用户名: 密码: 验证码:
纳米微晶纤维素/金属/电介质杂化材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以纳米微晶纤维素,纳米金属及二氧化硅等电介质组成的杂化结构材料是一类正在兴起的新型材料。通过高压均质法制备分散性好的纳米微晶纤维素,再以其为模板诱导使正硅酸乙酯(TEOS)在水解过程形成棒状物杂化物,该杂化物经过高温煅烧可以得到晶须状的碳化硅。以改性的二氧化硅为和聚苯乙烯微球为基,表面包覆或负载纳米银,以及将荧光染料包覆于电介质二氧化硅中可以得到不同功能化的杂化物,此类杂化物可以实现金属银和荧光物染料的多功能化特性。因而此类杂合材料被广泛应用于聚合物基的增强、抗菌、表面增强拉曼散射、生物医学等领域。本文报道了纳米微晶纤维素及碳化硅晶须的制备、并制备了Ag/SiO2、Ag/CNC、Ag/PS纳米结构杂化物及荧光物染料掺杂二氧化硅的杂合物,并讨论了聚合物基增强、抗菌、表面增强拉曼散射荧光标记等性能。全文共分五章。
     第一章概述纳米杂合物结构材料的研究意义和目的、常用的制备方法、基本性质、应用领域以及本论文研究的意义、主要内容和创新。
     第二章以物理机械法(高压均质的方法)制备了纳米微晶纤维素,并用相同的方法细化了低熔点的玻璃粉,并探讨了不同均质时间对纤维素及玻璃粉粒径等影响。所得到纳米微晶纤维素为棒状,分散性较好,同样该方法得到的玻璃粉粒径比均质前明显减小,分散性更好。另外还对均质后的玻璃粉的烧结温度和软化温度进行了研究,研究表明玻璃粉的粒径越小,其烧结温度和软化温度越低。
     第三章用纳米微晶纤维素为模板及诱导剂,可以使TEOS在水解过程形成棒状的杂合物,该杂合物经过高温煅烧可合成晶须状的碳化硅,并对碳化硅的形貌和结构进行了表征。进一步将碳化硅晶须应用于聚苯乙烯基树脂的增强,碳化硅晶须增强的树脂力学性能有明显改善,相比于普通的聚苯乙烯,其中拉伸强度增加到原来的3倍,缺口冲击强度增加到8倍左右。通过CNC合成的SiC晶须显示了在聚合物基等领域的潜在的应用前景。
     第四章以改性的二氧化硅微纳球为载体,Fe3+为催化剂,DMF为还原剂制备了表面包覆好的Ag/SiO2杂化物,并探讨了有无催化剂和不同的反应温度对纳米银负载物的影响。将银纳米粒子包覆的杂合物应用于抗菌测试,展现除了优异的抗菌性能。另将荧光染料掺杂于改性的二氧化硅纳米球,得到的纳米杂合物大小均一,粒径在50~80nm之间,分散性好。荧光测试实验表明该杂合物仍保留原始荧光单体的性能,但荧光单体泄露可以明显改善,进一步应用于生物标记,发现在细胞中有明显的纳米荧光杂合物颗粒。
     第五章以制备了单分散性好的聚苯乙烯微球,并以聚苯乙烯微球和纳米微晶纤维素为基质,通过在PS微球表面吸附不同电荷,将Ag+还原为纳米银负载于聚苯乙烯表面上。该Ag/PS复合物应用于SERS增强实验,发现MB(亚甲基)的拉曼信号可以明显地提高。另外通过简单的方法超声还原法制备了纳米银负载纳米微晶纤维素杂合物,发现随着超声反应时间的增加,纳米银粒子不断地生长,超声反应60min时,CNC表面的纳米银大小均一,无明显团聚现象,但是超声时间80min时,纳米银变得更大,而且大小不均一。进一步应用抗菌实验,表明超声反应60min时,所得到纳米银负载的CNC杂合物具有较好的抗菌效果,该杂合物可应用于抗菌,生物医学等研究领域。
The cellulose nanocrystals (CNC), nano-metals hybrid and silica dielectric compositestructure nanomaterials are an emerging class of new materials. Dispersibility cellulosenanocrystal is prepared by a high pressure homogenizer. Then the CNC as a template inducessilica rods hybrids during the TEOS (Tetracethyl orthosilicate) hydrolysis process. The siliconcarbide whisker can be obtained by high temperature calcination for hybrids. The modifiedsilica and polystyrene microspheres as the matrix, the surface coats or deposits nano-silver,and the fluorescent dyes can be coated on the dielectric silica spheres. The hybrids have thedifferent functions, such as the multifunctional characteristics of metallic silver and themultifunctional characteristics of the fluorescent dyes. Therefore such hybrid materials arewidely used in the polymer matrix enhanced, antimicrobial, surface-enhanced Ramanscattering and biomedical field. This study reports that cellulose nanocrystals, silicon carbidewhiskers, nano-structure of hybrids hybrids (Ag/SiO2,Ag/CNC and Ag/PS) and fluorescentmaterial dye-doped silica hybrid compounds are prepared. The properities of polymerreinforce, fluorescently labeled performance, surface-enhanced Raman and antimicrobial arealso discussed. The paper is divided into five chapters.
     In the first chapter, the overview research significance and purpose of the hybrids structuralmaterials are given. And the commonly used preparation method, basic properties, applicationareas, our study thesis, main content and innovation are given.
     In the second chapter, the CNC is prepared by physical and mechanical method (highpressure homogenization method), and refinement of the low melting point glass powder arealso obtained by the same way. We discuss different homogenization time for effectingcellulose and glass powder particle size. The preparation CNC has a rod like and a gooddispersibility. And the particle diameter of glass powder reduces before than homogeneoussignificantly by the same method. After high homogeneous, the sintering temperature andsoftening of the glass powder are also studied. The result showes that the smaller the particlesize of the glass powder, the sintering temperature and the softening temperature is lower.
     In the third chapter, the cellulose nanocrystals as a template and inducers can form rod like hybrid materials during the TEOS hydrolysis process. The silicon carbide is obtainedhigh-temperature calcination the hybrid materials. We also test the silicon carbide whiskestructure by XRD, TEM, FTIR and so on. The silicon carbide whisker is applied polystyreneresin reinforced. And compared to ordinary polystyrene, the mechanical properties of siliconcarbide whisker-reinforced resin is significant improvement which the tensile strengthincreased by3times, notched impact strength increased by about8times. It shows that thesynthesis SiC whiskers have broad application prospects in polymer-based areas.
     In the fourth chapter, the modified silica as matrix, Fe3+as catalyst and DMF as a reducingagent, we prepare high dispersion Ag/SiO2hybrids. The catalyst and the reaction temperaturealso discussed for Ag nanoparticles deposited. The silver nanoparticles coating SiO2is usedin antibacterial test, and it also showes excellent antibacterial properties. Another fluorescentdye doping in the modified SiO2nanospheres is synthesized. The nanocomposites have gooddispersion, uniform size and the particle size between50~80nm. The fluorescence testexperiments show that the nanocomposites still retain the performance of the originalfluorescent and fluorescent leak can be significantly improved. We find that the cells have thedye doping silica nanocomposites when the nanocomposites are applied to cell label.
     In the fifth chapter, we prepare monodisperse polystyrene microspheres. And the obtainedPS spheres as a matrix, the nanocrystalline silver deposite different charges in PSmicrospheres surface. The Ag/PS composites are used in SERS enhancement experiments andit can improve MB’s Raman signals. In addition, by the simple ultrasound method, we canobtain nano-silver deposited CNC surface. It find that the growth of nano-silver particlesincrease with ultrasonic reaction time. With ultrasonic reaction60min, the uniform size of thenano-silver can deposit CNC surface. When ultrasonic time is80min, nano silver becomeslarger, and nano silver is obvious agglomeration and uneven in size. Further application ofantibacterial experiments, the nanosilver deposited CNC composites show good antibacterialeffect. And this material can be applied to antibacterial and biomedical research field.
引文
[1]陈家楠.纤维素化学的现状与发展趋势[J].纤维素科学与技术,1995(3):1-10.
    [2] Payen A. Compt. Rend.1838,7,1052-1056.
    [3] Gross R. A., Kalra B. Biodegradable polymers for the environment [J]. Science,2002,297(5582):803-807.
