用户名: 密码: 验证码:
复杂有耗色散地层中的FDTD方法以及在冲击探地雷达中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲探地雷达是时域瞬态电磁场理论发展过程中重要的阶段性成果。它结合了瞬态电
    磁场理论、时域测量技术、纳秒脉冲源技术、超宽带天线技术和信号处理技术等多门学科
    的研究成果,具有无损伤、高效率、低成本和高分辨成像等优点,已成为地下浅层勘探的
    重要工具之一。同时这项技术为瞬态电磁场在超宽带雷达、超宽带通讯等更广泛领域的应
    用提供了一种成功的实物范例。然而,当我们检查这项技术的状况,便会发现尚有许多不
    足之处需要克服。比如,目前还不能仅仅依靠雷达的测试数据给出诸如目标位置、目标性
    质、大小尺寸等应用部门等最关心的问题以较精确的、较准确的回答。为此,深入理解在
    不均匀土壤背景中瞬态激励场和目标间相互作用的物理机制对解决这些问题起着关键的作
    用,并可望在此基础上最大限度的提取包含在反射、散射回波中的有用信息。在这种背景
    下,本项研究致力于用电磁理论的数值计算方法揭示目标与背景的瞬态电磁相互作用规律
    和散射特性,为建立雷达仿真系统作必要的准备。
     本文选用时域有限差分方法(FDTD方法)作为研究有耗、色散、不均匀的背景土壤
    中目标、环境和雷达天馈系统的瞬态电磁脉冲之间相互作用的出发点,特别对这种方法的
    适应性、技术实现细节以及性能作了系统和详细的分析并取得了一些研究成果,主要包括:
    1.将经典平面波在水平分层不均匀媒质中透射与反射关系和快速傅立叶交换(FFT)结
     合起来,实现了脉冲平面波入射场的解析设置方法。分别用多种角度入射的瞬态场和
     时谐场对计算公式和程序作了验证,得到在连接边界处数值计算误差小于3×10~(-3)(相
     对于入射场幅度)的结果;
    2.研究了色散媒质模型参数提取问题。提出基于最小二乘法和Debye模型的拟合方法。
     对一组典型的在50MHz-1250MHz频率范围所测量的土壤复参数色散曲线进行拟合并
     取得良好效果,并将其用在色散媒质中脉冲波传播问题的模拟;
    3.比较了Mur吸收边界条件、有耗媒质中的GPML完全匹配层、色散媒质的PML完全
     匹配层在地下目标散射场计算中的技术性能。特别关注水平分层不均匀媒质中各种吸
     收边界条件的设置方法,分析了这些吸收边界条件在角点和分层媒质交界面的误差分
     布特性。理论推导和数值计算表明:(1)在有耗媒质中,Mur二阶吸收边界条件和完
     全匹配层(PML)都具有一定的吸收外向行波特性。在均匀空间中,PML媒质的性能
     比Mur吸收边界条件好的多。但对于分层不均匀媒质,两者的数值反射误差基本相同,
     其主要原因是GPML媒质在介质交界面处不能消除固有的反射,而Mur吸收边界条件
     则因为采用了行波近似在这些边界处反射要小的多。(2)对色散媒质而言,Mur二阶
     吸收边界条件完全不能应用,而根据PML原理得到的广义PML方法如Gadney的单
     轴完全匹配媒质(本文中简称DPML)可以取得较好的效果。(3)由于这些方法所产
     生的相对反射误差和晚时瞬态散射的幅度差别较小,因此FDTD方法不适合计算晚时
     响应。在一般条件下,FDTD方法完全适合于计算埋地目标的早时响应。(4)从所需
     的计算资源来讲,Mur二阶吸收边界条件所需的计算时间和占用内存较小,编程要易
     于PML方法。(5)数值计算表明时域有限差分方法在研究分层不均匀、有耗媒质中的
     计算误差一般在10~(-3)(按入射场幅度归一化)量级,因此完全适合本文研究需要。
    
    4.通过精心设计的一组典型分层不均匀媒质情况,运用FDTD方法数值模拟了瞬态脉冲
     波在地卜传播反射、透射并返回地面的整个随时间空间波动的物理过村,从而得到平
     面波在水平分层不均匀、有耗士壤中的传捎机理并分析了地面上反射脉冲的形成规律,
     得到关丁反射脉冲幅度、波速和其电参数的近似关系。应用FDTD方法讨论了不均匀
     介质薄层的反射特性,得到关于估算垂直分辨率的近似公式以及分辨薄层的波形特征。
    5.详细计算了细长目标在瞬态线源激励情况下,在多种目标、背景、埋地深度以及测量
     方法的瞬态散射波形特征,讨论了其内在的物理意义。推导了波形衰减与相角增量的
     计算公式,导出了计算目标深度与背景波速的近似估算方法。
    6.研究了近地面平面蝶型偶极大线的模拟计算问题,讨论了近地面脉冲大线性能参数表
     示问题。详细比较了FDTD计算中各种激励源的设置方法,结合一种简单的电压型馏
     滤设置方法,给出了近地面平面蝶型偶极天线的近场辐射性能分析。同时计算了圆杜、
     金属管和含倾斜界面的仿真雷达回波和剖面图,这些结果具有较大的实川价值。
    7.提出分层随机不均匀媒质中Monte-Carlo模拟方法,运用高斯谱模型生成粗糙面,运
     用随机分布方法生成分层随机分布介质模型,结合FDTD计算其界面的散射特征,)1。
     fly用到高速公路的探地雷达检测方法评估中。
    8.研究了一些非平稳信号处理方法在地下目标回波信号处理中的应川,提出基丁时频分
     布的信号检测与估计统计量以及优化实现方案,并以简化的尺度相关模型为例研究最
     优参数估计方法。从实际测量数据出发
Impulse ground penetrating radar is an important and phasic achievement of the
     development of transient electromagnetic (EM) theories and a result of a combination of time-
     domain measurement technique, nanosecond pulse generation technique, ultra-wide band antenna
