用户名: 密码: 验证码:
相继增压柴油机切换过程燃烧排放仿真与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高功率密度、宽转速运行范围柴油机的不断发展和船用柴油机瞬态排放标准的不断提高,增压系统与柴油机匹配的要求也越来越高。相继增压技术是解决柴油机与增压器匹配矛盾、提高柴油机低速工况燃油经济性和降低碳烟排放的有效措施。针对相继增压柴油机瞬态切换过程的碳烟排放恶化问题,本文通过建立三维燃烧模型,对相继增压柴油机进气过程的气体流动规律和燃烧排放特性进行了深入研究。通过模拟计算,得到了相继增压技术对柴油机燃烧排放情况的改善规律,同时对柴油机的瞬态切换控制规律进行了试验研究,在考虑发动机转速平稳和避免喘振的前提下,得到了以碳烟排放最优为原则的相继增压柴油机瞬态切换控制策略。
     以TBD234V12柴油机为研究对象,建立了相继增压柴油机三维燃烧模型。利用逆向设计技术和pro-E软件建立了柴油机燃烧室、进、排气门和进、排气道的几何模型,并对几何模型进行了体网格和动网格的网格划分。考虑到柴油机工作过程高压缩、强瞬变的特征,选用了RNG k ε湍流模型,采用了适合瞬态计算的PISO算法。对所建立的三维燃烧模型进行了试验验证,验证结果表明,所选用的计算模型及计算方法满足本文研究工作的需要。
     利用所建立的三维燃烧模型详细研究了TBD234V12柴油机在切换点工况下1TC和2TC进气流动规律,并进行了对比研究。计算结果表明:在进气门开启时刻,进气门和排气门处于叠开状态,1TC和2TC均在进气门打开的小缝隙处出现了进气倒流现象;1TC和2TC进气过程的湍动能曲线表明,在整个进气过程中,1TC和2TC的湍动能由小变大,经历两个峰值然后衰减,1TC的湍动能大于2TC的湍动能,最大提高率为38%;1TC和2TC进气过程的涡流比曲线表明,涡流在进气初期就已经产生,随着气门升程的增加而增大,在气门升程最大时刻涡流比达到最大值,随后随着气门升程减小,涡流比也开始逐渐下降。1TC的涡流比大于2TC的涡流比,最大提高率为29%。
     在得到了相继增压柴油机进气流动规律的基础上,对切换点工况下1TC和2TC的燃烧及排放过程进行了数值模拟研究。对1TC和2TC的缸内流场计算分析表明,1TC燃烧室内产生了较2TC更为明显的大尺度涡流,有利于燃油的雾化、蒸发和与空气的混合。对排放物生成浓度计算表明,1TC的碳烟生成主要集中在燃油运动区域内,2TC的碳烟生成主要集中在燃烧室凹坑中,1TC的碳烟生成量较2TC下降了75%,1TC的NOx生成量较2TC降低了20%。
     在进行了相继增压柴油机燃烧排放特性稳态研究的基础上,设计了相继增压柴油机切换过程瞬态测试系统,进行了切换点工况下,不同切换延迟时间的受控增压器切入、切出过程瞬态试验。受控增压器切入过程的瞬态试验表明,空气阀和燃气阀同时打开,或空气阀延迟打开时间过长,会造成发动机转速波动过大,不利于瞬态切换过程的平稳性,通过对试验数据分析得出0.5秒为比较合适的切换延迟时间。受控增压器切出过程的瞬态试验表明:空气阀和燃气阀同时关闭,可以使缸内压力平稳上升,切换过程中发动机转速比较平稳,如果空气阀关闭的延迟时间过长,会使主增压器压后压力下降时间较长,发动机转速波动过大,因此空气阀延迟关闭时间不应超过0.5秒。
     在对碳烟和NOx的生成机理进行研究的基础上,对切换点工况下,受控增压器的切入、切出过程的瞬态碳烟排放曲线进行了分析,结果表明,受控增压器切入过程中,切换延迟时间为0.5秒时的碳烟排放最低;在受控增压器切出过程中,切换延迟时间为0秒时的碳烟排放最低。为了深入分析瞬态切换过程的碳烟生成特点,对受控增压器切入过程中切换延迟时间分别为0秒,0.5秒和1.5秒进行了瞬态边界三维模拟计算。通过计算得到了缸内碳烟浓度场、温度场和氧气浓度场以及碳烟生成排放曲线。数值模拟分析表明,碳烟排放恶化的原因为切换瞬时增压器响应迟滞,缸内瞬时过量空气系数降低,缸内的油气混合不均匀,引起局部高温缺氧,因此碳烟生成量比较高。
     得到了相继增压柴油机受控增压器的切入、切出过程的空气阀和燃气阀开闭时间的最优控制策略:受控增压器切入过程空气阀延迟0.5秒打开,受控增压器切出过程燃气阀和空气阀同时关闭,可以使发动机和增压器运转平稳,并可以有效降低瞬态切换过程的碳烟排放。
With the continuous development of the diesel engines with high power density andwide speed range and the increase of the standards on marine diesel emissions, therequirements for the turbocharging systems to match the diesel engines are also increasing.Sequential turbocharging (STC) system is an effective approach to improve the fuel economyand the exhaust performance. To study the improvement of the engine intake and combustioncharacteristics under the STC system at low operating condition, the diesel engine simulationmodel has been established in this thesis. The transient switching experiments of the STCsystem have been described to obtain the optimal switching control strategy and reduceSOOT emission during the turbocharger switch process.