    [4]叶代勇,黄洪,傅和青,陈焕钦.纤维素化学研究进展[J].化工学报,2006,57(8):1782-1791.
    [5] Hinterstoisser B., Salmen L. Application of dynamic2D FTIR to cellulose [J]. Vib.Spectrosc.,2000,22(1-2):111-118.
    [6] Wada M. In situ observation of the crystalline transformation from cellulose IIII to I [J].Macromolecules,2001,34(10):3271-3275.
    [7] Atalla R. H., VanderHart D. L. Native Cellulose: A composite of two distinct crystallineforms [J]. Science,1984,223(4633):283-285.
    [8] Nishiyama Y., Sugiyama J., Chanzy H., Langan P. Crystal structure and hydrogenbonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction [J] J.Am. Chem. Soc.,2003,125(47):14300-14306.
    [9] Nishiyama Y., Chanzy H., Langan P. Crystal structure and hydrogen bonding system incellulose Iβ from synchrotron and neutron fiber diffraction [J]. J. Am.Chem. Soc.,2002,124(31):9074-9082.
    [10] Helbert W., Sugiyama J., Ishihara M., Yamanaka S. Characterization of nativecrystalline cellulose in the cell walls of Oomycota [J]. Biotechnol.,1997,57(1-3):29-37.
    [11] Langan P., Nishiyama Y., Chanzy H. A revised structure and hydrogen-bonding systemin cellulose ii from a neutron fiber diffraction analysis [J] J. Am. Chem. Soc.,1999,121(43):9940-9946.
    [12] Gardiner E. S., Sarko A. Packing analysis of carbohydrates and polysaccharides.16. thecrystal structures of celluloses IVIand IVII[J]. Can. J. Chem.,1985,63(1):173-180.
    [13] Wada M., Chanzy H., Nishiyama Y., Langan P. Cellulose IIIIcrystal structure andhydrogen bonding by synchrotron x-ray and neutron fiber diffraction [J].Macromolecules,2004,37(23):8548-8555.
    [14] Wada M., Heux L., Nishiyama Y., Langan P. X-ray crystallographic, scanningmicroprobe x-ray diffraction, and cross-polarized/magic angle spinning13C NMRstudies of the structure of cellulose IIIII[J]. Biomacromolecules,2009,10(2):302-309.
    [15]李培耀,宋国君,元峰,王立.纳米纤维素晶须及其在纳米复合材料中的应用进展[J].现代化工,2006,26(S1):96-99.
    [16]甄文娟,单志华.纳米纤维素在绿色复合材料中的应用研究[J].现代化工2008,28(6):85-88.
    [17]芳明.纳米二氧化硅的制备、表面改性和应用前景[J].精细化工原料及中间体,2011,1:19-23.
    [18] Bergna H. E., Roberts W. O. Colloidal Silica: Fundamentals and applications [M]. CRCTaylor&Francis,2006,912.
    [19] Liu H. B., Zhuang Z. X., Chen C. X., Huang R. F., Tan F., Yan Q. P., Wang X. R.Luminophore-doped silica nanoparticles as fluorescent probe in protein microarray assay[J]. Chin. J. Anal. Chem.,2006,34(9):1227-1230.
    [20] Nah C., Han S. H. Characteristics of polyimide ultrafine fibers prepared throughelectrospinning [J]. Polym Int.,2003,52(3):429-432.
    [21]李小芳,丁恩勇,黎国康.一种棒状纳米微晶纤维素的物性研究[J].纤维素科学与技术,2001,9(2):29-36.
    [22] Yang X. M., Dai T. Y., Lu Y. Polymerization of pyrrole on a polyelectrolytehollow-capsule microreactor [J]. Polymer,2006,47(13):4596-4602.
    [23] Vassiliou A., Bikiaris D., Pavlidou E. Optimizing melt-processing conditions for thepreparation of iPP/Fumed silica nanocomposites: morphology, mechanical and gaspermeability properties [J]. Macromol. React. Eng.,2007,1(4):488-501
    [24] Garc a M., Vliet G. V., Jain S., Schrauwen B. A. G., Sarkissov A., Zyl W. E. V.,Boukamp B. Polypropylene/SiO2nanocomposites with improved mechanical properties[J]. ReV.Adv. Mater. Sci.,2004,2(6):169-175.
    [25] Nitta K., Asuka K., Liu B. P., Terano M. The effect of the addition of silica particles onlinear spherulite growth rate of isotactic polypropylene and its explanation by lamellarcluster model [J]. Polymer,2006,47(18):6457-6453.
    [26] Dieter K., Dieter S., Friederike K., He ler N, Hornung M., Schmauder H. P., Marsch S.Nanocelluloses as innovative polymers in research and application.[J]. Adv. PolymSci.,2006,205:49-96.
    [27] Takahashi N., Okubo K., Fujii T. Development of green composites usingmicrofibrillated cellulose extracted from bamboo [J]. Bamboo J.,2005,22:81-83.
    [28] Revol J. F., Bradford H., Giasson J., Marchessault R. H., Gray D. G. Helicoidalself-ordering of cellulose microfibrils in aqueous suspension [J] Int. J. Biol. Macromol.,1992,14(3):170-172.
    [29] Elazzouzi-Hafraoui S., Nishiyama Y., Putaux J. L., Heux L., Dubreuil F., Rochas C. Theshape and size distribution of crystalline nanoparticles prepared by acid hydrolysis ofnative cellulose [J]. Biomacromolecules,2008,9(1):57-65.
    [30] Li X. F., Ding E. Y., Li G. K. A method of preparing spherical nano-crystal cellulosewith mixed crystalline forms of cellulose I and II [J]. Chin. J. Polym. Sci.,2001,19(3):291-296.
    [31]唐丽荣,黄彪,戴达松,欧文,李玉华,陈学榕.纳米纤维素晶体的制备及表征[J].林业科学,2011,47(9):119-122.
    [32]丁恩勇,李小芳,黎国康.一种球形纳米微晶纤维素的制备方法[P].中国发明专利,申请号:00117261.1,2002-02-06.
    [33]黎国康,潘松汉.溶剂法制取纳米微晶纤维素粉体[P].中国发明专利,申请号:ZL9415873.X,1995-07-05.
    [34] Noriko H., Tetsuo K., Mitsuro I. Enzymatically produced nano-ordered short elementscontaining cellulose Iβcryatalline domains [J]. Carbohyd. Polym.,2005,61(2):191-197.
    [35]蒋玲玲,陈小泉,李宗任.纤维素酶制备纳米纤维素晶体的研究[J].化学与生物工程,2008,25(12):63-66.
    [36]蒋玲玲,陈小泉.纤维素酶解天然棉纤维制备纳米纤维素晶体及其表征[J].化学工程与装备,2008,10:1-9.
    [37]杨扬,康燕,蔡志楠,隋晓锋,袁金颖.纤维素接枝反应的研究进展纤维素[J].纤维素科学与技术,2009,17(3):53-58.
    [38] Ljungberg N., Cavaille′J Y., Heux L. Nanocomposites of isotactic polypropylenereinforced with rod-like cellulose whiskers [J] Polymer,2006,47(18):6285-6292.
    [39] Bondeson D., Oksman K. Dispersion and characteristics of surfactant modified cellulosewhiskers nanocomposites [J]. Compos. Interfaces,2007,14(7-9):617-630.
    [40] Denooy A. E. J., Besemer A. C., Bekkum H. V. Highly selective tempo mediatedoxidation of primary alcohol groups in polysaccharides [J]. Recl. Trav. Chim. Pays-Bas,1994,113(3):165-166.
    [41] Montanari S., Roumani M., Heux L., Vignon M. R. Topochemistry of carboxylatedcellulose nanocrystals resulting from TEMPO-mediated oxidation [J]. Macromolecules,2005,38(5):1665-1671.
    [42]邵自强,李志强,刘建华.纤维素酯在涂料中的研究与应用[J].纤维素科学与技术,2005, l3(3):46-55.
    [43] Yuan H., Nishiyama Y., Wada M., Kuga S. Surface acylation of cellulose whiskers bydrying aqueous emulsion [J]. Biomacromolecules,2006,7(3):696-700.