     technique and signal processing methodology. It has many advantages such as nondestructive
     detection, high efficiency, low cost and high resolution imaging ability and has already become
     one of the most important tools in subsurface exploration. Also, it is a successful example for the
     applications of transient electromagnetic theory in many other areas such as ultra-wide band
     radar, ultra-wide band communications and so on. Yet, if one has an experience about the method,
     he will see many problems left for further investigations. For example, one can not tell the
     location, the constituent material and the size about an unknown target with an acceptable
     accuracy and exactness just by use of field test data. This arises from lack of knowledge about
     the transient EM interactions between radar antenna, inhomogeneous soil, and buried targets.
     Thus, a thorough and detail understanding of the physical rules about transient EM interactions in
     inhomogeneous soil is of great importance for solving these tough problems. It is prospective to
     extract as much valuable information as possible from the reflected radar returns based on the
     knowledge. The main purpose of the study presented in the paper is to reveal the rules of the
     transient EM scattering in this situation and to make a preparation for the establishment of
     simulation tools for impulse ground penetrating radar systems by using the methods of
     computational electromagnetics.
     Compared with other numerical tools, the finite-difference finite-time method (the FDTD
     method) is the most appropriate choice for the analysis of the transient EM interactions between
     the antennas, the lossy, dispersive, inhomogeneous soil, and the target(s). We begin with a careful
     check about the suitability, the method of implementations, and the performances of the
     algorithms. Some important results are obtained in the research work. The main contributions of
     the paper can be summarized as follows:
     1. An analytical method of transient incident wave source conditions for total-scattered field
     formulation in stratified media is introduced using classical reflection and transmission
     relations under a time-harmonic incident plane wave and the fast Fourier transform (FFT)
     technique. The codes are confirmed at a variety of incident angles, both in transient field and
     in time harmonic field. The results show that the errors at the contiguous boundary due to this
     method are less than 3x101 relative to the magnitude of the incident field.