     Taking TBD234V12diesel engine as the research object and using reverse engineeringtechnology, a diesel engine geometry models were established. Considering the workingprocess of diesel engine with high compression and transient characteristics, the RNGturbulence model was adopted and transient calculation of the PISO algorithm was used. Thethree dimensional combustion models were verified by test, the results show that the modeland method of calculation satisfy the needs of the research.
     Using the established three-dimensional combustion model on the TBD234V12dieselengine at the switching point,1TC and2TC intake flow law was obtained under comparativestudy. The calculation results showed that1TC and2TC backflow phenomenon happenedwhen the intake valve opens. The curve of the turbulent kinetic energy shows that in thewhole intake process,1TC and2TC turbulent kinetic energy changes from small to big,experiencing two peaks and then decaying.1TC turbulent kinetic energy is greater than2TC,the biggest increase rate is38%. Swirl ratio curve during the1TC and2TC intake processshows the swirl has been produced in the early intake stage, and it becomes bigger with theincrease of valve lift. During the increase, swirl ratio will reach a maximum value atmaximum moment of the valve lift, and then decrease with the decline of the valve liftgradually.1TC swirl ratio is greater than2TC, and the biggest increase rate is29%.
     On the basis of the law of the inlet flow of sequential turbocharging diesel engine,combustion and emission process under the switching point between1TC and2TC wasstudied by numerical simulation. The calculation and analysis of the cylinder flow field of the1TC and2TC show that1TC combustion chamber produced more evident large-scale swirl than2TC, which was good for fuel atomization, vaporization and mixing with air. Theemission concentration calculation show that1TC SOOT formation was mainly concentratedin the fuel movement area, and2TC SOOT formation was mainly concentrated in thecombustion chamber recess. Comparison with2TC,1TC SOOT generation was decreased by75%and NOx generation decreased by20%.
     On the basis of the research on the combustion and emission characteristics of aturbocharged diesel engine under steady state, a turbocharged diesel engine switchingtransient test system was designed, and transient test about the cut-in and cut-out process ofcontrol turbocharger under a switching point was conducted. The transient test of thecontrolled turbocharger cut-in process show that if the air valve and the gas valve are openedat the same time or the air valve delay opens too long, it will cause the engine speed tofluctuate too much, and it is not conducive to the stability of transient switching process.Based on the experimental data,0.5seconds is the best for the appropriate switch delay time.The transient test of the controlled turbocharger cut-out shows that if the air valve and the gasvalve close at the same time, the cylinder pressure can rise steadily and the engine speed canstay stable in the process of switching. If the delay time to close the air valve is too long, itwill make the main turbocharger pressure drop over a longer period, and the engine speedfluctuation will be too big, as a result, the air valve closing delay time should not exceed0.5seconds.