    [44]张光华,朱军峰,徐晓风.纤维素醚的特点、制备及在工业中的应用[J].纤维素科学与技术,2006, l4(1):60-65.
    [45]徐雁.功能性无机-晶态纳米纤维素复合材料的研究进展与展望[J].化学进展,2011,23(11):2183-2199
    [46] O’Sullivan A. C. Cellulose: the structure slowly unravels [J] Cellulose,1997,4(3):173-207.
    [47] Klemm D., Heublein B., Fink H. P., Bohn A. Cellulose: fascinating biopolymer andsustainable raw material [J]. Angew. Chem. Int. Ed.2005,44(22):3358-3393.
    [48]郭亚军,武光,刘仁光.醇盐水解法制备纳米SiO2粉体的研究及其应用[J].化学与粘合,2003,6:309-311.
    [49] He Q. J., Zhang J. M., Chen F., Guo L. M; Zhu Z. Y., Shi J. L. An anti-ROS/hepaticfibrosis drug delivery system based on salvianolic acid B loaded mesoporous silicananoparticles [J]. Biomaterials,2010,31:7785-7796
    [50] Kolbe, G. Thesis, Friedrich-schiller-universit t jena [M]. Kolbe G, Germany,1956.
    [51] Yokoi T., SakamotoY., Terasaki O., Kubota Y., Okubo T., Tatsumi T., Periodicarrangement of silica nanospheres assisted by amino acids [J]. J. Am. Chem. Soc.,2006,128(42):13664-13665.
    [52] St ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres and, inthe micron size range [J]. J. Colloid Interface Sci.,1968,26(1):62-69.
    [53] Roth K. M., Zhou Y., Yang W., Morse D. E. Bifunctional small molecules arebiomimetic catalysts for silica synthesis at neutral pH [J]. J. Am. Chem. Soc.,2005,127(1):325-330.
    [54] Zhang Z., Patel R. C., Kothari R., Johnson C. P., Friberg S. E., Aikens P. A. Stable silverclusters and nanoparticles prepared in polyacrylate and inverse micellar solutions [J]. J.Phys. Chem. B,2000,104(6):1176-1182.
    [55] Ariagada F. J., Osseo-Asare K. Controlled hydrolysis of tetraethoxysilane in a nonionicwater-in-oil microemulsion: a statistical model of silica nucleation [J]. Colloid. SurfceA,1999,154(3):311-326.
    [56] Osseo-Asare K., Arriagada F. J. Growth kinetics of nanosize silica in a nonionicwater-in-oil microemulsion: a reverse micellar pseudophase reaction model [J]. J ColloidInterface Sci.,1999,218(1):68-76.
    [57]王云芳,郭增昌,王汝敏.纳米二氧化硅的表面改性研究[J].化学研究与应用,2007,19(4):382-385.
    [58] Kim Y. H., Lee D. K. H., Cha G., Kim C. W., Kang Y. S. Synthesis and characterizationof antibacterial Ag-SiO2nanocomposite [J]. J. Phys. Chem. C,2007,111(9):3629-3635.
    [59] Costa C. A. R., Leite C A P., Galembeek F. Size dependence of St ber silicananoparticle microchemistry [J]. J. Phys. Chem. B,2003,107(20):4747-4755.
    [60] Tanev P. T., Pinnavaia T. J. Biomimetic templating of porous lamellar silicas byvesicular surfactant assemblies [J]. Science,1996,271(5253):1267-1269.
    [61] Ibisate M., Zou Z., Xia Y. Arresting, fixing, and separating dimers composed of uniformsilica colloidal spheres [J]. Adv. Funct. Mater.,2006,16(12):1627-1632.
    [62] Floresa J. C, Torres V., Popa M., Crespo D., Calderón-Moreno J. M. Variations inmorphologies of silver nanoshells on silica spheres [J]. Colloid. Surfce A,2008,330(1):86-90.
    [63] Suzuki H., Yamaguchi K., Miyazaki H. Fabrication of thermochromic composite usingmonodispersed VO2coated SiO2nanoparticles prepared by modified chemicalsolution deposition [J]. Compos. Sci. Techn.,2007,67(15-16):3487-3490.
    [64] Zou H., Wu S. S., Shen J. Polymer/Silica nanocomposites: preparation, characterization,properties, and applications [J]. Chem. Rev.,2008,108(9):3893-3957.
    [65] Blum F. D. In encyclopedia of polymer science and technology [M]. Kroschwitz. J. I.,Ed.; John Wiley&Sons: Hoboken, N. J.,2004,38-50.
    [66]葛奉娟,朱捷.醇酯法表面改性超细氧化硅的研究[J].安徽理工大学学报(自然科学版),2005,25(4):78-80
    [67] Tai Y. L., Qian J. S., Zhang Y. C., Huang J. D. Study of surface modification ofnano-SiO2with macromolecular couping agent [J]. Chem. Eng. J.,2008,141(1-3):354-361.
    [68] Zhou L. L, Yuan W. Z, Yuan J. Y. Preparation of double respective SiO2-g-PDMAEMAnanoparticles via ATRP [J]. Mater. Lett.,2008,62(8-9):1372-1375.
    [69] Wu C. L., Zhang M. Q., Rong M. Z., Friedrich K. Silica nanoparticles filledpolypropylene: effects of particle surface treatment, matrix ductility and particle specieson mechanical performance of the composites [J]. Compos. Sci. Technol.,2005,65(3-4):635-645.
    [70] Hofmann U., Endell K., Wilm D. Wilm; X-ray and colloid-chemical investigations onclays [J]. Angew. Chem.,1934,47:539-547.
    [71] Jana S. C., Jain S. Dispersion of nanofillers in high performance polymers using reactivesolvents as processing aids [J]. Polymer,2001,42(16):6897-6905
    [72] Zhang H., Dong S. J. Electrogenerated chemiluminescence sensors using Ru (bpy)32+doped in silica nanoparticles [J]. Anal. Chem.,2006,78(14):5119-5123.
    [73] Bagwe R. P., Hilliard L. R., Tan W. Surface modification of silica nanoparticles to reduceaggregation and nonspecific binding [J]. Langmuir,2006,22(9):4357-4362.
    [74] Hu B., Jiang B. B., Chen J. Z. Manuf acture technologies and applications of monodisperse silicon dioxide [J]. Chem. Indus. Engin Prog.,2005,24(7):603-607.
    [75] Piao Y., Burns A., Kim J., Wiesner U., Hyeon T. Designed fabrication of silica-basednanostructured particle systems for nanomedicine applications [J]. Adv. Funct. Mater.,2008,18(23):3745-3758.
    [76]杨晓芬.纳米二氧化硅及其应用现状和发展前景[J].内蒙古石油化工,2011,18:26-27.
    [77] Roy R., Hoffman D. W., Komameni S. A New class of materials: phases in the systemAl2O3-SiO2[J]. J. Am. Ceram. Soc.,1984,67(7):468-478.
    [78]张立德,牟季美.纳米材料和纳米结构[M].北京:科技出版,2001.
    [79] Calvert P. Materials science-rough guide to the nanoworld [J]. Nature,1996,383:300-301.
    [80] Favier V., Chanzy H., Cavaille J. Y.Polymer nanocomposites reinforced by cellulosewhiskers [J] Macromolecules,1995,28(18):6365-6367.
    [81] Atalla R. H., Brady J. W., Matthews J. F., Ding S. Y., Himmel M. E.BiomassRecalcitrance: Deconstructing the Plant Cell Wall for Bioenergy [M]. London: BlackwellPublishing,2008.1-212.
    [82] Klemm D., Heublein B., Fink H. P., Bohn A. Cellulose: fascinating biopolymer andsustainable raw material [J] Angew. Chem. Int. Ed.,2005,44(22):3358-3393.
    [83] Bledzki A. K., Gassan J. Composites reinforced with cellulose based fibres [J]. Prog.Polym. Sci.,1999,24(2):221-274.
    [84] Fratzl P. Cellulose and collagen: from fibres to tissues [J]. Colloid. Interface Sci.,2003,8(1):32-39.
    [85] Czaja W. K., Young D. J., Kawecki M., Brown R. M. The future prospects of microbialcellulose in biomedical applications [J] Biomacromolecules,2007,8(1):1-12.
