用户名: 密码: 验证码:
农杆菌介导的拟南芥rd29A基因转化苜蓿的研究及柳树组织培养再生技术初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国盐渍化土壤分布广泛,大量土地荒芜,盐碱地资源的开发利用是我国增加农业可利用土地资源的需要,也是改善生态环境、增加绿色植被、提高森林覆盖率的需要。现代生物技术的发展为培育耐盐的作物品种提供了新方法和途径,已经成为改良盐碱地经济而有效的手段。紫花苜蓿(Medicago sativa L.)是世界上种植面积最大,应用最广泛的多年生豆科作物,不仅作为很好饲料而且现在人们将它作为美味的菜肴使用。柳树(Salix viminalis L.)是优良的园林绿化和生态树种,同时在很多方面有重要的用途。目前,人们在农作物和林草常规育种方面做了大量工作,取得了很多成果,但周期长,工作量大,因此基因工程的发展和应用为苜蓿和林木抗盐育种开辟了一条新的途径。本研究以中苜一号为材料,进行农杆菌介导rd29A基因转化体系的优化研究,获得了转基因新株系;以柳树Q106无菌苗为材料,通过对各种影响因素的筛选,初步建立了组培再生体系,为柳树基因转化奠定基础。目前取得的主要研究结果如下:
     1、优化了苜蓿转基因体系,获得了转rd29A基因植株
     农杆菌用含有50mg/L Kan的YEB培养基培养过夜,离心后用MC液体培养基重悬,同时在MC液体培养基中加入AS10 mg/L,调整菌液OD600值为0.3~0.5,作为受体侵染菌液;取继代培养15天的叶片,在菌液中迅速制造伤口(切去叶柄,然后在叶面上横切两刀),将致伤的叶片在菌液中摇动培养,侵染30分钟,无菌滤纸吸干叶片上多余菌液,转到pH值为6.0、并加有10mg/L AS的共培培养基MC上;共培养3天至叶片周围有淡而透亮的菌斑出现,用无菌水洗去叶片上的农杆菌,接到MC选择培养基上进行筛选(MC培养基加入PPT 2mg/L+Cef 400 mg/L),选择50~60天后撤掉PPT,同时降低Cef浓度至200 mg/L,将抗性胚性愈伤组织转到MSO培养基上进行分化诱导,一个月后获得抗性植株。继代3~4代后,经过PCR检测,初步证明有8株PPT抗性再生植株为转rd29A基因植株。
     2、柳树Q106组织培养再生体系初探
     以柳树Q106茎段作为外植体, MS + 6-BA 1.0 mg /L + NAA0.5 mg/L +蔗糖30 g/L为基本培养基,暗培养20天,然后转到光下培养,诱导愈伤组织效果好。以带腋芽茎段为外植体,在MS+KT 3.0mg/L+NAA 0.2 mg/L +蔗糖20 g/L培养基上,丛生芽分化效果好。采用MS+6-BA 0.1 mg/L+NAA 0.2 mg/L+蔗糖30 g/L培养基培养健壮苗较好,最佳生根培养基为MS+6-BA 0.01 mg/L+NAA 0.2 mg/L +蔗糖30g/L。选取健壮苗移栽,经驯化炼苗15-20天后,大田成活率可达98%。
Saline soil is wildspread in china. the development of saline soil is of significant with the increasing population and decreasing arable land.The development and application of gene engineering creates a new path for crop salt-resistant breeding and becomes a mean of economy and effective for improving saline soil.Cultivated alfalfa,perennial legume crop,is wildly planted in the world.It is a very good forage,more over people like it .Willow is excellent tree for garden virescence and zoology,meanwhile there is important use in other ways.people perpetrated many work in routine breeding of crop、forest and hasty and obtaid many fruit.But its cycle is longer and the load is hard ,so the development and application of gene engineering creates a new path for alfalfa and willow salt-resistant breeding.