     On the basis of the research on the SOOT and the NOx formation mechanism, transientSOOT emission curve during the cut-in and cut-out process of controlled turbocharger undera switching point was analyzed. The results show that in the controlled turbocharger cut-inprocess, the SOOT emissions is the minimum when switching time delay is0.5seconds; in thecut-out process, SOOT emissions is the minimum when switching time delay is0second. Inorder to analyze the SOOT formation characteristics in the transient switching process, atransient boundary three-dimensional simulation calculation was conducted when theswitching delay times of the controlled turbocharger cut-in process were0seconds,0.5seconds and1.5seconds. The calculation obtained the following results: in-cylinder SOOTconcentration field, temperature field, concentration field of oxygen and SOOT curve.Numerical simulation analysis shows that the SOOT emissions deteriorates because transientturbocharger response delays while switching, instantaneous excess air coefficient decreases, the mixture of the oil and gas is not uniform in the cylinder, the high temperature and hypoxialocal appeared, so the SOOT emissions is relatively increased.
     Optimal control strategy of the opening and closing time during the cut-in and cut-outprocess of control turbocharger under a switching point was obtained. The air valve shouldopen when switching time delay is0.5seconds. During the controlled turbocharger cut-outprocess, gas valve and air valve should close at the same time. This can make the engine andturbocharger run smoothly, and can effectively reduce the SOOT emissions in the transientswitching process.
引文
[1]李敏,陈轩.MARPOL73/78附则Ⅳ的进展研究.中国水运.2008:18-19页
    [2]王银燕,高维成.应用MPC-相继增压系统改善船用柴油机低负荷性能的研究.内燃机学报.1999,17(1):13-17页
    [3]王俊平.内燃机车柴油机相继增压系统研究.南京理工大学硕士学位论文.2004:24-33页
    [4]林剑锋,欧阳光耀.相继增压柴油机控制系统及实验研究.中国造船.2001,42(4):88-91页
    [5]胡宗杰.机车柴油机相继增压系统研究.大连铁道学院硕士学位论文.2002:39-50页
    [6]仲怀清,李友峰,王敏鸿.12V280ZJ型柴油机相继增压系统的试验研究.内燃机车.2007(3):8-10页,16页
    [7] Theotokatos G,Kytrtatos N P.Investigation of a Large High-Speed Diesel EngineTransient Behavior Including Compressor Surging and Emergency Shutdown.ASMEJournal of Engineering for Gas Turbines and Power.2003(125):580-589P
    [8]顾宏中,邬静川.柴油机增压及其性能优化.上海交通大学出版社.1989:154-181页
    [9] Mccutcheon A R S,Brown M W G.Evaluation of a Variable Geometry TurbochargerTurbine on a Commercial Diesel Engine.IMechE,1986
    [10] Kawamoto A, Takahashi Y. Variable Geometry System Turbocharger for PassengerCar Diesel Engine, SAE Paper2001-01-0273
    [11]白涛,张洪义,吴泽其,杨光升.旁通补燃增压柴油机的理论与实验研究.哈尔滨船舶工程学院学报.1989(1):1-12页
    [12]王银燕,田祥裕等.带有相继增压的旁通补燃动力涡轮复合式发动机的计算分析.内燃机学报.1994,12(3):276-282页
    [13]郭林福.VGT电控增压系统的开发及其与柴油机优化匹配的研究.北京理工大学博士学位论文.2003:1-25页