     2. A method of the complex dielectric curve fitting from measured data based on minimum least
     square method and the first order Debye model is presented, which is validated by a group of
     typical soil conditions covering a frequency range of 5OMHz-l250 MHz. The result shows that
     the approximations are very good. The resulting parameters are then used in the investigation
     for the pulse propagating in dispersive media.
     3. The performances of the Mur抯 second order absorption conditions, the GPML layer for lossy
     media, and the modified PML layer for dispersive media are investigated with special concern
     about the implementations for horizontal stratified media. The error distributions at the corners
    
    
    
    
    
    
    
    
    
     and at different media interfaces are explored. From theoretical derivations and numerical
     computations, one
引文
[1]D. J. Daniels, Surface Penetrating Radar, IEE Press, London, UK, 1996.
    [2]L. Peters JR., D.J.Daniels, and J.D.Young, Ground Penetrating Radar as a Subsurface Environmental Sensing Tool, Proc.of The IEEE, Vol. 82(12), pp.1802-1821,1994.
    [3]D. R. Sheen, S. C. Wei, T. B. Lewis, and S. R. De Graaf, Ultrawideth polarimetric SAR imagery of foliage-obscured objects, SPIE, Vol. 1875, pp.106-123, 1993.
    [4]Y. Barbin, F. Nicollin, W. Kofman, V.Zolotarev, V. and Glotov, Mar's 96 GPR Program, J. Appl. Geophys.,Vol.33, pp.27-37,1995.
    [5]K. Umashankar, and A.Tafiove, Computational Electromagnetics, Artech House,1993.
    [6]彭仲秋,瞬态电磁场,北京,高等教育出版社,1989。
    [7]S. F. Mahmoud, S. M. Ali, and J. R. Wait, Electromagnetic scattering from a buried cylindrical inhomogeneity inside a lossy earth, Radio Science, Vol.16, pp.1285-1298,1981.
    [8]L. Peters, JR., and J. H. Richmond, Scattering from cylindrical inhomogeneities in a lossy medium, Radio Sci., Vol. 17(5), pp. 973-987, 1982.
    [9]H. S. Chang and K. K. Mei, Scattering of electromagnetic waves by buried and partly buried bodies of revolution, IEEE Trans. Geoscience and Remote Sensing, GE-23, pp. 596-605, 1985.
    [10]D. A. Hill, Electromagnetic Scattering by Buried Objects of Low Constracst, IEEE Trans. Geoscience and Remote Sensing, GE-26, pp. 195-203, 1988.
    [11]S. Vitebskiy, and L. Carin, MoM-Method Modeling of Short-Pulse Scattering from and the Resonances of a Wire Buried Inside a Lossy Dispersive Half-Space, IEEE Trans.Antenna and Propagation, AP-43, pp. 1303-1312, 1995.
    [12]S.Vitebskiy, K. Sturgess, and L. Carin, Short-Pulse Plane-Wave Scattering from Buried Perfectly Conducting Bodies of Revolution, IEEE Trans. Antenna and Propagation, AP-44, pp.143-151, 1996.
    [13]S. Vitebskiy, L. Carin, and M. A. Ressler, Ultra-Wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement, IEEE Trans. GE-35, pp. 762-772.
    [14]S. Vitebskiy, and L. Carin, Resonances of perfectly conducting wires and bodies of revolution buried in a lossy, dispersive half space, IEEE Trans. Antenna and Propagation, AP-44, pp.1575-1583, 1996.
    [15]K.S.Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media, IEEE Trans. Antenna and Propagation, AP-14,pp. 302-307, 1966.
    [16]A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA., Artech House, 1995.
    [17]K.S.Kunz, and R.J.Luebbers, The Finite Difference Time Domain Method for Electromagnetics,New York,CRC Press,1993.