    [86] Azizi M. A. S., Fannie A., Sanchez J. Y, Dufresne A. Cellulose nanocrystalsreinforced poly(oxyethylene)[J]. Polymer,2004,45(12):4149-4157.
    [87] Araki J., Wada M., Kuga S. Steric stabilization of a cellulose microcrystal suspension bypoly (ethylene glycol) grafting [J]. Langmuir,2001,17(1):21-27.
    [88]李振亚,高雷,孙华.异质复合介质的电磁性质[M].北京大学出版社,2012
    [89] Chen X. D., Li S. Z., Xue C., Banholzer M. J., Schatz G. C., Mirkin C. A. Plasmonicfocusing in rod sheath heteronanostructures [J]. ACS Nano,2009,3(1):87-92
    [90] Hoffmann F., Cornelius M., Morell J., Froba M. Silica-based mesoporousorganic–inorganic hybrid materials [J]. Angew. Chem. Int. Edit.,2006,45(20):3216-3251.
    [91] Vallet-Regi M., Colilla M., Gonzalez B. Medical applications of organic-inorganichybrid materials within the field of silica-based bioceramics [J]. Chem. Soc. Rev.,2011,40(2):596-607.
    [92] Vivero-Escoto J. L., Slowing I. I., Trewyn B. G., Lin V. S. Y. Mesoporous silicananoparticles for intracellular controlled drug delivery [J]. Small,2010,6(18):1952-1967.
    [93] Park J. C., Song H. Metal@Silica yolk-shell nanostructures as versatile bifunctionalnanocatalysts [J]. Nano Res.,2011,4(1):33-49.
    [94] Yang W. R., Lopez P. J., Rosengarten G. Diatoms: Self assembled silica nanostructures,and templates for bio/chemical sensors and biomimetic membranes [J]. Analyst.,2011,136(1):42-53.
    [95] Arcos D., Vallet-Reg M. I. Sol–gel silica-based biomaterials and bone tissue regeneration[J]. Acta. Biomater.,2010,6(8):2874-2888.
    [96] Wu S., Oo M. K. K., Cupps J. M., Fan X. D. Robust silica-coated quantumdot–molecular beacon for highly sensitive DNA detection [J]. Biosens Bioelectron.,2011,26(9):3870-3875.
    [97] Serrano I. C., Ma Q., Palomares E. QD-“Onion”-Multicode silica nanospheres withremarkable stability as pH sensors [J]. J. Mater. Chem.,2011,21(44):17673-17679.
    [98] Selvan S. T., Patra P. K., Ang C. Y., Ying J. Y. Synthesis of silica-coated semiconductorand magnetic quantum dots and their use in the imaging of live cells [J]. Angew.Chem. Int. Edit.,2007,46(14):2448-2452.
    [99] Fratzl P., Weinkamer R. Nature’s hierarchical materials [J]. Prog. Mater. Sci.,2007,52(8):1263-1334.
    [100] Rubin E. M. Genomics of cellulosic biofuels [J]. Nature,2008,454:841-845.
    [101] Iguch I. M., Yamanaka S., Budhidno A. Bacterial cellulose amasterpiece of natures’sarts [J]. J. Mater. Sci.,2000,35(2):261-270.
    [102] Hou A. Q., Shi Y. Q., Yu Y. H. Preparation of the cellulose/silica hybrid containingcationic group by sol-gel crosslinking process and its dyeing properties [J]. Carbohydr.Polym.,2009,77(2):201-205.
    [103] Cunha A. G., Freire C. S. R., Silvestre A. J. D., Neto C. P., Gandini A. Preparation andcharacterization of novel highly omniphobic cellulose fibers organic–inorganic hybridmaterials [J]. Carbohydr. Polym.,2010,80(4):1048-1056.
    [104] Maeda H., Nakajima M., Hagiwara T., Sawaguchi T., Yano S. Bacterial cellulose/silicahybrid fabricated by mimicking biocomposites [J]. J. Mater. Sci.,2006,41(17):5646-5656.
    [105] Yano S., Maeda H., Nakajima M., Hagiwara T., Sawaguchi T. Preparation andmechanical properties of bacterial cellulose nanocomposites loaded with silicananoparticles [J]. Cellulose,2008,15(1):111-120.
    [106] Bonacchi S., Genovese D., Juris R., Montalti M., Prodi L., Rampazzo E., Zaccheroni N.Luminescent silica nanoparticles: extending the frontiers of brightness [J]. Angew.Chem. Int. Edit.,2011,50(18):4056-4066.
    [107] Wang L., Wang K., Santra S., Zhao X., Hilliard L. R., Smith J. E., Wu Y., Tan W.Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells[J]. Anal. Chem.,2006,78(9):646-654.
    [108] Burns A., Ow H., Wiesner U. Fluorescent core-shell silica nanoparticles: towards “Labon a Particle” architectures for nanobiotechnology [J]. Chem. Soc. Rev.,2006,35(11):1028-1042.
    [109] Zhao X., Tapec-Dytioco R., Tan W. Ultrasensitive DNA detection using highlyfluorescent bioconjugated nanoparticles [J]. J. Am. Chem. Soc.,2003,125(38):11474-11475.
    [110]消毒技术规范.中华人民共和国卫生部二00二年十一月.
    [111] Lansdown A B. Silver I. Its antibacterial proper ties and mechanism of action [J]. J.Wound Care.,2002,11(4):125-130.
    [112] Feng Q. L., Wu J., Chen G. Q., Kim T. N., Kim J. O. A mechanistic study of theantibacterial effect of silver ions on Escher ichia coli and Staphylococcus aureus [J]. J.Biomed. Mater. Res.,2000,52(4):662-668.
    [113] Ayben T., Semra ü. Silver, zinic, and copper exchange in a Na-clinaptilolite andresulting effect on antibacterial activity [J]. Appl. Clay Sci.,2004,27(1-2):13-19.
    [114] Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles intobaeterial cellulose for antimierobial wound dressing [J]. Carbohyd. Polym.,2008,72(1):43-51.
    [115]王华平,胡伟立,陈仕艳,石帅科,张翔,沈伟,李鑫.含氯化银纳米粒子细菌纤维素膜及其制备方法和用途[P].中国发明专利,申请号:101264335,2008-09-17.
    [116] Pinio R. J., Marques P. A., Neto C. P., Trindade T., Daina S., Sadoeeo P. Antibacterialactivity of nanoocmposites of silver and bacterial or vegetable cellulosic fibers [J].Acta Biomater.,2009,5(6):2279-2289.
    [117]杨准,杜莉.银系无机抗菌剂在口腔材料中的应用及研究进展[J].中华老年口腔医学杂志,2007,5(4):233-235.
    [118] Pavel D., Judith D., Khoosheh K., H se C. C. Chemiosmotic mechanism ofantimicrobial activity of Ag+in vibvio cholerae [J]. Antimicob Agents CH.,2002,46(8):2668-2670.
    [119] Liau S. Y., Read D. C., Pugh W. J., Furr J.R., Russell A.D. Interaction of silver nitratewith readily identifiable groups relationship to the antibacterial action of silver ions [J].Lett. Appl. Microbiol.,1997,25(4):279-283.
    [120] Choi O., Hu Z. Q. Size dpendent and reaetive oxygen species related nanosilver toxicityto nitrifying baeteria [J]. Environ. Sci. Teehnol.,2008,42(12):4583-4588.
    [121] Vigderman L., Zubarev E. R. Starfruit-shaped gold nanorods and nanowires: synthesisand SERS characterization [J]. Langmuir,2012,28(24):9034-9040.
    [122] GarcfA-Vidal F. J., Pendry J. B. Collective theory for surface enhanced Ramanscattering [J]. Phys. Rev. Lett.,1996,77(6):1163-1166.
    [123] Wang H. H., L iu C. Y., W u S. B. Liu N. W., Peng C. Y.,Chan T. H.,Hsu C. F.,WangJ K.,Wang Y. L. Highly Raman-enhaneing subst rates based on silver nanoparticlearrays with tunable sub-10nm gaps [J]. Adv. Mater.,2006,18(4):491-495.
    [124] Nicolai S. H. A., Rubim J. C. Surface-Enhanced Resonance Raman (SERR) spectra ofmethylene blue adsorbed on a silver electrode [J]. Langmuir,2003,19(10):4291-4294.