    [14]杨林,顾宏中.超高增压柴油机全工况性能的研究.上海交通大学学报.1998(1):60-65页
    [15]顾宏中.船用大功率柴油机技术发展和研究.柴油机.2007,29(2):5-9页
    [16] Junichiro Nitta,Akihiko Minato,Naoki Shimazaki.Performance Evaluation ofThree-Stage Turbocharging System for Heavy-Duty Diesel Engine. SAEpaper.2011-01-0374
    [17]徐祖浩.关于MTU柴油机的新技术.船舶设计技术交流.2002(2):36-39页
    [18] Anon. Operational Experience with MTU Sequentially Turbocharged DieselEngines.Diesel&Gas Turbine Worldwide.1987,19(7):46-49P
    [19] Dinger H,Deutschmann H.Further Developments of the MTU956/1163SeriesEngines.CIMAC Paper.1981:72-74P
    [20] Kunberger,Klaus.New MTU595Engine.Diesel&Gas Turbine Worldwide.1990,22(22):40-43P
    [21] Herring P.Sequential Turbocharging of the MTU1163Engine.Transactions of themarine of Chemical Engineers.1988(100):145-156P
    [22]郭连振,高德明.MTU8000系列柴油机.柴油机.2001(5):16-18页
    [23] Tomoo Taqdokoro,Haruo Okimoto,Yasushi Niwa.Development of Sequential TwinTurbo System for Rotary Engine.SAE Technical Paper Series.1991,910624:1-10P
    [24]蔡毓国,刘景宝.MTU公司2002年发动机技术回顾.国外内燃机车.2003,5(371):35-36页
    [25] Gunnar Stiesch,Hermann Baumann.Utilizing Multiple Injections for OptimizedPerformance and Exhaust Emissions with the MTU Series2000Common Rail MarineEngines. CIMAC25,2007:Paper No.50
    [26] Lothar Czerny, Ingo Wintruff. Future Potential of Series4000MarineEngines.CIMAC25,2007:Paper No.156
    [27] Stefan Mueller.Field Experiences with MTU20V8000Engines in Various MarineApplications.CIMAC25,2007:Paper No.240
    [28]吉田正佑.MTU396系列柴油机.国外内燃机车.1997(6):1-8页
    [29] MTU.Favorable Characteristics in Highly Pressure-Charged engines.Shipbuilding&Marine Engineering International.1982(11):507-509P
    [30] F.Haug,B.Hermann.Development of MTU2000Series Diesel engine. MTZSonderausgabe.1997:14-23P
    [31] W.Rudert,G-M.Wolters.新一代MTU595系列柴油机(下).国外内燃机车.1992(6):1-8页
    [32] Freitag M., Teetz.C. MTU8000New Series Diesel engine.MTZ,2000,(10):629P,632-639P
    [33] Kech J. M.,Klotz H. Model-Based Sequential Turbocharging Optimization forSeries8000M70/M90Engines.SAE paper,2002-01-0378
    [34] Schmidt R.M.,Ruetz G. Development of MTU4000Series Diesel engine.MTZSonderausgabe.1997:24-32P
    [35] Norbert Veser,Arne Schneemann.Development of the High-speed Diesel Engine20V8000M71. CIMAC25,2007:Paper No.153
    [36]柳祖德.PA6柴油机STC增压系统简介.陕西省内燃机学会论文.1990:10-39页
    [37] Herrmann R.Sequential Turbocharging for PA6Engines.1990
    [38]高维成,孙富田.舰船用PA6柴油机相继增压试验研究.中外船舶科技.1995,4(23):18-21页
    [39]阿荣其其格.16PA6V-280相继增压柴油机性能研究.哈尔滨工程大学硕士学位论文.1998:1-6页
    [40]张哲.柴油机大小涡轮三阶段相继增压系统稳态与瞬态性能研究.上海交通大学博士学位论文.2010:44-45页
    [41] Zhe Zhang,Kangyao Deng.Experimental Study on the Three-phase SequentialTurbocharging System with Two Unequal Size Turbochargers. SAE paper,2008-01-1698
