用户名: 密码: 验证码:
香蕉NBS类RGAs和NPR1基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香蕉是重要的粮食作物,也是倍受人们喜爱的热带水果,但由于病虫害,尤其是枯萎病的发生,对香蕉产业造成了巨大损失。基因工程技术的发展为作物改良提供了有效途径,但目前用于香蕉抗枯萎病基因工程的基因资源还非常有限,对香蕉抗病分子机理的研究还较少。鉴于中山大蕉抗逆性强,尤其高抗枯萎病4号小种,本研究利用同源序列法克隆NBS类抗病基因和系统获得抗性途径中的主要抗病信号元件MuNPR1-1基因,取得如下结果:
     1.中山大蕉NBS类RGAs的克隆与分析
     根据NBS类抗病基因的保守结构设计简并引物,以中山大蕉基因组DNA为模板,PCR扩增获得了98条NBS序列,进化树分析将其分为12类,与已知的20种NBS类抗病基因的NBS区的进化树结果显示,这12类MuRGAs分布在5个不同的区域,其中的nT subclass 2区域只包括了7类MuRGAs,这可能是不同于其它作物中的一类新的抗病基因。利用RT-PCR检测了12类MuRGAs在不同基因型香蕉中的表达,发现其中的10类均在转录水平表达,但有两类明显不同,MuRGA-I只存在于抗病的中山大蕉和贡蕉基因组中并表达,MuRGA-K只存在于中山大蕉的基因组中并表达,而且这两段序列在进化树的nT subclass 2区域,这揭示了在抗病的中山大蕉和贡蕉中存在着与不抗病的栽培香蕉中不同的NBS类序列,可能与抗病性相关。在对香蕉中NBS-LRR的研究中,发现了不同基因型的中山大蕉(ABB)、贡蕉(AA)、信宜野蕉(BB)、粉蕉(AAB)、泰蕉(AAA)的NBS都属于non-TIR-NBS,首次揭示了香蕉中所有NBS结构均为non-TIR-NBS类。
     2.中山大蕉MuNPR1-1基因的克隆与分析
     NPR1是SAR途径中的中心元件,其功能定位在SA积累之后、SAR基因表达之前。利用同源克隆法和RACE技术获得了中山大蕉的MuNPR1-1基因,该基因DNA全长4349bp,有4个外显子,3个内含子,cDNA全长2189bp,阅读框为1725bp,推定的编码蛋白为574个氨基酸,分子量大小为64kD。推定的MuNPR1-1蛋白与已知NPR1基因的氨基酸相似性低于42%,与玉米NPR1的氨基酸相似性为69%。NCBI中rpsBLAST搜索发现MuNPR1-1推定的氨基酸含有BTB/POZ和锚蛋白重复序列,命名为MuNPR1-1 (GenBank登录号:EU7478883)。构建了35S组成型启动子驱动的植物表达载体pCamMuNPR1-1,利用农杆菌转化法转入烟草品种NC89,获得了40个转基因植株,PCR和PT-PCR表明,MuNPR1-1基因已整合到烟草基因组中并能够表达。
Banana is a widely favored tropical fruit all over the world. Cultivation of banana and plantain is now threatened by many fungal diseases. Panama wilt in particular, caused by Fusarium oxysporum f. sp. Cubense (race 4) is most serious fungus that has caused dramatic crop damage and economic loss. The genetic engineering of crops has paved a new way for its improvement, but disease resistance gene for banana improvement is limited. Zhongshandajiao (ABB) shows strong resistance to diseases, especially to Panama wilt. However, the mechanism of its resistance to the diseases is still elusive. In this research, we used Zhongshandajiao as a starting material to identify R gene analogues (RGAs) and NPR1 gene. Two parts of studies have been carried out in this thesis.