    [125] Schwartzberg A. M., Grant C. D., Wolcott A., Talley C. E, Huser T. R., Bogomolni R.,Zhang J. Z. Unique gold nanoparticle aggregates as a highly active Surface-EnhancedRaman scattering substrate [J]. J. Phys. Chem. B,2004,108(50):19191-19197.
    [126] Litorja M., Haynes C. L., Haes A J. Jensen T. R., Duyne R. P. V. Surface-EnhancedRaman scattering detected temperature programmed desorption: optical properties,nanostructure, and stability of silver film over SiO2nanosphere surfaces [J]. J. Phys.Chem. B,2001,105(29):6907-6915.
    [127] Lu Y., Liu G. L., Lee L. P. High-density silver nanoparticle film with temperaturecontrollable interparticle spacing for a tunable surface enhanced raman scatteringsubstrate [J]. Nano Lett.,2005,5(1):5-9.
    [128] Ruan C., Eres G., Wang W., Zhang Z.Y., Gu B. H. Controlled fabrication of nanopillararrays as active substrates for Surface-Enhanced Raman spectroscopy [J]. Langmuir,2007,23(10):5757-5760.
    [129] Baia L., Baia M., Popp J., Astilean S. Gold films deposited over regular arrays ofpolystyrene nanospheres as highly effective sers substrates from visible to NIR [J]. J.Phys. Chem. B,2006,110(47):23982-23986.
    [130] Favier V., Canova G. R., Cavaille J. Y, Chanzy1H., Dufresne A., Gauthier C.Nanocomposite materials from latex and cellulose whiskers [J]. Polymers AdvanTechnol.,1995,6(5):351-355.
    [131] George J., Sreekala M. S., Thomas S. A review on interface modification andcharacterization of natural fiber reinforced plastic composites [J]. Polym. Eng. Sci.,2001,41(9):1471-1485.
    [132] Lee S. Y., Mohan D. J., Kang I. A., Doh G. H., Lee S., Han S. K. Nanocellulosereinforced PVA composite films: effects of acid treatment and filler loading [J]. Fiber.Polym.,2009.10(1):77-82.
    [133]李小芳,丁恩勇,黎国康,等.一种棒状纳米微晶纤维素的特性研究[J].纤维素科学与技术,2001,9:29-36.
    [134] Elazzouzi-Hafraoui S., Nishiyama Y., Putaux J. L., Heux L., Dubreuil F., Rochas C.The Shape and size distribution of crystalline nanoparticles prepared by acidhydrolysis of native cellulose [J]. Biomacromolecules,2008,9(1):57-65.
    [135] Wang Y., Shen B. Z., Xia X. H., Zhang X. J., Li B. Z. Different grinding methods andconditions on the characteristics of low melting point glass powder [J]. Chin.Non-metallic Min. Indus. Herald,2007,60(2):53-55.
    [136]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
    [137] Wang Y., Guan J. G., Wang Q. Influence of ball milling time on the microstructure andproperties of prepared Fe-ZnO core-shell nanocomposite particles [J]. J. Inorg. Mater.,2005,20(3):599-607.
    [138] Zhang H. F., Wang L. J., Jiang W., Chen L. D. Microstructure and properties ofAl2O3-tic composites fabricated by combination of high-energy ball milling and SparkPlasma Sintering (SPS)[J]. J. Inorg. Mater.,2005,20(6):1445-1449.
    [139] Fan B. J, Zhang Z. S.Super-fine Mechanism of the High-pressure Homogenizer [J]. J.East Chin. Univer. Sci. Technol.,2004,30(1):96-98.
    [140]张裕中,臧其梅.食品加工技术装备[M].北京:中国轻工业出版社,1999.
    [141] Paquin P. Technological properties of high pressure homogenizers: the effect of fatglobules, milk proteins, and polysac charides [J]. Int. Dairy J.,1999,9(36):329-335.
    [142] Shao H., Zhou H. Q., Fang L.W., Peng F. Effects of different particle size distributionof glass on properties of glass-ceramic [J]. J. Ceram.,2010,31(2):203-207.
    [143] O'Connor R. T., Dupre E. F., Mitchum D. Applications of infrared absorptionspectroscopy to investigations of cotton and modified cottons Part I: Physical andCrystalline Modifications and Oxidation [J]. Text. Res. J.,1958,28(5):382-392.
    [144] Nelson L. M., O'Connor R. T. Relation of certain infrared bands to cellulosecrystallinity and crystal lattice type:A new ratio for estimation of crystallinity incellulose [J]. J. Appl. Polym. Sci.,1964,8(3):1325-1340.
    [145]杨明非,潘雪峰.红外光谱法研究木材纤维素的结晶度[J].林业科技,1989,2:30-32.
    [146] Wang H. S., Shi W. G., Yang J. H., He Y. B. Application of high pressurehomogenizers in after-treatment of organic pigment [J]. Dye. Color.,2006,43(6):53-54.
    [147] Zhang C. X. The researches intechnology of high-energy ball mill for ultrafine tungstenpowder [J]. Jiangxi Nonferr. Metal.,2005,19(1):33-34.
    [148] Zhang J. J., Wang Z. F., Zhang X. J., Chen D. X. Effect of processing parametersin inhigh-energy-milling on the particle size of Mo [J]. Chin. Molybdenum Indus.,2005,29(1):28-30.
    [149]雒亚洲,鲁永强,王文磊.高压均质机的原理及应用[J].中国乳品工业,2007,35(10):55-58.
    [150] Liu W. P. Study on the orthogonal tests of tungsen&iron nano-meter powderpreparation by high energy ball milling [J]. Non-Ferrous. Metal.,2000,16(5):40-43.
    [151] Rane S. B., Khanna P. K., Seth T., Phatak G. J., Amalnerkar D. P., Das B. K. Firing andprocessing effects on microst ructure of fritted silver thick film electrode materials forsolar cells [J]. Mater. Chem. Phys.,2003,82(1):237-245.
    [152] Gan W. P., Gan M., Liu Y. Study on the modification of flake siliver powder by highenergy ball milling [J]. Mater. Rev.,2007,21(5):325-327.
    [153] Karamian E., Monshi A., Bataille A., Zadhoush A. Formation of nano SiC whiskers inbauxite–carbon composite materials and their consequences on strength and density [J].J. Eur. Ceram. Soc.,2011,31(14):2677-2685.
    [154] Park W. S., Joo B. J., Choi D. J. A study on the thermal stability of silicon carbidewhiskers on growth temperature [J]. J. Mater. Sci.,2005,40(20):5529-5531.
    [155] Yang Z. X., Xia Y. D., Mokaya R. High surface area silicon carbide whiskers andnanotubes nanocast using mesoporous silica [J]. Chem. Mater.,2004,16(20):3877-3884.
    [156] Kamlag Y., Goossens A., Colebeck I., Schoonma J. Formation of nano SiC particles bylaser-assisted CVD [J]. Chem. Vap. Depos.,2003,9(3):125-129.
    [157] Tomita T., Kinoshita K., Matsuo S., Hashimoto S. Effect of surface roughening onfemtosecond laser-induced ripple structures [J]. Appl. Phys. Lett.,2007,90(15),153115(1-3).
    [158]. Chiew Y. L., Cheong K. Y. Growth of SiC nanowires and nanocones using mixture ofoil palm fibres and rice husk ash [J]. J. Mater. Sci.,2012,47(14):5477-5487.
    [159] Pei L. Z., Tang Y. H., Chen Y. W., Guo C., Li X. X., Yuan Y., Zhang Y. Preparation ofsilicon carbide nanotubes by hydrothermal method [J]. J. Appl. Phys.,2006,99(11):114306(1-6).
    [160] Choy R. L. Chemical vapour deposition of coatings [J]. Prog. Mater. Sci.,2003,48(2),57-170.
    [161] Sobon C. A., Bowen H. K., Broad A., Calvert P. D. Precipitation of magnetic oxides inpolymers [J]. J. Mater. Sci. Lett.,1987,6(8):901-904.
    [162] Bianconi P. A., Lin J., Strzelecki A. R. Crystallization of an inorganic phase controlledby a polymer matrix [J]. Nature,1991,349:315-317.
