Load[J]. Polymer, 1999, 40(8) , 2089-2102.
    [42] Li J X, Cheung W L, Chan C M. On Deformation Mechanisms of β-Polypropylene 3. Lamella Structures after Necking and Cold Drawing[J]. Polymer, 1999, 40(13) , 3641-3656.
    
    
    [43]何义勇,罗筱烈,崔便晓,等.不同分于量聚丙烯β晶相的形成[J].应用化学,2001,18(2),112-115.
    [44]Marco C, Gomez M A, Ellis G, et al. Activity of a β-Nucleating Agent for Isotactic Polypropylene and its Influence on Polymorphic Transitions[J]. J Appl Polym Sci, 2002, 86(3), 531-539.
    [45]Kotek J. The Effect of Special β-Nucleation on Morphology and Mechanical Behavior of Isotactic Polypropylene[J]. J Appl Polym Sci, 2002, 85(6), 1174-1184.
    [46]Varga J, Mudra Ⅰ, Ehrenstein G W. Highly Active Thermal Stable β-Nucleating Agents for Isotactic Polypropylene[J]. J Appl Polym Sci, 1999, 74(10), 2357-2368.
    [47]Varga J, Mudra Ⅰ, Ehrenstein G W. Crystallization and Melting of fl-Nucleated Isotactic Polypropylene[J]. J Therm Anal Calori, 1999, 56(3), 1047-1057.
    [48]廖凯荣,陈学信,郑臣谋.轻质碳酸钙/聚丙烯共混物中聚丙烯β-晶的成核结晶研究[J].高等学校化学学报,1995,16(1),143-146.
    [49]廖凯荣,陈学信,卢泽俭,等.PP/L-CaCO_3复合材料的拉伸断裂韧性[J].高分子材料科学与工程,1997,13(2),48-53.
    [50]杨军,刘万军,陈广新,等.超细CaCO3的粒子尺寸对PP结晶行为的影响[J].高分子学报,2001,(3),383-385,
    [51]成江,章峻,胡柏星,等.碳酸钙级配填充聚丙烯结晶形态的XRD研究[J].中国塑料,2001,15(6),60-62.
    [52]窦强,王斌.β晶型聚丙烯的力学性能与结晶行为研究[J].功能高分子学报,2001,14(3),338-340.
    [53]窦强,任巨光,赵石林,等.β晶型成核剂在聚丙烯增韧体系中的应用[J].中国塑料,2000,14(1),38-41.
    [54]Radhakrishnan S, Tapale M, Shah N, et al. Effect of β-Phase Nucleating Additives on Structure and Properties of Blow Extruded Polypropylene[J]. J Appl Polym Sci, 1997, 64(7), 1247-1253.
    [55]Mubarak Y, Martin P J, Harkin-Jones E. Effect of Nucleating Agents and Pigments on Crystallization, Morphology, and Mechanical Properties of Polypropylene[J]. Plastics, Rubber and Composites, 2000, 29(7), 307-315.
    [56]山下晋子,金子东助(日本).交联剂手册[M].第1版.北京,化学工业出版社,1990,
    
    148-169.
    [57] 王正洲,瞿保钧,范维澄,等.聚乙烯的交联技术研究进展[J].高分子材料科学与工程,2001,17(1),1-4.
    [58] 仇武林,方鲲,麦堪成,等.聚烯烃的硅烷交联技术[J].高分子材料科学与工程,1998,14(4),136-139.
    [59] Uenoyama M, Shukushima S, Hayami H, et al. Development of radiation cross-linked polypropylene[J]. SEI Technical Review, 2002, (54), 10-11.
    [60] Gao J M, Lu Y J, Wei G S, et al. Effect of Radiation on the Crosslinking and Branching of Polypropylene[J]. J Appl Polym Sci, 2002, 85(8), 1758-1764.
    [61] Ivanchev S S, Ratzsch M. Radiation Crosslinking of Polypropylene in the presence of monomers incapable of homopolymerization[J]. Vysokomolekularnye Soedineniya, 2001, 43(3), 566-571.
    [62] 吴建国,洪小秋,秦怀德,等.高熔体强度聚丙烯材料的制备[J].中国塑料,2000,14(6),39-44.
    [63] 梁玉蓉,谭英杰.聚丙烯交联改性的研究[J].沈阳化工学院学报,2002,16(1),18-21.
    [64] 李卫华,王静媛,张少毅,等.聚丙烯改性研究[J].功能高分子学报,1995,8(3),373-378.
    [65] 王静嫒,李卫华,李耀先,等.聚丙烯网络合成闭.高分子材料科学与工程,1997,13(1),18-21.
    [66] 谢续明,陈年欢,李松.聚丙烯熔融接枝中共单体的作用机理[J].高分子学报,1999,(3),351-354.
    [67] 俞强,林明德,刘建忠,等.有机过氧化物交联间规聚丙烯研究[J].高分子材料科学与工程,2001,17(5),46-53.
    [68] Yu Q, Zhu S. Peroxide Crosslinking of Isotactic and Syndiotactic Polypropylene[J]. Polymer, 1999, 40(11), 2961-2968.
    [69] Borsing E, Malcherova E, Lazar M. Crosslinking of Atactic Polypropylene by the System Peroxide-Pentaerythritol Tetraallyl Ether[J]. Polymer International, 1993, 30(3), 367-370.
    [70] Kim B K, Kim K J. Cross-linking of Polypropylene by Peroxide and Multifunctional Monomer during Reactive Extrusion[J]. Advances in Polymer Technology, 1993, 12(3), 367-370.
    [71] Anon.Crosslinking of Polypropylene Initiated by Peroxide in the presence of Thiourea as a
    