     Isolation and analysis of the Resistance Gene Analogues (RGAs) in banana
     According to the conservative regions of the nucleotide-binding site and the leucine-rich repeat (NBS-LRR) in resistance genes, the polymerase chain reaction with degenerate primers was employed to isolate R gene analogues (RGAs) from five species of banana (Musa spp.), i.e. species of Gongjiao (AA), Xinyiyejiao (BB), Zhongshandajiao (ABB), Fenjiao (AAB) and Taijiao (AAA), respectively. As a result, totally 98 sequences were typical of RGAs out of 208 clones sequenced, of which 33 sequences with identity of deduced amino acid sequence below 97% were further analyzed. Based on the phylogenetic analysis by using MEGA software, the 33 sequences could be divided into 12 distinct MuRGAs. All of which belong to the non-TIR-NBS type. It suggested that the TIR-NBS-type of R genes were selectively lost in banana in evolution process. Comparison and phylogenetic analysis of the MuRGAs with the known R genes from other species revealed their relationship in evolution. Despite the high diversity of the RGAs found in banana, the 12 MuRGAs were detected in all banana species tested, with the exception of MuRGA-I, which did not present in the wild species of Xinyiyejiao, and the cultivated clones of Fenjiao and Taijiao, suggesting there was different NBS sequence between Zhongshandajiao and other cultivated banana. It is the first report that all NBS belong to non-TIR-NBS in banana.
     Cloning and analysis of SAR related gene MuNPR1-1 in banana
     NPR1 is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis, that functions at a position downstream of SA accumulation and upstream of SAR gene induction and induced resistance. We cloned the full-length cDNA of MuNPR1-1 gene by homologous cloning and RACE techniques from Zhongshandajiao. The full-length cDNA was 2189bp long and had an ORF that putatively encoded a polypeptide of 574 amino acids, with a predicted molecular weight of 64 kD. The deduced amino acid sequence of MuNPR1-1 had low homology to the other known NPR1 protein. However, they had a relatively high homology at the functional domain. MuNPR1-1 contained the BTB and ankyrin repeat domain that was the molecular basis for NPR1 function. Plant expression vector pCamMuNPR1-1 harboring the MuNPR1-1 gene driven by 35S promoter was constructed and transferred into tobacco var. NC89 via Agrobaterium-mediated method. PCR and RT-PCR analysis indicated that MuNPR1-1 gene was integrated into tobacco genome and expressed. Analysis for transgenic plant is carrying out.
引文
1. 陈廷速,张军,夏宁邵,等,影响根癌农杆菌介导的香蕉遗传转化因素研究. 广西农业生物科学,2002,21(1):26~31
    2. 杜中军,翟衡,黄俊生,等,基于 STK 激酶保守结构域克隆香蕉 R 基因和 RLKs 同源序列. 农业生物技术学报,2005,13 (6):817~818
    3. 何自福,李华平,肖火根,等,香蕉束顶病的研究进展. 热带作物学报, 2000,21(3):77~82
    4. 黄霞,黄学林,李哲,等,影响根癌农杆菌介导的香蕉基因转化早期的主要因素.中山大学学报(自然科学版),2002,41(5):68~72
    5. 李华平,胡晋生,王敏,等,香蕉茎尖遗传转化法研究.热带作物学报,2000,21(4):33~39
    6. 李敏,李胜军,裴新梧,香蕉 NPR1 基因片段的克隆及对水杨酸的早期应答反应. 农业生物技术学报,2007,15(2):352~353
    7. 裴新梧,贾士荣,香蕉抗真菌病基因工程策略. 中国农业科技导报,2006,8(4):1~7
    8. 裴新梧,叶尚,张永强,等,葡萄糖氧化酶基因转入香蕉及枯萎病抗性鉴定. 自然科学进展,2005,15(4):411~416
    9. 王鸿鹤,黄霞,邱国华,等,基因枪法转化香蕉薄外植体的参数优化.中山大学学报(自然科学版),2000,39(2):87~91
    10. 王旭静,窦道龙,王志兴,贾士荣,海岛棉 GbNPR1 基因全长 cDNA 的克隆及其在烟草中的表达. 中国农业科学,2006,39(5):886~894
    11. 魏岳荣,黄秉智,杨护,等,香蕉镰刀菌枯萎病研究进展. 果树学报,2005,22(2)154~159
    12. 魏岳荣,黄学林,黄 霞,等,“过山香”香蕉多芽体的诱导及其体细胞胚的发生. 园艺学报,2005,32(3):414~419