    
    
    [18]王长清,祝西里,电磁场计算中的时域有限差分法,北京,北京大学出版社,1994。
    [19]K. L. Slager, and J. B. Schneider, A Selective Survey of the Finite-Difference Time-Domain Literature, IEEE Antennas and Propagation Magazine, Vol. 37, No. 4, pp.39-57, 1995.
    [20]J. G. Maloney, G. S. Smith, and W. R. Scott, Jr., Accurate computation of the radiation from simple antennas using the finite-difference time-domain method, IEEE Trans. Antenna and Propagation, AP-38, pp. 1059-1068, 1990.
    [21]R. J. Luebbers, and K. Kunz, Finite-difference time-domain calculations of antenna mutual coupling, IEEE Trans. Antenna and Propagation, AP-40, pp.357-360, 1940.
    [22]C. Wu, K. Wu, Z. Bi, and J. Livta, Accurate characteritation of planar printed antennas using finite-difference time-domain method, IEEE Trans. Antenna and Propagation, AP-40, pp. 526-534, 1992.
    [23]P. B. Wong, et al., A Three-Wave FDTD Approach to Surface Scattering with Applications to Remote Sensing of Geophysical Surfaces, IEEE Trans. Antenna and Propagation, AP-44, pp. 504-513, 1996.
    [24]K. Demarest, R. Plumb, and Z. Huang, FDTD Modeling of Scatterers in Stratified Media, IEEE Trans. Antenna and Propagation, AP-43, pp.1164-1168, 1995.
    [25]李清亮,葛德彪,石守元,FDTD法在柱面波及有耗介质散射中的应用,西安电子科技大学学报,Vol,25(1),pp.5-9,1998
    [26]G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time domain electromagnetic-field equations, IEEE Trans. Electromagnetic Compatibility, EMC-23, pp. 377-382, 1981.
    [27]Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, A transmitting boundary for transient wave analysis, Science Sinica-Series A, Vol. 27, pp.1063-1076, 1984.
    [28]J.-P. Berenger, A perfectly Matched Layer for the Absorption of Electromagnetic Waves, Journal of Computational Physics, Vol. 114, 185-200, 1994.
    [29]J. Fang, and Z. Wu, Generalized Perfectly Matched Layer for the Absorption of Propagating and Evanescent Waves in Lossless and Lossy Media, IEEE Trans.Antennas and Propagation, AP-44, pp.2216-2221, 1996.
    [30]J. Fang, and Z. Wu, Generalized Perfectly Matched Layer-An Extension of Berenger's Perfectly Matched Layer Boundary Condition, IEEE Microwave and Guided Wave Letters, Vol. 5(12), pp. 451-453, 1995
    [31]W. C. Chew, and W. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt. Technol. Lett., Vol.7(13), pp. 599-604, 1994.
    [32]S. D. Gedney, "Anisotropic PML Absorbing Media for the FDTD Simulation of Fields in Lossy and Dispersive Media," Electromagnetics, vol. 16, pp. 399-415, 1996.
    [33]F. L. Teixeira, and W. C. Chew, A Generalized Approach to Extend Berenger's Absorbing Boundary Condition to Anisotropic and Dispersive Media.
    [34]T. Uno, Y. He, and S. Adachi, Perfectly Matched Layer Absorbing Boundary Condition for Dispersive Medium, IEEE Microwave and Guided Wave Letters, Vol.7(9), pp. 264-266, 1997.
    
    
    [35]J.G. Blaschak, G. A. Kriegsman, and A. Tavlofe, A Study of Wave Interactions with Flanged Waveguide and Cavities Using the On-Surface Radiation Condition Method, Wave Motion, Vol. 11, pp.65-67, 1989.
    [36]R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, A frequency-dependent finite-difference time-domain formulation for dispersive materials, IEEE Trans. Electromag. Compat., EMC-32(3), pp. 222-226, 1990.