    Coagent[J]. J Polym Sci Part A: Polym Chem, 1991, 29(4), 581-583.
    [72]Borsig E, Capla M, Fieldlerova A, et al. Crosslinking of Polypropylene Using a System Consisting of Peroxide and Thiourea or its Derivatives[J]. Polym Commun, 1990, 31(7), 293-296.
    [73]王兰,王佩璋,肖祥雄,等.发泡聚丙烯型材的挤出研究[J].中国塑料,2001,15(1),53-56.
    [74]鲍洪杰,何继敏.一步法交联聚丙烯挤出发泡材料的开发与应用[J].塑料,2001,30(3),37-40.
    [75]Munteanu D. Melting Containing Polymer Systems[M]. Edition 1. New York: Plenum Press, 1985, 479-509.
    [76]吕晖辉,刘念才.聚丙烯硅烷接枝水解交联[J].塑料工业,1999,27(3),27-29.
    [77]谢刚,历荣,崔丹,等.硅烷交联聚丙烯的研究[J].黑龙江大学自然科学学报,2002,19(1),99-102.
    [78]Beltran M, Mijangos C. Silane Grafting and Moisture Crosslinking of Polypropylene[J]. Polym Eng Sci, 2000, 40(7), 1534-1541.
    [79]陈乐怡,张从容,雷燕湘.常用合成树脂的性能和应用手册[M].第1版.北京:化学工业出版社,2002,137-150.
    [80]舒文艺.聚丙烯的交联改性[J].塑料,1992,21(5),29-35.
    [81]周维祥.塑料测试技术[M].第1版.北京:化学工业出版社,1997,186-187.
    [82]万安民.注塑工艺条件与制品收缩的关系[J].航天工艺,1996,(1),36-37.
    [83]濮阳楠,钱欣.塑料成型工艺学[M].第1版.北京:海洋出版社,1993,108-109.
    [84]张治华.塑料收缩性[M].第1版.北京:中国石化出版社,1999,31.
    [85]王志连.影响注塑成型收缩率的因素及收缩率的选择[J].福建农机,1999增刊,68-71.
    [86]邵毓芳,嵇根定.高分子物理实验[M].第1版。南京:南京大学出版社,1998,95-101.
    [87]Gupta A K, Gupta V B, Peters R H, et al. The Effect of Addition of High-Density Polyethylene on. the Crystallization and Mechanical Properties of Polypropylene and GFR Polypropylene[J]. J Appl Polym Sci, 1982, 27(12): 4669-4686.
    [88]Gupta A K, Purwar S N. Crystallization of PP in PP/SEBS Blends and Its Correlation with Tensile Properties[J]. J Appl Polym Sci, 1984, 29(5): 1595-1609.
    [89]李文东,杨桂生.分子量及其分布对聚丙烯力学性能和结晶行为的影响[J].高分子材料
    
    科学与工程,1996,12(1):41-46.
    [90]何曼君,陈维孝,董西侠.高分子物理[M].第1版.上海:复旦大学出版社,2001,40-315.
    [91]Shi G, Zhang X, Qiu Z. Makromol Chem, 1992,193:583
    [92]高家武,高分子材料近代测试技术[M].第1版.北京:航空航天大学出版社,1994,248-249.
    [93]Grein C, Plummet C J G, Kausch H H, et al. Influence of β Nucleation on the Mechanical Properties of Isotactic Polypropylene and Rubber Modified Isotactic Polypropylene[J]. Polymer, 2002, 43(11), 3279-3293.
    [94]刘保成,刘法谦,陈桂兰,等.耐候性PP的研制[J].中国塑料,2002,16(3),22-25.
    [95]李刚,张桂云,张联,等.汽车风扇用聚丙烯专用料的研制[J].塑料科技,1998,(5),21-23,
    [96]Xu T, Yu J, Jin Z H, et al. Effects of Crystalline Morphology on the Impact Behavior of Polypropylene[J]. Materials and Design, 2001, (22), 27-31.
    [97]徐涛,于杰,金志浩.热处理对聚丙烯结晶度及力学性能的影响[J].贵州科学,1999,17(4),260-265.
    [98]冯继云,曾新榕,郭宝华.热处理对聚丙烯注射件拉伸性能及表面结晶结构的影响[J].塑料,1995,24(3),48-51.
    [99]Braun D, Richter S, Hellmann G P, et al. Peroxy-initated Chain Degradation, Crosslinking, and Grafting in PP-PE Blends[J]. dAppl Polym Sci, 1998, 68 (12): 2019-2028.
    [100]俞强,林德明,龚方红,等.间规聚丙烯过氧化物在多官能团单体存在下的交联[J].应用化学,2000,17(6),624-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700