    13. 魏岳荣,黄学林,李佳,等,贡蕉(Musa acuminata cv.Mas AA)胚性细胞悬浮系的建立和植株再生. 生物工程学报,2005,21(1):58~65
    14. 杨秀红,陈庆山,杨庆凯,李文滨,大豆 NBS 类抗病相关基因的克隆与序列分析. 高技术通讯. 2005,15(2):71~78
    15. 徐春香,李华平,肖火根,等,香蕉分生小球体途径胚性细胞悬浮系的建立. 园艺学报,2003,30(5):580~582
    16. 徐春香,Panis B B,Strosse R,等,香蕉胚性愈伤组织的诱导及胚性细胞悬浮系的建立.华南农业大学学报(自然科学版),2004,25(1):70~73
    17. Acereto-Escoffie P O M, Chi-Manzanero B H, Echeverr?′a-Echeverr? S, et al.Agrobacterium- mediated transformation of Musa acuminata cv. ‘‘Grand Nain’’ scalps by vacuum infiltration[J]. Scientia Horticulturae, 2005, 105: 359~371
    18. Arinaitwe G, Remy S, Strosse H, et al. Agrobacterium- and particle bombardment-mediated transformation of a wide range of banana cultivars. Mohan Jain S, Swennen R (ed.) [M]. Banana Improvement: Cellular,Molecular Biology,and Induced Mutations.Science Publishers Inc.Enfield, NH, USA: 2004,351~357
    19. Ashfield T, Ong LE, Nobuta K, et al. Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell, 2004 .16:309-318
    20. Aviv DH, Rusteruci C, Iii BF, et al. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent. Plant J,2002,29(3):381~391
    21. Axtell MJ, McNellis TW, Mudgett MB,et al. Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Mol Plant-Microbe Interact,2001,14:181~188
    22. Banerjee D,Zhang X, Bent AF. The LRR domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Geneticsk, 2001, 158:439~450
    23. Barieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. In: Biochem. Biophys.Acta, 1154,1993, 237~282
    24. Becker D K, Dudgale B, Smith M K, et al. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv’Grand Nain’ via microprojectile bombardment . Plant Cell Reports, 2000, 19:229~234
    25. Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology, 2004, 7(4):391~399
    26. Bosque-Perez N A, May G D, Artzen C J,et al. Applicability of an Agrobacterium-based system for the transformation of Musa species with diverse genomic constitution and ploidy level. Acta Horticulturae, 2000, 540:193~201
    27. Bergelson J, Kreitman M, Stahl EA,at al. Evolutionary dynamics of plant R-genes. Science, 2001,292:2281~2285
    28. Brogile K, Chet I, Hilpert B, et al. Wounding and chemicals induce expression of the Arabidopsis thaliana gene THI2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett,1998,437:281~286
    29. Buschges R.,Hollricher K.,Panstruga R,et al. The barley Mlo gene: a novel control element of plant pathogen resistace. Cell, 1997,88(5):695~705
    30. Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. Journal of Molecular Evolution,2002, 54:548~562
    31. Cao H, Bowling SA, Gordon AS, et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6:1583~1592
    32. Cao H, Glazebrook J, Clarke JD, et al. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 8857~8863
    33. Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA,1998, 95:6531~6536
    34. Catherine F, Christophe P, Perk. Molecular characterization of a new type of receptor-like kinase(wlrk) gene family in wheat. Plant Molecular Biology,1998,37:943~953
    35. Chakrabarti A, Ganapathi TR, Mukherjec PK,et al. A magaininan alogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta,2003,216(4):587~596
    36. Conn KL,Tewari JP, Dahiya JS. Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci,1988,56:21~26
    37. Connon SB, Zhu H, Baumgarten AM, Spangler R, May G ,Cook DR ,Young ND. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol, 2002, 54:548~562