    [37]R. Luebbers, D. Steith, and K. Kunz, FDTD calculation of scattering from frequency-dependent materials, IEEE Trans. Antenna and Propagation, AP-41, pp.1249-1257, 1993.
    [38]D. M. Sullivan, Frequency-Dependent FDTD Methods Using Z Transforms, IEEE Trans. AP-40, Antenna and Propagation, pp. 1223-1229, 1992.
    [39]T. Dogaru, and L. Carin, Time-Domain Sensing of Targets Buried Under a Rough Air-Ground Interface, IEEE Trans. Antenna and Propagation, AP-46, pp.360-371, 1998.
    [40]M. Moghaddam, E. J. Yannakakis, and W. C. Chew, "Modeling of the Subsurface Interface Radar," Journal of Electromagnetic Waves and Applications, Vol. 5, pp. 17-39,1991.
    [41]方广有,无载频脉冲探地雷达的模拟计算及应用,西安交通大学博士论文,西安,1996。
    [42]C. J. Leat, N. V. Shuley, and G. F. Stickley, Complex Image Model for Ground-Penetrating Radar Antennas, IEEE Trans. Antenna and Propagation, AP-46, pp. 1483-1488, 1998.
    [43]G. Turner, Modeling Antenna Ground Interactions, Proc. of the 5th International Conference on Ground Penetrating Radar (GPR'94), Ontario, Canada.
    [44]K. L. Shlager, G. S. Smith, J. G. Maloney, Optimization of Bow-Tie Antennas for Pulse Radiation, IEEE Trans. Antenna and Propagation, AP-42, pp.975-982, 1994.
    [45]K. L. Shlager, G. S. Smith, J. G. Maloney, TEM Horn Antenna for Pulse Radiation:an Improved Design, Microwave and Optical Technology Letters, Vol. 12, No. 2, pp.86-90, June, 1996.
    [46]J. M. Bourgeois, G. S. Smith, A Fully Three-Dimensional Simulation of a Ground-Penetrating Radar: FDTD Theory Compared with Experiment, IEEE Trans. GE-34, 36-43, 1996.
    [47]R. Roberts, and J. J. Daniels, Modeling near-field GPR in three dimensions using the FDTD method, Geophysics, Vol. 62(4), pp. 1114-1126, 1997.
    [48]R. Roberts, and J. J. Daniels, Finite-Difference Time-Domain Forward Modeling of GPR DATA, Proc of 6th International Conference on Ground Penetrating Radar (GPR'96), Osaka, Japan.
    [49]J. G. Maloney, K. L. Shlager, and G. S. Smith, A simple FDTD model for transient excitation of antennas by transmission lines, IEEE Trans. Antenna and Propagation,AP-42, pp. 289-292, 1994.
    [50]Q. H. Liu, The PSTD Algorithm: A Time-Domain Method Requiring only Two Cells Per Wavelength, Microwave and Optical Technology Letters, Vol. 15, NO. 3,pp158-165, 1997.
    [51]W. K. P. King, G. Smith, M. Owens, and T. T. Wu, Antenna in Matter, Cambridge,The MIT Press, 1981.
    
    
    [52] T. Xu, and G. A. McMechan, GPR attenuation and its numerical simulation in 2. 5 dimensions, Geophysics, Vol. 62(2) , pp. 403-414, 1997.
    [53] T. Bergmann, J. O. A. Robertsson, and K. Holliger, Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media, Geophysics, Vol. 63(3) , pp. 856-867, 1998.
    [54] L. Y. Astanin, and A. A. Kostylev, Ultra wide-band radar measurements: Analysis and processing, London, IEE Press, 1997.
    [55] W. R. Scott, Jr., and G. S. Smith, Measured Electrical Constitutive Parameters of Soil as Functions of Frequency and Moisture Content, IEEE Trans. GE-30, pp. 621-623, 1992.