     In this research, Studies on Transformation of Gene rd29A of Medicago.sativa Zhongmuyihao by Agrobacterium tumefaciens and achived a new transgenic plant;Studies on Establishment of organise culture Regeneration System of asepsis willow Q106 by choice of every effective factor for transformation willow. The main results were as following:
     1.Optimization of medicago’s genetic transformation and the transgenic plants medicago were obtained Agrobacterium culture stay over in YEB medium containing 50mg/L Kan.A liquid culture of A.tumefaciens was centrifuged and the pellet was resuspended in liquid MC medium contained AS10 mg/L to the OD600 of 0.3~0.5.The leaves cultivated 15 days make wound in the A.tumefaciens prompt(exsect stipe and transversely two bistoury in the lamina).The injured leaves are cultured and shaked 30 minutes in the A.tumefaciens. The excrescent A.tumefaciens on the lamina is blotted by the asepsis filter paper. The laminas were transferred and cultured on MC medium(pH=6.0, AS10 mg/L).After co-cultured 3 days, the laminas were bathed by the asepsis water and transferred onto the MC.They were choice cultured on the MC(PPT2 mg/L, Cef 400 mg/L).After 50~60 days,PPT was removed and reduced Cef concentration to 200 mg/L.The fastness embryogenesis cullus were transferred and cultured onto the MSO medium.In the 1 month ,the fastness plants were obtaided.After 3~4 era,principium proved,eight PPT-resistant plants are the transformation rd29A gene plant by PCR analysis.
     2 Regeneration tissue culture system establishment of willow Q106
     The effect of callus inducing is fine that the willow stem is cultured on MS +6-BA 1.0 mg /L + NAA0.5 mg/L +sucrose30 g/L in the dark,after 20 days ,cultured in the light. The effect of cluster shoot differentiation is fine that the willow armpit bud stem is cultured MS+KT3.0mg/L+NAA0.2 mg/L +sugrose20 % medium. It is fine to cultivate haleness seeding on MS+6-BA 0.1 mg/L+NAA 0.2 mg/L+sucrose30% medium. It is fine to rhizogenesis inducement on MS+BA0.01 mg/L+NAA0.2 mg/L + +sucrose30% medium. Selected haleness seeding transplant after domestication seeding 15~20 days ,its survival frequency reach over 98%.
引文
1. 王关林,方宏筠.植物基因工程原理与技术.科学出版社,1998
    2. 李德葆,周雪平,等.基因工程操作技术.上海科学技术出版社,1996
    3. J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂期著.金冬雁等校.分子克隆试验指南.科学出版社,1992
    4. 曹孜义,刘国民.实用植物组织培养技术教程.甘肃科学出版社,1996
    5. 燕丽萍. rd29A 基因植物表达载体的构建及四倍体刺槐再生诱导研究(硕士学位论文).甘肃:甘肃农业大学,2005
    6. 余如刚. 柳树基因转化受体系统的建立和农杆菌介导的甜菜碱醛脱氢酶基因(BADH)转化的研究(硕士学位论文).甘肃:甘肃农业大学, 2004
    7. 孙在红. 紫叶李基因转化受体系统的建立和农杆菌介导的甜菜碱醛脱氢酶基因(BADH)转化的研究(硕士学位论文).甘肃:甘肃农业大学, 2004
    8. 黄 剑.紫花苜蓿再生体系的建立及农杆菌介导的 BADH 基因转化体系优化的研究(硕士学位论文).甘肃:甘肃农业大学, 2002
    9. 王丽,张俊莲,王蒂,等.不同抗生素对烟草遗传转化影响的初步研究.中国烟草,2006,12 (1):32-37
    10. 周洲,尹新民,张德强,等.小黄菊遗传转化再生体系的建立.北京林业大学学报,2004,
    5
    11. 葛军,刘振虎,卢欣石.紫花苜蓿再生体系研究进展.中国草地.2006,3:26(2)
    12. 夏阳,梁慧敏,王太明,等.四倍体刺槐转甜菜碱醛脱氢酶基因的研究.中国农业科学,2004,37(8)
    13. 夏阳. NaCl 胁迫对植物生长和营养吸收的影响及叶片淋洗与盐胁迫的关系(博士学位论文). 山东:山东农业大学,1998
    14. 梁慧敏,夏阳,孙仲序,等. 根癌农杆菌介导的苜蓿遗传转化体系的建立. 农业生物技术学报 2005,13 (2): 152-156
    15. 梁慧敏, 黄 剑, 夏 阳等.苜蓿组织培养高频率再生体系的建立. 农业生物技术学报,2003,11(3): 321-322
    16. 张宁,王蒂. 农杆菌介导的烟草高效遗传转化体系研究. 甘肃农业科技 2004,9
    17. 吕德杨, 范云六, 俞梅敏,等. 苜蓿高含硫氨基酸蛋白转基因植株再生. 遗传学报, 2000, 27(4) : 331-337
    18. 金淑梅,管清杰,罗秋香,等. 苜蓿愈伤组织高频再生遗传和转化体系的建立.分子植物育种,2006,4
    19. 黎万奎, 陈幼竹,周 宇,等. 肝片吸虫抗原基因转基因苜蓿再生的研究. 四川大学学报, 2003, 40(1): 144-147
    20. 马海燕,张博等. 苜蓿高效再生体系研究进展.草叶科学,2005,22(11).