    [42]张哲,邓康耀,钱跃华.大小涡轮三阶段相继增压系统性能试验研究.内燃机学报.2010,28(1):68-73页
    [43]梁桂森,范建新.柴油机相继增压系统设计及性能模拟.柴油机.1998(4):23-24页
    [44]梁桂森,陈瑾.船用柴油机相继增压系统性能研究.柴油机.1999(6):10-14页
    [45]任自中,王忠斌.高增压系统相继增压技术的试验研究.柴油机.2001(6):18-23页,29页
    [46]李恒芳,朱大鑫.应用MPC-顺序增压系统改善车用柴油机低速性能的研究.内燃机工程.1991,12(1):24-31页
    [47] Chesse Pascal, Hetet Jean-Francois. Performance Simulation of SequentiallyTurbocharged Marine Diesel Engines with Applications to CompressorSurge.American Society of Mechanical Engineers.1998,30(2):31-40P
    [48] Tauzia X,Hetet J F.Computer Aided Study of the Transient Performances of a HighlyRated Sequentially Turbocharged Marine Diesel Engine. Journal of Power andEnergy.1998,212(3):185-196P
    [49] Mazuran Mario.Some Problems of Sequential Turbocharging of Diesel Engines forRacing Boats.SAE Paper,2000-01-0528
    [50]李先南.船用V型柴油机大小涡轮相继增压系统设计研究.哈尔滨工程大学硕士学位论文.2012:8-10页
    [51] ZheZhang, Hongzhong Gu.Modular Multi-purpose Pulse Converter TurbochargingSystem for Four-stroke Diesel Engines. International Journal of EnergyResearch.2008,32(6):569-580P
    [52] Zhe Zhang,Xibo Wang,Kangyao Deng.Experimental Investigation on Performanceof vehicle Diesel Engine with Sequential Turbocharging System.Journal of BeijingInstitute of Technology.2006(15suppl):46-52P
    [53] Xibo Wang,Zhe Zhang,Kangyao Deng. Transient Performance of the D6114EngineUsing Sequential Turbo Charging in Low Speed Range.Journal of BeijingInstituteof Technology.2006(15suppl):84-88P
    [54]张哲,邓康耀,钱跃华.柴油机大小涡轮相继增压系统瞬态切换策略.内燃机学报.2010,28(2):141-146页
    [55]张哲,王希波,邓康耀.相继涡轮增压系统对D6114型柴油机性能的影响.农业机械学报.2008,39(5):30-35页
    [56]张哲,钱跃华,刘博.车用柴油机大小涡轮相继增压系统固定转速切换的试验研究,内燃机工程.2010,31(1):51-55页
    [57] Wang Weicai,Wang Yinyan.Simulation of a Sequential Turbocharging SystemTransient Behavior Including Compressor Surging.CIMAC Paper,2007
    [58]王伟才,王银燕.压气机动态模型的建立及喘振过程分析.热能与动力工程.2007,22(2):124-128页
    [59]王伟才,王银燕,冯永明.柴油机相继增压故障切换过程的瞬态仿真.中国造船.2007,48(3):100-105页
    [60] Wang Yingyan,Shi Fan,Wang Hechun.Calculation and analysis of a TBD234V12marine diesel engine with STC.Journal of Beijing Institute of Technology.2006(15):73-78P
    [61]王伟才,孙俊,王银燕,等.相继增压柴油机线性模型动态实时仿真.应用科技.2005,32(6):53-55页
    [62]万东霞.大小涡轮相继增压柴油机稳态性能分析.哈尔滨工程大学硕士学位论文.2008:14-15页
    [63]王焕杰.大小涡轮相继增压柴油机排气系统性能研究.哈尔滨工程大学硕士学位论文.2008:10页
    [64]朱清.柴油机大小涡轮相继增压控制参数与排气连通管设计.哈尔滨工程大学硕士学位论文.2010:14-15页
    [65]石凡.柴油机Multi-STC系统性能仿真研究及结构设计.哈尔滨工程大学博士学位论文.2010:88-89页
    [66] Wang Yinyan,Shi Fan,Wang Hechun.Calculation and Analysis of a TBD234V12Marine Diesel Engine with STC.Journal of Beijing Institute of Technology (EnglishEdition).2006(12):73-78P
    [67] Shi Fan,Wang Yinyan,Zhang Pengqi.Investigation on the Fuzzy Control of STC ina High-speed Marine Diesel Engine. Journal of Harbin EngineeringUniversity.2006(12):620-625P