    [56] J. E. Hipp, Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture, Proc. IEEE, Vol. 62, pp98-103, 1974.
    [57] N. Geng, and L. Carin, Wide-Band Electromagnetic Scattering from a Dielectric BOR Buried in a Layered Lossy Dispersive Medium, IEEE Trans Antenna and Propagation, Vol. 47(7) , pp. 610-619, 1999.
    [58] R. M. Shubair, and Y. L. Chow, A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half-spaces, IEEE Trans. Antennas Propagat., Vol. 41, pp. 806-812, 1993.
    [59] T. Scullion, C. L. Lau, and T. Saarenketo, Performance Specifications of Ground Penetrating Radar, The 6th International Conf. on GPR (GPR96) , Sendai, Japan, pp. 341-346, 1996.
    [60] R. G. Plumb, D. A. Noon, I. D. Longstaff, and G. F. Stickley, A waveform-range performance diagram for ground-penetrating radar, J. of Applied Geophysics, Vol. 40, pp.117-126, 1998.
    [61] M. Cherniakov, and L. Donskoi, Frequency Band Selection of Radars for Buried Object Detection, IEEE Trans. Geoscience and Remote Sensing, Vol. 37(2) , pp. 838-845, 1999.
    [62] D. A. Noon, G. F. Stickley, and I. D. Longstaff, A frequency-independent characterization of GPR penetration and resolution performance, J. of Applied Geophysics, Vol. 40, pp.127-137, 1998.
    [63] 范国新,陈平,探地雷达原理、设计思想及其实现,电波科学学报,Vol.7(1) , pp.1-20,1992。
    [64] M. I. Skolnik, Radar Handbook, McGraw-Hill, Inc., New York, 1970.
    [65] C. M. Butler, X. Xu, and A. W. Glisson, Current Induced on a Conducting Cylinder Located Near the Planar Interface Between Two Semi-Infinite Half-Spaces, IEEE Trans. Antennas Propagat., vol. AP-33, pp. 616-624, 1985.
    [66] J. R. Wait, Electromagnetic Wave Theory, Harper & Row Publishers, 1981.
    [67] W. C. Chew, Wave and Field in Stratified Media, New York: Van Nostrand Reinhold, 1990.
    [68] M. J. Piket-May, A. Taflove, and J. Baron, FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads, IEEE Trans. Microwave Theory and Techniques, Vol.42, pp. 1514-1523, 1994.
    [69] Y. Nishioka, O. Maeshima, T. Uno, and S. Adachi, FDTD Analysis of Resister-Loaded Bow-Tie Antennas Covered with Ferrite-Coated Conducting Cavity for
    
    Subsurface Radar, IEEE Trans. Antenna and Propagation, Vol. 47(6), pp.970-977, 1999.
    [70]李大心,探地雷达方法与应用,地质出版社,北京,1994。
    [71]徐怀大,王世凤,陈开远,地震地层学解释基础,中国地质大学出版社,北京,1990。
    [72]W. A., Wensink, G. Greenw, J. Hoffman, and J. K. Van Deen, Measured underwater near-field E-patterns of a pused horizontal dipole antenna in air:Comparison with the theory of the continuous wave, infinitesimal electric dipole,Geophys. Prosp., Vol. 38,pp. 805-830, 1990.
    [73]T. Scullion, C. L. Lao, and Saarenketo, Performance Specifications of Ground Penetrating Radar, Proc. of 6th International Conference on Ground Penetrating Radar(GPR'96), Sendai,Japan.
    [74]A. P. Annan, and L. T. Chua, Ground penetrating radar performance predictions,Geological survey of Canada, J. A. Pilon(ed), pp.5-13, 1992.
    [75]C. Li, M. Cherniakov, and G. F. Stickley, Measurement of GPR Antenna Properties,Proc. of the 7th Ground Penetrating Radar Conference (GPR'98), Lawrence, Kansas,USA, 1998.