    [163] Pracella M., Chionna D., Pawlak A., Galeski A. Reactive mixing of PET and PET/PPblends with glycidyl methacrylate-modified styrene-b-(ethylene-co-olefin) blockcopolymers [J]. J. Appl. Poly. Sci.,2005,98(5):2201-2211.
    [164] Goodenough J. B. Electronic and ionic transport properties and other physical aspectsof perovskites [J]. Rep. Prog. Phys.,2004,67(11):1915-1993
    [165] Xiong Z. H., Wu D., Vardeny V., Shi J. Giant magnetoresistance in organic spin-valves[J]. Nature,2004,427:821-824.
    [166] El-Safty S., Akhtar R., Silikas N., Watts D. C. Nanomechanical properties of dentalresin-composites [J]. Dent. Mater.,2012,28(12):1292-1300.
    [167] Gu J., Lu J. M., Huang X. C., Wang X. L., Zheng Z. Polystyrene/vinyl esterresin/styrene thermoplastic elastomer composites: Miscibility, morphology, andmechanical properties [J]. J. Appl. Polym. Sci.,2011,119(1):93-101.
    [168] Wang N., Ding E. Y., Cheng R. S. Preparation and liquid crystalline properties ofspherical cellulose nanocrystals [J]. Langmuir,2008,24(1):5-8.
    [169] Mishra S. B., Mishra A. K., Krause R. W., Mamba B. B. Growth of silicon carbidenanorods from the hybrid of lignin and polysiloxane using sol-gel process and polymerblend technique [J]. Mater. Lett.,2009,63(28):2449-2451.
    [170] Ju Z. C., Xu L. Q., Pang Q. L., Xing Z., Ma X. J., Qian Y. T. The synthesis ofnanostructured SiC from waste plastics and silicon powder [J]. Nanotechnology,2009,20(35):355604.
    [171] Shin Y., Wang C., Exarhos G. J. Synthesis of SiC ceramics by the carbothermalreduction of mineralized wood with silica [J]. Adv. Mater.,2005,17(1):73-77.
    [172] Cheng Y. L., Zhang J F., Zhang Y. F., Chen X. L., Wang Y., Ma H. M., Cao X. Q.Preparation of hollow carbon and silicon carbide fibers with different cross-sections byusing electrospun fibers as templates[J]. Eur. J. Inorg. Chem.,2009,2009(28):4248-4254.
    [173] Aziz A. A., Akil H. M., Jamaludin S. M. S., Ramli N. A. M. The effect of multiplecompatibilizers on the impact properties of polypropylene/polystyrene (PP/PS) blend [J].Polym-Plast Technol.,2011,50(14):768-775.
    [174] Ren F., Ren P. G., Di Y. Y., Chen D. M., Liu G. G. Thermal, mechanical and electricalproperties of linear low-density polyethylene composites filled with differentdimensional sic particles [J]. Polym-Plast Technol.,2011,50(8):791-796.
    [175] Habibi Y., Lucia L. A., Rojas O. J. Cellulose nanocrystals: chemistry, self-assembly,and applications [J]. Chem. Rev.,2010,110,3479-3500.
    [176] Scheel H., Zollfrank C., Greil P. Luminescent silica nanotubes and nanowires:Preparation from cellulose whisker templates and investigation of irradiation-inducedluminescence [J]. J. Mater. Res.,2009,24(5):1709-1715.
    [177] Fu G. H., He A. J., Jin Y. C., Cheng Q., Song J. L. Fabrication of hollow silica nanorodsusing nanocrystalline cellulose as templates [J]. BioResources,2012,7(2):2319-2329.
    [178] Choi Y. Y., Kim J. G., Lee K. M., Sohn H. C., Choi D. J. A study of surface-coated SiCwhiskers on carbon fiber substrates and their properties for diesel particulate filterapplications [J]. Ceram. Int.,2011,37(4):1307-1312.
    [179] Murphy C. J., Sau T. K., Gole A. M., Orendorff C. J., Gao J. X., Gou L. F., Hunyadi S.E., Li T. Anisotropic metal nanoparticles: synthesis, assembly, and opticalapplications [J]. J. Phys. Chem. B,2005,109(29):13857-13870.
    [180] Berti L., Alessandrini A., Facci P. DNA-templated photoinduced silver deposition [J].J. Am. Chem. Soc.,2005,127(32):11216-11217.
    [181] Southward R. E., Thompson D. W., Clair A. K. Control of reflectivity and surfaceconductivity in metallized polyimide films prepared via in situ silver (I) reduction [J].Chem. Mater.,1997,9(2):501-510.
    [182] Tao A., Sinsermsuksakul P., Yang P. D. Tunable plasmonic lattices of silvernanocrystals [J]. Nat. Nanotechnology,2007,2(29):435-440.
    [183] Zhao Q., Liu Y., Wang C. Development and evaluation of electroless Ag-PTFEcomposite coatings with anti-microbial and anti-corrosion properties [J]. Appl. Surf.Sci.,2005,252(5):1620-1627.
    [184] Betts A., Dowling J. D. P., Mcconnell M. L., Pope C. The influence of platinum on theperformance of silver-platinum anti-bacterial coatings [J]. Mater. Design.,2005,26(3):217-222.
    [185] Tom R. T., Nair A. S., Singh N., Aslam M., Nagendra C. L., Philip R. Freelydispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2core-shell nanoparticles:one-step synthesis, characterization, spectroscopy, and optical limiting properties [J].Langmuir,2003,19(8):3439-3445.
    [186] Velikov K. P., Zegers G. E., Blaaderen A. Synthesis and characterization of largecolloidal silver particles [J]. Langmuir,2003,19(4):1384-1389.
    [187] Sun X. M., LiY. D. Colloidal carbon spheres and their core/shell structures withnoble-metal nanoparticles [J]. Angew. Chem. Int. Ed.,2004,43:597-601.
    [188]Quaroni L., Chumanov G. Preparation of polymer-coated functionalized silvernanoparticles [J]. J. Am. Chem. Soc.,1999,121(45):10642-10643.
    [189] Chen S. F., Li J. P., Qian K., Xu W. P., Lu Y., Huang W. X., Yu S. H. Large scalephotochemical synthesis of M@TiO2nanocomposites(M=Ag, Pd, Au, Pt) and theiroptical properties, CO Oxidation performance, and antibacterial effect [J]. Nano Res.,2010,3(4):244-255.
    [190] Nouneh K., Oyama M., Diaz R., Abd-Lefdil M., Kityk I. V., Bousmina M. An approachto surface functionalization of indium tin oxide for regular growth of silvernano-particles and their optical features [J]. J. Alloy. Comp.,2011,509(5):2631-2638.
    [191] Zhao X. J., Bagwe R. R., Tan W. H. Development of organic-dye-doped silicananoparticles in a reverse microemulsion [J]. Adv. Mater.,2004,16(2):173-176.
    [192] Wan Y., Y S. H. Polyelectrolyte controlled large-scale synthesis of hollow silica sphereswith tunable sizes and wall thicknesses [J]. J. Phys. Chem. C,2008,112(10):3641-3647.
    [193] Baghbanzadeh M., Carbone L., Cozzoli P. D., Kappe C. O. Microwave-assistedsynthesis of colloidal inorganic nanocrystals [J]. Angew. Chem. Int. Ed.,2011,50(48):11312-11359.
    [194] Lee D. K., Kang Y. S., Lee C. S., Stroeve P. Structure and characterization ofnanocomposite langmuir-blodgett films of poly(maleic monoester)/Fe3O4nanoparticlecomplexes [J]. J. Phys. Chem. B,2002,106(29):7267-7271.
    [195] Tuval T, Gedanken A. A microwave-assisted polyol method for the deposition of silvernanoparticles on silica spheres [J]. Nanotechnology,2007,18(25):255601(7pp).
    [196] Gao F., Lu Q. Y., Zhao D. Y. Controllable assembly of ordered semiconductor Ag2Snanostructures [J]. Nano Lett.,2003,3(1):85-88.
    [197] Kim Y. H., Lee D. K. H., Cha G., Kim C. W., Kang Y. S. Synthesis and characterizationof antibacterial Ag-SiO2nanocomposite [J]. J. Phys. Chem. C,2007,111(9):3629-3635.