    21. 方升佐,黄宝龙.瑞典柳树能源林的研究及发展概况.世界林业研究,1997,No.3:66-71
    22. 王玉明,刘艳芝,夏彤,等.苜蓿子叶体细胞胚的诱导和植株再生(简报).草地学报,2005,13(1)
    23. 李 颖, 哈斯阿古拉, 方天祺,等. 苜蓿花叶病毒 RNA23′端 cDNA 转基因烟草的研究. 内蒙古师范大学学报自然科学(汉文) 版.2004 年 12 月
    24. 潘明建.柳树的遗传改良与栽培技术.林业科技开发.2004,18(3)
    25. 马和平,李毅等.枸杞叶片再生植株体系的建立.河北农业大学学报.2005,3:28(2)
    26. 赵政阳,曹晓玲,黄英,等. 叶片成熟度对苹果试管苗叶片再生植株的影响.陕西农业科学,1997,16(4):259-262
    27. 程 磊,周根余. 柽柳的组织培养与快速繁殖.上海师范大学学报(自然科学版),2001,30(2):67-71.
    28. 唐效蓉,李午平,黎玉才,等.杂交柳优良无性系组培快繁技术研究.湖南林业科技,2002,29(4):28-31
    29. 黄华艳,吴耀军.柳窿桉芽器官离体培养研究.广西林业科学,2003,32(1):26-28
    30. 李景琦,胡晓莉,王成社,等.不同激素对三倍体毛白杨腋芽诱导和增殖效应的研究.西北林学院学报,2002,17(2):37-40
    31. 樊 军 锋 , 韩 一 凡 , 李 玲 , 等 .84K 杨 树 耐 盐 基 因 转 化 研 究 . 西 北 林 学 院 学 报 2002,17(4):33-37
    32. 于志水,金红,苘胜军,等.黑杨派杨树组培再生系统的研究.辽宁林业科技,2002,第 6 期:11-14
    33. 于志水,苘胜军,赵继梅,等. 杨树转化受体系统再生初步研究及卡那霉素敏感性测定.辽宁林业科技, 2003,5:9-19
    34. 崔凯荣,戴若兰.植物体细胞胚发生的分子生物学.科学出版社,2000
    35. 崔凯荣、邢更生、周功克,等.植物激素对体细胞胚胎发生的诱导与调节.遗传学报,2000,22(5):349-354
    36. 谷瑞升,蒋湘宁,郭仲琛.植物离体培养中器官发生调控机制的研究进展[J].植物学通报,1999,16(3):238-244
    37. 王瑶,林木兰,沈锡辉,等.农杆菌介导的木本植物遗传转化.生物技术通报,1999,第 6 期,23-27.
    38. 张根义,徐武. 植物细胞感受态初探. 农业生物技术学报,1997,5(1):100-104
    39. 陈廷速,张军,曾定,等.香蕉农杆菌介导高效转化体系.西南农业学报,2002,15(1)20-23
    40. 韩美丽,陆荣生,唐玉贵,等.影响农杆菌介导的柑桔基因转化早期主要因素的研究.广西林业科学,1998,27(3):108-112
    41. 孙仲序,陈受宜,王建设,等. 农杆菌介导 BADH 基因转化葡萄的研究.果树学报,2003,20(2):89-92
    42. 诸葛强,王婕琛,陈 英,等.新疆杨高效遗传转化系统的建立.植物资源与环境学报,2003,12(4):6-10
    43. 秦玲,李嘉瑞,李明,等.影响苹果离体叶片早期转化效率因素的研究.西北植物学报,2004,24(1):25—30
    44. 郎春秀,胡张华,黄锐之,等.分析植株中 GUS 表达的两种快速简便方法.植物生理学通讯,2002,38(4):366-367
    45. 郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究.植物学报,1999,41(9):936-940
    46. 杨传平,刘桂丰,梁宏伟,等.耐盐基因 Bet A 转化小黑杨的研究.林业科学, 2001,37(6):35-39
    47. 吴丽君. 木本植物组织培养技术在林业科研与生产中的应用与局限. 福建林业科技.2003.30(1):67-74
    48. 刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997, 24(1):54-58
    49. 杨传平,刘桂丰,梁宏伟,等.耐盐基因 Bet-A 转化小黑杨的研究.林业科学,2001,37(6):11-15
    50. 彭爱红,何永睿,邹修平,等.观赏植物组织培养与基因工程研究进展.亚热带植物科学,2002,31(2):58-63
    51. 李强,韩一凡.木本植物分子生物学的研究进展[J].世界林业研究,1996,9(4):10-17
    52. 王艳青,陈雪梅,李悦,等. 植物抗逆中的渗透调节物质及其转基因工程进展. 北京林业大学学报, 2001,23(4):66-70
    53. 牛焕琼,晋开颜,徐斌.植物组织培养在林业中的应用及进展.林业建设,2003(3):27-30
    54. 王慧中.转 mtlD/gutD 双价基因水稻的耐盐性[J].科学通报,2000,45(7):724-729
    55. 赵可夫.植物抗盐生理[M].北京:中国科技出版社,1993.293-314