    [76]A. A. Boryssenko, Time Domain Theoretical and Experimental Investigation of Ultra-Wide Band Antennas, Symposium of URSI meeting, Ontario, Canada, 1999.
    [77]魏文元,宫德明,陈必森,天线原理,国防工业出版社。
    [78]徐仲达,地震波理论,同济大学出版社,上海,1997。
    [79]H. Brunzell, Detection of Shallowly Buried Objects Using Impulse Radar, IEEE Trans. Geosci. and Rem. Sensing, Vol. 37(2), pp. 875-886, 1999.
    [80]A. Sommerfeld, Partial Differential Equations, AP Inc., New York, 1949.
    [81]N. S. Parry, and J. L. Davis, GPR systems for road and bridges, Proc. of 4th Int.Conf. on GPR, Finland, pp.247-258, 1992.
    [82]K. Maser, Highway speed radar for pavement and bridge deck evaluation, Proc. of 4th Int. Conf. on GPR, Finland, pp.267-276, 1992.
    [83]J. L. Davis, J. R. Rossiter, D. Maser, and C. Dawley, Quantitative measurement of pavement structures using radar, Proc. of 5th Int. Conf. on GPR, Canada, pp.319-334,1994.
    [84]J. B. Schneider, C. L. Wagner, and O. M. Ramahi, Implementation of Transient Sources in FDTD Simulations, IEEE Trans. Antennas Propagation, Vol. 46(8), pp.1159-1168, 1998.
    [85]阎玉波,应用FDTD方法分析瞬态电磁散射和辐射问题,硕士论文,西安电子科技大学,西安,1998。
    [86]C. H. Chan, S. H. Lou, L. Tsang, and J. A. Kong, Electromagnetic Scattering of Waves by Random Rough Surface: A Finite-Difference Time-Domain Approach,Microwave and Optical Tech. Letters, Vol. 4(9), pp. 355-359, 1991
    [87]A. K. Fung, M. R. Shah, and S. Tjuatja, Numerical Simulation of Scattering from Three-Dimensional Randomly Rough Surface, IEEE Trans. Geosci. and Remote Sensing, Vol. 32(5), pp. 986-994, 1994.
    
    
    [88]E.I. Thorsos, The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum, J. Acoust. Soc. Am. (B), 1988, vol. 83,no.1, pp. 78-92.
    [89]H. C. Strifors, B. Brusmark, A. Gustafsson, and G. C. Gaunaurd, Analysis in the joint time-frequency domain of signatures extracted form targets buried underground,SPIE, Vol. 2756, pp.152-163, 1996.
    [90]H. C. Strifors, S. Abrahamson, B. Brusmark, and G. C. Gaunaurd, Signature features in time-frequency of simple targets extracted by ground penetrating radar, SPIE,Vol. 2485, pp.175-185, 1995.
    [91]H. C. Strifors, and G. C. Gaunaurd, Scattering of Electromagnetic Pulses by Simple-Shaped Targets with Radar Cross Section Modified by a Dielectric Coating,IEEE Trans. Antennas and Propagation, Vol. 46(9), pp. 1252-1262, 1998.
    [92]张贤达,现代信号处理,北京,清华大学出版社,1994。
    [93]张贤达,保铮,非平稳信号分析与处理,北京,国防工业出版社,1998。
    [94]C. K. Chui, An Introduction to Wavelets, New York, Academic Press, Inc., 1992.
    [95]彭玉华,小波变换在电磁理论中的应用研究,西安交通大学博士论文,西安,1994。
    [96]董晓龙,探地雷达信号处理若干关键问题的研究,西安交通大学博士论文,西安,1995。
    [97]M. Unser, and A. Aldroubi, A Review of Wavelets in Biomedical Applications,Proc. of The IEEE, Vol. 84(4), pp. 626-638, 1996.
    [98]P. Kumar, and E. Foufoula-Georgiou, Wavelet Analysis for Geophysical Applications, Review of Geophysics, Vol. 35(4), 1997.