    [198] Pol V. G., Srivastava, D. N., Palchik, O., Palchik V., Slifkin M. A., Weiss A. M.,Gedanken A. Sonochemical deposition of silver nanoparticles on silica spheres [J].Langmuir,2002,18(8):3352-3557.
    [199] Chen W., Zhang J. Y., Cai W. P. Sonochemical preparation of Au, Ag, Pd/SiO2mesoporous nanocomposites [J]. Scripta Mater.,2003,48(8):1061-1066.
    [200] Hooisweng O. W., Larson D. R., Srivastava M., Baird B. A., Webb W. W., Wiesner U.Bright and Stable Core-Shell Fluorescent Silica Nanoparticles [J]. Nano Lett.,2005,5(1):113-117.
    [201] Sertchook H, Avnir D. Submicron silica/polystyrene composite particles p repared by aone-step sol-gel p rocess [J]. Chem. M ater.,2003,15(8):1690-1694.
    [202] Duan J. H., Wang K. M., Tan W. H., He X. X., He C. M., Liu B., Du L., Huang S. S.,Yang X. H., Mo Y. Y. A study of a novel organic fluorescent core-shell nanoparticle [J].Chem. J. Chin. Univ.,2003,24(2):255-259.
    [203] Yang W., Zhang C. G., Qu H. Y., Yang H. H., Xu J. G. Novel fluorescent silicananoparticle probe for ultrasensitive immunoassays [J]. Anal. Chim. Acta,2004,503(2):163-169.
    [204] Cong H. L., Cao W. X. SiO2colloidal crystals and macroporous materials using them astemplate [J]. J. Chin. Univ. Chem.,2003,24(8):1489-1491.
    [205] St ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres and, inthe micron size range [J]. J. Colloid Interface Sci.,1968,26(1):62-69.
    [206] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological control of room-temperatureionic liquid templated mesoporous silica nanoparticles for controlled release ofantibacterial agents [J]. Nano. Lett.,2004,4(11):2139-2143.
    [207] Wilkinson J. M., Hipwell M., Ryan, T., Cavanagh, H. M. A. Bioactivity of backhousiacitriodora: antibacterial and antifungal activity [J]. J. Agric. Food Chem.,2003,51(1):76-81.
    [208] Magiatis P., Spanakis D., Mitaku S., Tsitsa E., Mentis A., Harvala C. Verbalactone, anew macrocyclic dimmer lactone from the roots of verbascum undulatum withantibacterial activity [J]. J. Nat. Prod.,2001,64(29):1093-1094.
    [209] Suh M. P., Moon H. R., Lee E. Y., Jang S. Y. A redox-active two-dimensionalcoordination polymer: preparation of silver and gold nanoparticles and crystaldynamics on guest removal [J]. J. Am. Chem. Soc.,2006,128(14):4710-4718.
    [210] Xu K., Wang J. X., Kang X. L., Chen J. F. Fabrication of antibacterial monodispersedAg-SiO2core-shell nanoparticles with high concentration [J]. Mater. Lett.,2009,63(1):31-33.
    [211] Cai W. P., Zhang L. Synthesis and structural and optical properties of mesoporous silicacontaining silver nano-particles [J]. J. Phys: Condens Matter.,1997,9(34):7257-7267.
    [212] Zhao D., Yi B. L., Zhang H. M., Yu H. M. MnO2/SiO2–SO3H nanocomposite ashydrogen peroxide scavenger for durability improvement in proton exchangemembranes [J]. J. Membrane Sci.,2010,346(1):143-151.
    [213] Li L., Hu F., Xu D. Y., Shen S. L., Wang Q. B. Metal ion redox potential plays animportant role in high-yield synthesis of monodisperse silver nanoparticles [J]. Chem.Commun.,2012,48(39):4728-4730.
    [214] Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnol. Adv.,2009,27(1):76-83.
    [215] Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O. A mechanistic study ofthe antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J].J. Biomed. Mater. Res.,2000,52(29):662-668.
    [216] Liau S. Y., Read D. C., Pugh W. J., Furr J. R., Russell A. D. Interaction of silver nitratewith readily identifiable groups: relationship to the antibacterial action of silver ions [J].Lett. Appl. Microbiol.,1997,25(4):279-283.
    [217] Rai M., Yadav A., Gade A. A. Silver nanoparticles as a new generation ofantimicrobials [J]. Biotechnol. Adv.,2009,27(1):76-83.
    [218] Zhang H., Chen G. Potent antibacterial activities of Ag/TiO2nanocomposite powderssynthesized by a one-pot sol-gel method [J]. Environ. Sci. Technol.,2009,43(8):2905-2910.
    [219] Peter P., Barbara R. R., Peter L., Heidi W. A., Elke W., Hans P. M. Transfer ofLipophilic Markers from PLGA and Polystyrene Nanoparticles to Caco-2MonolayersMimics Particle Uptake [J]. Pharmaceut Res.2002,19(5):595-601.
    [220] Mailander V., Lorenz M. R., Holzapfel V., Musyanovych A., Fuchs K., Wiesneth M.,Walther P., Landfester K., Schrezenmeier H. Carboxylated Superparamagnetic IronOxide Particles Label Cells Intracellularly Without Transfection Agents [J]. Mol.Imaging. Biol.,2008,10(3):138-146.
    [221] Jin Y., Kannan S., Wu M., Zhao J. X. Toxicity of Luminescent Silica Nanoparticles toLiving Cells [J]. Chem. Res. Toxicol.,2007,20(8):1126-1133.
    [222] Lal M., Levy L., Kim K. S., He G. S., Wang X., Min Y. H. Silica nanobubblescontaining an organic dye in a multilayered organic/inorganic heterostructure withenhanced luminescence [J]. Chem. Mater.,2000,12(9):2632-2639.
    [223] Isaac S., Jeffrey W., Katie S., Yinfa M. Study of uptake and loss of silica nanoparticlesin living human lung epithelial cells at single cell level [J]. Anal. Bioanal. Chem.,2009,394(6):1595-1608.
    [224] Santra S., Yang H., Dutta D., Stanley J. T., Holloway P. H., Tan W. H., Moudgil B.M.,Mericle R.A. TAT conjugated, FITC doped silica nanoparticles for bioimagingapplications [J]. Chem. Commun.,2004,24:2810-2811.
    [225] Syrett J. A., Becer C. R., Haddleton D. M. Self-healing and self-mendable polymers [J].Polym. Chem.,2010,7(1):978-987.
    [226] Yang H. B., Song Q. L., Lu Z. S., Guo C. X., Gong C., Hu W. H., Li C. M.,Electrochemically polymerized nanostructured poly (3.4-ethylenedioxythiophene)-poly(styrenesulfonate) buffer layer for a high performance polymer solar cell [J].Energy Environ. Sci.,2010,10(3):1580-1586.
    [227] Huang L. M., Tsai C. C., Wen T. C., Gopalan A. Simultaneous synthesis of silvernanoparticles and poly (2,5-dimethoxyaniline) in poly(styrene sulfonic acid)[J]. J.Polym. Sci. Part A: Polym. Chem.,2006,44(12):3843-3852.
    [228] Kubo S., Diaz A., Tang Y., Mayer T. S., Khoo I. C., Mallouk T. E. Tunability of theRefractive Index of Gold Nanoparticle Dispersions [J]. Nano Lett.,2007,7(11):3418-3423.
    [229] Kityk I. V., Ebothe J., Janczarek I. F., Umar A. A., Kobayashi K., Oyama M., SahraouiB., Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate [J].Nanotechnology,2005,16(9):1687-1692.
    [230] Lee J. H., Kim D. O, Song G. S., Lee Y., Jung S. B., Nam J. D. Direct metallization ofgold nanoparticles on a polystyrene bead surface using cationic gold ligands [J].Macromol. Rapid Comm.,2007,28(5):634-640.
    [231] Chen L. M., Chabu J. M., Liu Y. N. Bimetallic AgM (M=Pt, Pd, Au) nanostructures:synthesis and applications for surface-enhanced Raman scattering [J]. RSC Adv.,2013,13(3):4391-4399.
    [232] Cheng W., Dong S., Wang E., Two-and three-dimensional Au nanoparticle/CoTMPyPself-assembled nanotructured materials: film structure, tunable electrocatalytic activity,and plasmonic properties [J]. J. Phys. Chem. B,2004,108(50):19146-19154.