    38. Crispin B, Taylor. Defense responses in plant and animals-more of the same. The Plant Cell, 1998, 10:873~876.
    39. Dale J, Dugdale B, Webb M, et al. Strategies for transgenic disease resistance in banana. www. Africancrops.net.2006
    40. Dangl JL, Jones JDG. Plant pathogens and integrated defense response to infedction. Nature, 2001, 411:826~833
    41. Delaney TP, Uknes S, Vernooij B, et al. A central role of salicylic acid in plant-disease resistance. Science,1994,266:1247~1250
    42. Denesh-Kumar S P, Whitham S, Choid D. Transposon tagging of the tabacco mosaic virus resistance gene N: itspossible role in TMV-N mediated signal transduction pathway. Proceeding of National Academy of Sciences,1995,92:4175~4180
    43. Dietrich RA, Delaney TP, Uknes SJ, et al. Arabidopsis mutants simulating disease resistance response.Cell,1994,77:565~578
    44. Dietrich RA, Richberg MH, Schmidt R, et al. A novel zinc finger protein is encoded by the Arobidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685~694
    45. Dixon RA, Harrison MJ, Lamb CJ. Early events in the activation of plant defense responses. Annu Rev Phytopathol, 1994,32:479~501
    46. Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol,1998,1(4): 316~323
    47. Dong X. ATNPR1, all things considered. Curr Opin Plant Biol, 2004,7:547~552
    48. Dong Wang, Nita Amornsiripanitch, Xinnian Dong. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquires resistance in palnts. Plos Pathogens, 2006, 2(11):1042~1050
    49. Durneretal J, Wendehence D, Klessig DF. Defense gene induction in tobacco by nittic oxide, cyclic GMP, and cyclic ADP-tibose. Proc Natl Acad Sci USA, 1998,95(17):10328~10333
    50. Epple P, Apel K, Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal- transduction pathway different from that for pathogenesis-related proteins. Plant Physiol, 1995, 109: 813~820
    51. Falk A, Fey BJ, Frost LN. EDS1,an essential component of R gene-mediated disease resistance inArabidopsis has homology to eukaryotic lipases.Proc Natl Acad Sci USA, 1999,96:3292~3297
    52. Feys BJ, Moisan LJ, Newman MA, et al. Direct interaction between the Arabidopsis disease resistance signaling proteins,EDS1 and PAD4. EMBO J, 2001:5400~5411
    53. Feys BJ, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends Genet, 2000, 16: 449~455
    54. Flor HH. Current status of the gene-for-gene concept. Annual review of phytopathyology, 1971, 275~296
    55. Friedrich L, Lawton K, Ruess W, et al. A benzothiadiazole derivative in plant-microbe interactions.Annu Rev Phytopathol, 1990, 28:365~391
    56. Frye CA, Innes RW. An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell, 1998,10:947~956
    57. Gaffney L, Feiedrich L, Vernooij B, et al.Requirement of salicylic-acid for the induction of systemic acquired resistance. Science,1993,261:754~756
    58. Ganapathi T R, Higgs N S, Balint-Kurti P J, et al. Agrobacterium-mediated transfomation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Reports, 2001, 20: 157~162
    59. Gargi Meur, Budatha Madhusudan, Tantravahi Srinivasan, et al. Constitutive expression of Arabidopsis NPR1 confersenhanced resistance to the early instars of Spodoptera litura in transgenic tobacco.Physiol Plant,2008, 1~11
    60. Georgios J, Pappas J, David J,Bertioli, Robert NG, Miller. Plant & Animal Genomes XIV Conference. San Diego, 2006:7
    61. Glazebrook J, Rogers EE, Ausubel JM. Use of Arabidopsis for genetic dessection of plant defense rsponses. Annu Rev Genet,1997,31:547~569
    62. Hain R, Bieseler B, Kindl H, et al. Expression of a stilene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol,1990,15:325~335
    63. He Z,Wang ZY,Li J,et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science,2000,288:2360~2363
    64. Hulbert SH, Webb CA, Smith SM, Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytophol,2001, 39:285~312
    65. Inohara N, Chamaillard M, McDonald C, Nunez, G: NOD-LRR proteins:role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 2005, 74:355~383
    66. Iwai T, Kaku H, Honkura R,et al. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol Plnat Microbe Interact, 2002,15(6):515~521
    67. James A., Jimenez-Martinez R.,Canto-Canche B.,S. Peraza-Echeverria, Plant & Animal Genomes XIV Conference. San Diego, 2006:7
    68. Jeffery L, Dang L, Jonathan D G, Jones; Plant pathogens and integrated defence responses to infection. Nature, 2001,14:826~833
    69. Jinling Liu, Xionglun Liu, Liangying Dai,Guoliang Wang, Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants,Journal of Genetics and Genomics, September 2007, 34(9): 765~776
    70. Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258:985~987.