    56. 李洪清,李美茹.影响农杆菌介导植物基因转化的因素问题.植物生理学通讯,1999,35(2):145-151
    57. 李银心,常凤启,杜立群,等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480-484
    58. 兰彦平,顾万春. 林木无性繁殖研究进展. 世界林业研究.2002.15(6):7-13
    59. 苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响.植物学通报,2001,18(2):129-136
    60. 张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    61. 卢青. 植物耐盐性的分子生物学研究进展. 生物学杂志,2000,17(4):9-11
    62. 林栖凤,李冠一.植物耐盐性研究进展.生物工程进展.2000,20:20-25
    63. 舒卫国,陈受宜.植物在渗透胁迫下的基因表达及信号传递.生物工程进展,2000,20(3):3-6
    64. 郭北海,张艳敏,蒋春志,等.转甜菜碱醛脱氢酶(BADH)基因转化小麦耐盐耐旱性.华北农学报,2003,18(1):29 32
    65. 殷晓军,赵彦修等.甜菜碱的合成及与其相关基因的遗传工程.植物生理学通讯,2002,38(3):299-304
    66. Liu L.Transcription factors and their genes in higher plants[J].Eur J Biochem,1999, 262: 247-257.
    67. D’ Halluin K, Botterman J, De Greet W. Engineering of herbicide-resistant alfalfa evaluation under field conditions. Crop Sci., 1990,30: 866~871
    68. Hill K K, Jans-Eagan N, Halk E L etal. The development of virus-resistant alfalfa, Medicago sativa L. Bio/Technology, 1991,9: 373~377
    69. Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plent Cell Rep., 1994, 14: 31~36
    70. T. H. Trinh, P. Ratet, E. Kondorosi, et al. Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssa.falcate lines improved in somatic embryogenesis. Plent Cell Rep., 1998, 17: 345~355
    71. Mireille Chabaud, Clotlde Larsonneau, Corinne Marmouget, and Thierry Huguet. Transformation of barrel medic(Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep., 1996, 15: 305~310
    72. Beate Hoffmann, Toan Hanh Trinh, Jeffrey Leung, et al. A new Medicago truncatula linewith superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant-Microbe Interact, 1997, 10: 307~315
    73. Anthony T.Trieu and Maria J.Harrison. Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep., 1996, 16: 6~11
    74. Maria Deak, gyorgy B. Kiss, Csaba Koncz, and Denes Dudits. transformation of Medicago by Agrobacterium-mediated gene transfer. Plant Cell Rep., 1986, 5: 97~100
    75. Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Rep., 1987, 5: 387~405.
    76. Liu Q Z. Etiolation of ‘Royal Gala’ apple (Malus domestica Borkh) shoots promoters high-frequency organogenesis and enhancedβ-glucuronidase expression from stem internodes. Plant cell Rep., 1998, 18: 32-36.