    [233] Gittins D. I., Susha A. S., Schoeler B., Caruso F. Dense; nanoparticulate thin films viagold nanoparticle self-assembly [J]. Adv. Mater.,2002,14(7):508-512.
    [234] Caruso F., Spasova M., Maceira V. S., Liz-Marzan L. M., Multilayer assemblies ofsilica-encapsulated gold nanoparticles on decomposable colloid templates [J]. Adv.Mater.,2001,13(14):1090-1094.
    [235] Zhao W., Zhang Q. Y., Zhang J. P., Zhang H. P. Preparation and thermaldecomposition of PS/Ag microspheres [J]. Polym. Compos.,2009,30(7):891-896.
    [236] Emory S. R., Nie S. M. Probingsingle molecules and single nanoparticles bysurface-enhanced Raman scattering [J], Science,1997,275(5303):1102-1106.
    [237] Kim Y. H., Lee D. K., Cha H., Kim C. W., Kang Y., Synthesis and Characterization ofAntibacterial Ag-SiO2Nanocomposite [J]. J. Phys. Chem. C,2007,111(9):3629-3635.
    [238] Guo H. X., Qin Z. P., Wei J., Qin C. X. Synthesis of novel magnetic spheres byelectroless nickel coating of polymer spheres [J]. Surf. Coat. Technol.,2005,200(7):2531-2536.
    [239] Pang H. C., Chang P., Yang H. B., Lu J. L., Guo C. X., Ning G. L., Li C. M. Template-free bottom-up synthesis of yolk–shell vanadium oxide as high performancecathode for lithium ion batteries [J]. Chem. Commun.,2013,49(5):1536-1538.
    [240] Kim D. W., Lee J. M., Lee J. J., Kang P. Y., Kim Y. C., OH S. G. Formation andimmobilization of silver nanoparticles onto chromia surface by novel preparation routeinvolving polyol process [J]. Surf. Coat. Technol.,2007,201(18):7663-7667.
    [241] Zhang K., Fu Q., Fan J. H., Zhou D. H. Preparation of Ag/PS composite particles bydispersion polymerization under ultrasonic irradiation [J]. Mater. Lett.,2005,59(28):3682-3686.
    [242] Pol V. G., Grisaru H., Gedanken A. Coating noble metal nanocrystals (Ag, Au, Pd, andPt) on polystyrene spheres via ultrasound irradiation [J]. Langmuir,2005,21(8):3635-3640.
    [243] Limer A., Gayet F., Jagielski N., Heming A., Shirley I., Haddleton D. M. Synthesis ofmicrocapsules via reactive surfactants [J]. Soft Matter,2011,7(11):5408-5416.
    [244] Li M., Ma W. F., Wei C., You L. J., Guo J., Hu J., Wang C. C. Detecting tracemelamine in solution by SERS using Ag nanoparticle coated Poly(styrene-co-acrylic acid)nanospheres as novel active substrates [J]. Langmuir,2011,27(23):14539-14544.
    [245] Cheng X. J., S Tjong C., Zhao Q., Li R. K. Y. Facile method to prepare monodispersedAg/polystyrene composite microspheres and their properties [J]. J. Polym. Sci. Part A:Polym. Chem.,2009,47(18):4547-4554.
    [246] Xia H. Y., Zhang Y., Sun S., Yu F. Ag-polymer composite microspheres with patternedsurface structures [J]. Colloid. Polym. Sci.,2007,285(15):1655-1663.
    [247] Zhang J. N., Ge X. W., Wang M. Z., Yang J. J., Wu Q. Y., Wu M. Y., Xu D. D,Colloidal silver deposition onto functionalized polystyrene microspheres [J]. Polym.Chem.,2011,2(4):970-974.
    [248] Zhang Z. J., Liu J., Wang S., Zhan P., Wang Z., Ming N. Facile methods to coatpolystyrene and silica colloids with metal [J]. Adv. Funct. Mater.,2004,14(11):1089-1096.
    [249] Ghule A. V., Ghule K., Tzing S., Ling Y., Eur. Synthesis and characterization ofsilver-nanoparticle-deposited α-Bi2Mo3O12nanorods [J]. J. Inorg. Chem.,2007,2007(21):3342-3349.
    [250] Ghader S., Manteghian M., Kokabi M., Mamoory R.S. Induction time of reactioncrystallization of silver nanoparticles [J]. Chem. Eng. Technol.,2007,30(8):1129-1133.
    [251] DeSimone J. M. Practical approaches to green solvents [J]. Science,2002,297(5582):799-803.
    [252] Poliakoff M., Fitzpatrick J. M., Farren T. R. Green chemistry:science and politics of change [J]. Science,2002,297(5582):807-810.
    [253] Anastas P. T., Williamson T. C. Green chemistry: designing chemistry for theenvironment [J]. J. Am. Chem. Soc.,1996:1-17.
    [254] Wang H. S., Qiao X. L., Chen J. G., Ding S. Y. Preparation of silver nanoparticles bychemical reduction method [J]. Colloids Surf A.,2005,256(2-3):111-115.
    [255]孙剑,乔学亮,陈建国无机抗菌剂的研究进展[J].材料导报,2007,21(5):344-348.
    [256]石和彬,刘羽,钟宏.磷灰石在抗菌材料中的应用[J].化学与生物工程,2003,6:48-49.
    [257] Lu Y., Mclellan J., Xia Y. Synthesis and crystallization of hybrid spherical colloidscomposed of polystyrene cores and silica shells [J]. Langmuir,2004,20(8):3464-3470.
    [258] Cao Y. C., Wang Z., Jin X., Hua X. F., Liu M. X., Zhao Y. D. Preparation of Aunanoparticles-coated polystyrene beads and its application in protein immobilization [J].Colloids Surf. A,2009,334(1-3):53-58.
    [259] Bockenhoff K., Fischer W. R., Fresenius J. Determination of electrokinetic charge witha particle-charge detector, and its relationship to the total charge [J]. Anal. Chem.,2001,371(5):670-674.
    [260] Baier G., Costa C., Zeller A., Baumann D., Sayer C., Araujo P. H. H., Mailander V.,Musyanovych A., Landfester K. BSA Adsorption on Differently Charged PolystyreneNanoparticles using Isothermal Titration Calorimetry and the Influence on CellularUptake [J]. Macromol. Biosci.,2011,11(5):628-638.
    [261] Waterhouse G. I. N., Bowmaker G. A., Metson J. B., Oxidation of a polycrystallinesilver foil by reaction with ozone [J]. Appl. Surf. Sci.,2001,183(3-4):191-204.
    [262] Suzer S. Differential charging in X-ray photoelectron spectroscopy: a nuisance or auseful tool?[J]. Anal. Chem.,2003,75(24):7026-7029.
    [263] Havercroft N. J., Sherwood P. M. A. Use of differential surface charging to separatechemical differences in X-ray photoelectron spectroscopy [J]. Surf. Interface Anal.,2000,9(3):232-240.
    [264] Lim D. C., Lopez-Salido I., Kim Y. D. Characterization of Ag nanoparticles on Si waferprepared using Tollen's reagent and acid-etching [J]. Appl. Surf. Sci.,2006,253(2):959-965.
    [265] Diebold E D., Peng P., Mazur E. Solating Surface-Enhanced Raman Scattering hotspots using multiphoton lithography [J]. J. Am. Chem. Soc.,2009,131(45):16356-16357.
    [266] Xiong J., Wang Y., Xue Q. J., Wu X. D. Synthesis of highly stable dispersions ofnanosized copper particles using L-ascorbic acid [J]. Green. Chem.,2011,13(4):900-904.
    [267] Lee J. H., Mahmoud M. A., Sitterle V., Sitterle J., Meredith J. C. Facile preparation ofhighly-scattering metal nanoparticle-coated polymer microbeads and their SurfacePlasmon Resonance [J]. J. Am. Chem. Soc.,2009,131(14):5048-5049.
    [268]雷忠利,范友华.聚合物存在下纳米银复合材料的制备与表征[J].物理化学学报,2006,22(8):1021-1024.
    [269] Wen X., An S. J., Hou Z. F., Jiao Z. Ag-loaded sustained release antimicrobialdressings [J]. Progress chem.,2009,21(7-8):1644-1654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700