    [99]T. H. Koornwinder (ed.), Wavelets: An Elementary Treatment of Theory and Applications, World Scientific Publishing Co. Inc., 1993.
    [100]陈文超,师振盛,汪文秉,高静怀,小波变换在去除探地雷达信号直达波的运用,电波科学学报,Vol.15(3),pp.352-357,2000。
    [101]高静怀,汪文秉,朱光明,小波变换与信号瞬时特征分析,地球物理学报,Vol.40(6),pp.821-832,1997。
    [102]A. M. Sayeed, and D. L. Jones, Optimal Detection Using Bilinear Time-Frequency and Time-Scale Representations, IEEE Trans. Signal Processing, Vol. 43(2),pp. 2872-2883, 1995.
    [103]L. Cohen, Time-Frequency Distributions-A Review, Proc. of IEEE, Vol: 77(7),pp. 941-981, 1989.
    [104]F. Hlawatsch, and G. F. Boudreaux-Bartels, Linear and Time-Frequency Signal Representations, IEEE Signal Processing Magazine, pp. 21-58, 1992.
    [105]L. G. Weiss, Wavelets and Wideband Correlation Processing, IEEE Signal Processing Magazine, pp.13-32, Jan. 1994.
    [106]林茂庸,柯有安,雷达信号理论,国防工业出版社,1981
    [107]高静怀,汪文秉,地震资料处理中小波函数的选取研究,地球物理学报,Vol.39(3),pp.392-399,1996.
    [108]R. A. Altes, Detection, Estimation and Classification with Spectrogram, JASA,67(4), pp.1232-1246, 1980.
    
    
    [109]H. Naparst, Dense trget signal processing, IEEE Trans. Information Theory, Vol.37(2), pp.317-327, 1991.
    [110]R. K. Young, Wavelet Theory and Its Applications, Kluwer Academic Publishers,Boston, 1993.
    [111]J. Morlet, et al., Wave propagation and sampling theory, 1, Complex signal and scattering in multilayered media, Geophics, 47(2), 203-221, 1982.
    [112]S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Math. Intel., 11(7), 674-693, 1989.
    [113]P. Boles, and B. Boashash, The cross Wigner-Ville distribution-A two-dimensional analysis method for the processing of vibrosis seismic signal, Proc. IEEE ICASSP'87, pp. 904-907, 1988.
    [114]R. Rohrbaugh, Time-frequency characterization of acoustic transients, SPIE, Vol.3162, pp. 123-136, 1997.
    [115]H. Ling, J. Moore, H. Kim, et al, Time-Frequency Processing of Wideband Radar Echo: From mixed resolution to multiresolution and superresolution, Ultra-Wideband,Short-Pulse Electromagnetics, Vol. 2, pp. 527-533, Plenum Press,New York, 1995.
    [116]詹毅,时频分析方法在探地雷达回波信号处理中应用的研究,电波科学学报,Vol.11,pp.85-89,1996。
    [117]文柯一,电磁理论的新进展,国防工业出版社,北京,1999。
    [118]J. B. Schneider, and K. L. Shlager, FDTD Simulations of TEM Horns and the Implications for Staircased Representions, IEEE Trans. Antenna Propagat., Vol. 45(12),pp. 1830-1838, 1997.
    [119]K. Demarest, Z. Huang, and R. Plumb, An FDTD Near-to Far-Zone Transformation for Scatterers Buried in Stratified Ground, IEEE Trans. Antennas and Propagation, Vol. 44(8), pp. 1150-1157, 1996.
    [120]H. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag,Berlin, Germany, 1988.
    [121]F. D. Hastings, J. B. Schneider, and S. L. Broschat, A Monte-Carlo FDTD Technique for Rough Surface Scattering, IEEE Trans. Antenna Propaga. Vol. 43(11),pp.1183-1191, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700