    77. Miguel C M, Oliveira M M. Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep., 1999, 18: 387~393
    78. Yamaguchi-Shinozaki K(1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants.MolGen Genet 236: 331-340.
    79. Anthony T.Trieu, Stephen H.Burleigh, lgor V.Kardailsky, et al. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. The Plant Journal, 2000, 22(6): 531~541
    80. Agrawal-DC,Gebhardt-K. Rapid micropropagation of hybrid willow (Salix) established by ovary culture. Journal-of-Shoot-Physiology. 1994, 143: 6, 763-765
    81. Aldemita RR, Hodges TK, Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Shoota, 1996,199:621-617
    82. Ashby AM, Watson, MD, Loake GJ et al. Ti-plasmid specified chemotaxis of Agrobacterium tumefaciens toward vir-induction phenolic compounds and soluble factors from monocotyledonous and dicotyledonous shoots. J Bacteriol, 1998,170:4181-4187
    83. Chan MT, Chang HH, Ho SL et al. Agrobacterium-mediated production of transgenic rice shoots expressing a chimeric α-amylase promoter/β-glucuronidase gene. Shoot Mol Biol, 1993,22:491-506
    84. Chavarriaga-Aguirre P, Schopk C, Sangare A et al. Transformation of cassava (Manihot esculenta Crantz) embryogenic tissues using Agrobacterium tumefaciens. Proc of The First Inter Sci Meet The Cassava Biotechnology Network. CIAT Working Document, 1993,123:222-228
    85. Confalonieri M, Balestrazzi A, et al. Factors affecting Agrobacterium tumefaciens- mediated transformation in several black poplar clones. Shoot Cell Tiss Org Cult, 1995,43:215-222
    86. Confalonieri M, Belenghi B, Balestrazzi A, Negri S. Transformation of elite white poplar (Populus alba L.) cv, ‘Vilafranca’ and evaluation of herbicide resistance. Shoot Cell Rep, 2000,19:978-982
    87. Confalonieri M et al. Genetic transformation of Populus nigra by Agrobacterium tumefaciens. Shoot Cell Rep, 1994,13:256-261
    88. Dhir-KK,Pawan-Kalsi,Kalsi-P. Clonal propagation of Salix babylonica Linn. throughshoot bud culture. Research-Bulletin-of-the-Panjab-University,-Science. 1991, 42: 1-4, 47-51
    89. Guld JH,Zhou YX,Veeraragavan P,etal.Transformation and regeneration of loblolly pine:shoot apexino culation with Agrobacterium[J].Molecular Breeding, 2002,10(1):131-141
    90. Gelvin SB.Agrobacterium and shoot genes involved in T-DNA transfer and intergration review[J].Annual Review of Phytopathology,2000,51(7):223-256
    91. Gronroos-L,Arnold-S-von,Eriksson-T .Callus production and somatic embryogenesis from floral exshoots of basket willow (Salix viminalis L.). Journal-of-Shoot-Physiology. 1989, 134: 5, 558-566
    92. Gronroos-L,Kubat-B,Arnold-S-von,Eliasson-L. Cytokinin contents in shoot cultures of four Salix clones. Journal-of-Shoot-Physiology. 1989, 135: 2, 150-154
    93. G A Moore, et al. Agrobacterium-mediated transformation of citrus stem segment and regeneration of transgenic shoot. Shoot Cell Rep, 1992,11:238-242
    94. Groenroos, Hardner,Gullberg,Arnold. Field performance of Salix clones propagated via shoot cultures in vitro - field trial with micropropagated willows. Scandinavian Journal of Forest Research (Sweden). (1990). v. 5(4) p. 487-492
    95. Huang J, Hirji R, Adam L et al. The genetic engineering of glycinebetaine production toward enhancing stress tolerance in shoots metabolic limitations. Shoot Physiol, 2000,122:747-756
    96. Hauth-S,Beiderbeck-R. In vitro culture of Agrobacterium rhizogenes-induced hairy roots of Salix alba L. Silvae-Genetica. 1992, 41: 1, 46-48
    97. Han KH, Gordon MP, Strauss SH. High frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Canadian Journal Forest Research, 1997,27:464-470
    98. Han KH, Ma-C, Strauss SH. Matrix attachment regions (MARs) enhance transgene expression and transformation frequency in poplars. Transgenic Research, 1997,6:415-420
    99. Han KH, Meilan R, Strauss SH. An Agrobacterium tumeraciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Shoot Cell Rep, 2000,19:315-320
    100. Hooykaas PJJ, Schilperoort RA. Agrobacterium and shoot genetic engineering. Shoot Mol Biol, 1992, 19:15-18
    101. Horsch RB, et al. A simple and general method for transferring genes into shoots. Science, 1985,227:1229-1231