    71. Jones DA, Jones JDG. The role of leucine-rich repeat proteins in plant defences.Adv Bot Res, 1997, 24:89~167
    72. Kinkema M., Fan Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell. 2000,12:2339~2350
    73. Kajava AV. Structural diversity of leucine-rich repeat protein.J Mol Biol, 1998, 227: 519~527
    74. Kanazin V, Marek L F, Shoemaker RC. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA,1996,93(21):11746~11750
    75. Klessig D, Durner J, Noad R, et al, Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA, 2000,97:8849~8855
    76. Khanna H, Becker D K, Kleidon J, et al. Centrifugation Assisted Agrobacterium tumefaciens - mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB) Molecular Breeding, 2004,14: 239~252
    77. Kim E Hammond-Kosack and Jane E Parker. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion, 2003, 14:177~193
    78. Kunkel BN, Bent AF, Dahlbeck D, et al. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 1993, 5:865~875
    79. Lawton KA, Friedrich L, Hunt M, et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J, 1996, 10:71~82
    80. Leah McHale, Xiaoping Tan, Patrice Koehl, Richard W Michelmore. Plant NBS-LRR proteins: adaptable guards. Genome Biology, 2006,7(4):212~222
    81. Lehrer RI, Ganz T. Defensin-endogenous antibiotic peptides form human leukocytes.In: Chadwich DJ, whelam J (eds). Secondary metabolites: Their fundation and evolution. Ciba Foundation Symposia. No.171 Chichester:Wiley,1992, 276~293
    82. L.H. Madsen, N.C. Collins, M. Rakwalska, et al. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping, Mol. Genet.Genom. 269 (2003) 150~161
    83. Lin W, Anuratha CS , Datta K, et al. Genetic engineering of rice for resistance to sheath blight. Biotechology,1995,13:686~691
    84. Liu Y, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus . Plant J, 2002,30:415~429
    85. Liu JJ, Ekramoddoullah AKM. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol GenetGenomics. 2004, 270:432~441
    86. Liu GS, Eric BH, Jose MA, Joseph RE and Pierre RF. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J.2005, 41:304~318
    87. Luck JE, Lawrence GJ, Dodds P, et al. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell, 2000, 12:1367~1377
    88. Maleck K, Levine A, Eulgern T, et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000, 26:403~410
    89. Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact, 2007,20: 1568~1580
    90. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R ,Wu T, Earle ED, Tanksley SD. Map-based clonging of a protein kinase gene conferring disease resistance in tomato. Science.1993, 262: 1432~1436
    91. May D, Afza R, Mason H S, et al. Generation of transgenic banana (Musa acuminata) plants via agrobacterium-mediated transformation. Bio-Technology,1995,13:486~492
    92. McDowell JM, Dangl JL. Signal transduction in the plant immune response. Trends Biochem Sci, 2000,25:79~82
    93. Metraus JP Ahl-Goy P, Staub T et al. Induced resistance in cucumber in response to2, 6- dichloroisonicotinic acid and pathogens. In: Henneche H, Verma DPS(eds). Advances in Molecular Genetics of Plant-Microbe Interactions,Vol 1. Kluwer Academic publishers, Dordrecht, The Netherlands,1991,423~439
    94. Meier BM, Shaw N, Slusarenko AJ. Spatial and temporal accumulation of defense gene trandcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitie cell death. Mol Plant-Microbe Interact, 1993,6:453~466
    95. M.G.Martionez Zamora, A.P.Castagnaro, J.C.Diaz Ricci. Isolation and diversity analysis of resistance gene analogues(RGAs) from cultivated and wild strawberries.Mol Gen Genomics, 2004, 272:480~487
    96. Michelmore RW and Meyers BC. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8(11):1113~1130
    97. Mindrinos M, Katagri F, Yu GL, Ausubel FM. The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leuchine-rich repeats. Cell, 1994, 78:1089~1099
    98. Meyers BC, Shen KA, Rohani P, et al. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell, 1998, 10:1833~1846
    99. Meyers BC, Dicherman AW, Michelmore RW, et al. D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 1999,20(3):317~332
    100. Meyers BC, Kozik A, Griego A et al. Genome-wide analysis of NBS-LRR-encoding genes inArabidopsis. Plant Cell, 2003, 15: 809~834
    101. Molina A, Ahl-Goy P, Fraile A, et al. Inhabition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Science,1993,92:169~177
    102. Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C.SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription.Plant J. 2007, 50(1):128~139
    103. Nevin DY. The genetic architecture of resistance. Current Opinion in Plant Biology, 2003, 3: 285 ~ 290
    104. Nishizawa Y, Nishio X, Nakazono K, et al. Enhanced resistance to blast (Magnaporthe grisea)in transgenic Japonica rice by constitutive expression of rice chitinase. Ther Appol Genet, 1999,99:383~390
    105. O.Radwan, S.Mouzeyar, P. Nicolas and M.F.Bouzidi. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii. J Exp Bot, 2005,56:567~575
    106. Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene bomologues in dicot and cereal genomes, Molecular Evolution, 2000, 50(3): 203~213
    107. Peart JR, Cook G, Feys BJ, et al. An EDS1 orthologue is requires for N-mediated resistance against tobacco mosaic virus. Plant J, 2002,29:569~579
    108. Penninckx I, Eggermont K, Terras FRG, et al. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell,1996,(8): 2309~2323
    109. Peraza-Echeverria S, James-Kay A, Canto-Canché B,.,Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana,Mol Genet Genomics. 2007 Oct;278(4): 443-453
    110. Perez JB. Development and application of Agrobacterium-mediated transformation to increase fungus-resistance in banana (Musa spp.) [M]. PhD thesis, 2000. Katholicke Univemity lerven. Belgium ,130
    111. Perez JB, Caraballloso BI, Lopez TJ, et al. International congress on Musa. Harnessing research to improve livelihoods[C]. Penang, Malaysia,2004:14
    112. Pieterse CMJ, Van Wees SCM, Ton J, et al. Signalling in rhizobacteria-induced systemic resistance in Arabisopsis thaliana. Plant Biol, 2002, 4:535~544
    113. Remy S, Buyens A, Cammue BPA, et al. Production transgenetic banana as expressing genes with an tifungal activeity. Spain, International Symposium on Banana in the Subtropocs,1997:21~25
    114. Sagi L, Panis S. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment . Bio-Technology,1995,13(5):481~485
    115. Saraste M, Sibbald PR, Wittinghofer A. the P-loop-a common motif in ATP-and GTP-binding proteins. Trends Biotechnol, 1990, 15:430~435
    116. Schlumbaum A, Mauch F, Bogeli U, et al. Plant chitinases are potent inhibitors of fungal growth.Nature,1986,324:365~367
    117. Shah J, Tsui F, Klessing DF. Characterization of a salicylic acid-insensitive mutant (sai1) of Aribidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant-Microbe Interact, 1997, 10:69~78
    118. Shapiro AD, Zhang C, Ryals J, et al. A novel class of eukaryotic zinc-binding proteins is required for disease signaling in barley and development in C.elegans. Cell,1999,99:355~366
    119. Song WY, Wang GL, Chen LL. A receptor kinase-like protein encoded by rice disease resistance gene, Xa21. Science, 1995,270:1804~1806
    120. Staswick P E, Yuen G Y, Lehman C C. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J,1998,15:747~754
    121. Sticher L, Maush-Mani B, Metraux JP. Systemic acquired resistance. Annu Rev Phytopathol, 1997,35:235~323
    122. Stove RH, Fusarium wilt of banana: Some history and current status of the disease. In: Ploetz R C(ed) Fusarium wilt of banana. APS Press, St Paul, Minn, 1990