    102. Hong Z. Removal of feedback inhibition of △I-pyrroling-5-carboxylate synthase resultsin increased praline accumule-tion and protection of shoots from osmotic stress[J].Shoot physiology.2000.122:1129-1136
    103. Holmstrom K O.Production of the Escherichia coli betaine aldehyde dehydrogenase,an enzyme required for thesynthesis of the osmoprotectant glycine betaine in transgenic shoots[J].The shoot Journal,1994,6(5):749-75
    104. Han KH, Keathley DE, Davis JM, Gordon MP. Regeneration of a transgenic woody legume (Robinia Pseudoacacia L., black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Shoot Sci, 1993, 88:149-157
    105. Igasaki T, Mohri T, Ichikawa H, Shinohara K. Agrobacterium tumefaciens mediated transformation of Robinia pseudoacacia. Shoot Cell Rep, 2000,19:448-453
    106. Janssen BJ,Gardner RC.The use of transient GUS expression to develop an Agrobacterium mediated gene transfer system for Kiwifuits[J].Shoot Cell Rep,1993,13:28-31
    107. Liskova-D,Zakutna-L,Kakoniova-D. Pigment formation in willow tissue culture. Biologia-Bratislava. 1989, 44: 11, 1039-1045
    108. Mchughen A, Jordan M, Feist G. Pre-culture period prior to Agrobacterium inoculation increase production of transgenic shoots. J Shoot Physiol, 1989,135:245-248
    109. Miguel CM,Oliveira MM.Transgenic almond shoots obtained by Agrobacterium mediated transformation of leaf exshoots[J].shoot cell Rep,1999,18:387-393
    110. Nakamura T,Yokota S,Muramoto Y,et al,Expression of a Betaine aldehydrogenase gene in rice ,a glycinebetaine nonaccumulator,and possible locatization of its protein in peroxisomes.shoot Journal,1997,11(5):1115-1120
    111. Neuner H,Beiderbeck R. In vitro propagation of Salix caprea L. by single node exshoots. Silvae Genetica (Germany). (1993). v. 42(6) p. 308-310
    112. Neuner H,Beiderbeck R.In vitro propagation of Salix caprea L. by single node exshoots. Silvae Genetica (Germany). (1993). v. 42(6) p. 308-310
    113. Perl A, Lotan O, Abu-Abied M et al. Establishment of Agrobacterium tumefaciens-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape- Agrobacterium interactions. Nature Biotechnol, 1996,14:624-628
    114. Stoehr-MU,Mantong-C,Zsuffa-L. In vitro shoot regeneration via callus culture of mature Salix exigua. Canadian-Journal-of-Forest-Research. 1989, 19: 12, 1634-1638
    115. Sheveleva E V.Sorbiotol-6-phosphate dehydrogenase expression in transgenic tobacco[J].Shoot Physiology,1998,117:831-839
    116. Sheveleva E. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. [J]. Shoot Physiology, 1997,115:1211-1219
    117. Tzfira T, Ben-Meir H, Vainstein A, Altman A. High efficient transformation and regeneration of aspen shoot thrash shoot formation in root culture. Shoot Cell Rep, 1996,15:563-571
    118. Vahala T,Eriksson T. Callus production from willow (Salix viminalis L) protoplasts. Shoot Cell, Tissue and Organ Culture (Netherlands). (1991). v. 27(3) p. 243-248
    119. Vahala T,Eriksson T,Tillberg E,Nicander B. Expression of a cytokinin synthesis gene from Agrobacterium tumefaciens T-DNA in basket willow (Salix viminalis). Physiologia Shootarum (Denmark). (Jul 1993). v. 88(3) p. 439-445
    120. Vahala-T,Stabel-P,Eriksson-T. Genetic transformation of willows (Salix spp.) by Agrobacterium tumefaciens. Shoot-Cell-Reports. 1989, 8: 2, 55-58
    121. Vahala-T,Eriksson-T. Callus production from willow (Salix viminalis L.) protoplasts. Shoot-Cell,-Tissue-and-Organ-Culture. 1991, 27: 3, 243-248
    122. Vernon D M, Bohnert H J. A novel methyl transferase induced by osmotic stress in the facultative Mesembryanthe-mum crystallium [J]. EMBO J,1992,11: 2077-2085
    123. Wyn Jones RG,Storey R,Betaine(1981).In:Peleg LG,Aspinall D(eds).Physiology and Bio-chemistry of Drought Resistance in shoots.New York:Academic press,171
    124. Yamada A,Saitoh T,Ozeki Y(2002).Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli,yeast,and tobacco cells.Shoot Cell Physiol,43(8):903-910
    125. Zupan JR, Zambryski P. Transfer of T-DNA from Agrobacterium to the shoot cell. Shoot Physiol, 1995, 107:1041-1047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700