    123. S.Y. Lee, J.S. Seo, M. Rodriguez-Lanetty, D.H. Lee, Comparative analysis of superfamilies of NBS-encoding disease resistance gene analogs in cultivated and wild apple species, Mol. Genet. Genom. 269 (2003) 101~108
    124. Tabei Y, Kitade S, Nishizawa Y, et al. Trasgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistacne to gray mold (Botrytis cinerea).Plant Cell reports,1998, 17:159~164
    125. Tang D, Ade J, Frye C.A., Innes R. W. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J. 2005, 44:245~257
    126. Tao Y, Yuan F, Leister RT, et al. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistacne gene RPS2 .Plant Cell,2000,12:2541~2554
    127. Terras FR, Eggermont K, Kovaleva V, et al. Small cysteine-rich antifngal proteins from radish:Their role in host defense. Plant Cell,1995,7:573~588
    128. Thomma B, Eggermont K, Penninckx I, et al. Separate jasmonate-dependent and salicylate- dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Pro Natl Acad Sci USA, 1998,95:15107~15111
    129. Thomma B, Eggermont K, Tierens K, et al. Requeiement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botryris cinerea. Plant Physiol, 1999,121:1093~1101
    130. Toril KU, McNellis TW, Deng XW. Functional disease of Arabidopsis COP1 reneals specific roles of its three structure modules in light of seeding development. European Molecular Biology Organisation, 1998.17(19): 5577~5587
    131. Tripathi L, Tripathi JN and Hughes Y, Agrobacterium-mediated transformation of plantain (Musa spp.) cultivar Agbagba. African Journal of Biotechnology, 2005, 4 (12): 1378~1383
    132. Van Camp W, Van Montagu M, Inze D. H2O2 and NO: redox signals in desease resistance. Trends Plant Sci,1998,3:330~334
    133. Van Wees SCM, de Swart EA, Van Pelt JA, et al. Enhancement of induced disease resistance by simultaneous activeation of Salicylate- and jasmonate-dependent defense pathways in Arabisopsis thaliana. Proc Natl Acad SCI USA, 2000, 97(15):8711~8716
    134. Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins. Physiol Mol Plant Path,2006,55:85~97
    135. Verbeme Mc, Verpoorte R, Bol JE,et al. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology, 2000,18:779~783
    136. Wang GL, Ruan DL, Song WY, Sideris S, Chen LL, Pi LY, Zhang SP, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC. Xa-21D encodes a receptor-like molecular with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell, 1998, 10:765~779
    137. Warren, RF., Merritt, PM., Holub, EB, and Innes, R.W. A mutation within the leucine-rich-repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell, 1998, 10:1439~1452
    138. Whitham S, Mccormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in trandgenic tomato. Proceeding of the National Academy of Sciences, 1996, 93:8776~8781
    139. Xiao S, Calis O,Calis O,et al.Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science,2001,291:118~120
    140. Xiao Wenkai, Xu Mingliang, Zhao Jiuren,et al. Genome-wide isolation of resistance gene analogs in maize. Ther Appl Genet, 2006, 113:63~72
    141. Xinwu Pei, Shengjun Li, Shirong Jia. Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Science. 2007,172(6): 1166~1174
    142. Yu DQ,Chen CH, Chen ZX. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 2001, 13:1527~1539
    143. Yu YG, Buss GR, Saghai Maroof MA. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site . Proc Natl Acad Sci USA, 1996, 93(21):11751~11756
    144. Zhang Y, Fan W, Kinkema M,et al. Interaction of NPR1 with basic leucine zipper protein transcription factor that bind sequences required for salicylilc acid induction of the PR-1 gene.Proc Natl Acad Sci USA, 1999,96:6523~6528
    145. Zhou JM, Trifa Y, Silva H, et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant-Microbe Interact ,2000,13:191~202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700