    [68]石凡,王银燕,冯永明.船用高速柴油机多台增压器相继增压计算分析.船舶工程.2007(2):1-5页
    [69]王银燕,石凡,冯永明.船用柴油机相继增压蝶阀切换延迟仿真研究.武汉理工大学学报(交通科学与工程版).2009(1):17-20页
    [70]刘明珠.基于耦合模型的相继增压柴油机排气系统研究.哈尔滨工程大学硕士学位论文.2008:11-12页
    [71]王希波.大小涡轮三阶段相继增压系统匹配与切换过程研究.上海交通大学博士学位论文.2009:15-16页
    [72]李康.现代气道开发方法.汽车技术.2001(3):1-3页
    [73]宋永臣,高希彦.一种新的喷雾场测试技术.大连理工大学学报.1995,35(3):5-9页
    [74]陶文拴.计算传热学的近代进展.北京:科学出版社,2000
    [75]李人宪.有限体积法基础.北京:国防工业出版社,2005:7-13页
    [76]王桢.柴油机废气再循环气体流动及混合过程研究.上海交通大学硕士学位论文.2007:52-56页
    [77] Benvenuto G,Campora U.Dynamic Simulation of a High-performance SequentiallyTurbocharged Marine Diesel Engine.Int J Engine Reach.2002,3(3):115-125P
    [78]宋永臣,高希彦.三维瞬变喷雾场浓度与温度分布的激光干涉层析.内然机学报.1994(6):77-78页
    [79]向梁山.TY3100非道路用柴油机喷雾燃烧三维数值模拟研究.武汉理工大学硕士学位论文.2011:14-15页
    [80]文醉.非道路用柴油机缸内气体流动与喷雾三维数值模拟分析.武汉理工大学硕士学位论文.2010:20-21页
    [81]翟承玮.大型柴油机气缸系统流场/热-机耦合非线性三维有限元分析.同济大学硕士学位论文.2007:11-12页
    [82] The STAR-CD User Manual.Version3.26,2008
    [83] KIM J.N.Effect of Intake Valves Swirl on Fuel-gas Mixing and SubsequentCombustion in a engine.International Journal of automotive technology.2008(6):649-657P
    [84] Ugur Kesgin,Hasan Heperkan.Simulation of Thermodynamic Systems Using SoftComputing Techniques.Ini.J.Engine Reach.2005(29):581-611P
    [85] RDReitz.Optimization Study of the Effects of Bowl Geometry Spray Targeting andSwirl ratio for a Heavy-duty Diesel Engine Operated at Low and HighLoad.Ini.J.Engine Res.2008(9):325-346P
    [86]张国勇,陈志忠.船用柴油机进气道类型及结构参数对流通性能的影响.舰船科学技术.2010(8):48-52页
    [87]侯元静.增压柴迪机双进气道流动特性的三维数值模拟研究.北京交通大学硕士学位论文.2011:10-11页
    [88]胡云萍,石秀勇,郑媛媛.基于CFD的柴油机进气流动瞬态数值模拟与试验研究.汽车技术.2010(4):49-55页
    [89]文醉,罗马吉,向梁山.非道路用柴油机气流运动及喷雾数值模拟分析.小型内燃机与摩托车.2011(4):42-46页
    [90]顾勤,陆文霞,戴云.4气门柴油机进气道布置及气体流动CFD模拟.车用发动机.2008(176):42-45页
    [91]吕继祖,白敏丽,周龙.初始条件及喷雾对柴油机缸内流动影响研究.大连理工大学学报.2008(3):345-350页
    [92]章炜.基于KIVA-3V的柴油机缸内流动和燃烧过程的数值仿真研究.合肥工业大学博士学位论文.2004:4-5页
    [93]王忠恕.边界条件对发动机瞬态工况下燃烧的影响及数值模拟.吉林大学博士学位论文.2006:17-18页
    [94]陆瑶.船用柴油机燃烧与排放三维数值模拟研究.哈尔滨工程大学硕士学位论文.2011:10-11页
    [95]李晓娟.车用柴油机燃烧过程及碳烟和NOX排放的数值模拟.天津大学硕士学位论文.2007:5-6页,14-15页
    [96]虞育松,李国岫,刘建英.燃烧室形状对直喷柴油机燃烧性能影响的三维数值模拟.北京交通大学学报.2007(4):115-116页
    [97]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟.华中科技大学博士学位论文.2004:14-15页
    [98]董日京.基于KIVA3的柴油机碳烟产生机理的数值模拟研究.鲁东大学学报(自然科学版).2009(6):36-37页
    [99]解茂昭.内燃机计算燃烧学.大连理工大学出版社,2005:29-32页,69-72页,215-216页
    [100] Yakhot V,Orszag S A.Renormalization Group Analysis of Turbulence.ScientificComputing.1986:51-52P
    [101]苏石川.影响增压柴油机性能与排放主要因素的理论与试验研究.浙江大学博士学位论文.2003:19-20页
    [102]曾文,宋崇林.异辛烷HCCI发动机燃烧特性的大涡数值模拟.车用发动机.2009(4):12-13页
    [103]周磊,解茂昭,贾明.燃油喷雾过程的大涡模拟研究.内燃机学报.2009(3):201-203页
    [104]李向荣,苟晨华,孙柏刚.柴油机喷雾混合过程数值模拟的发展与现状.车用发动机.2004(4):11-12页
    [105]叶剑.135柴油机燃烧过程数值模拟.大连理工大学硕士学位论文.2008:14-15页
    [106] Bird,R.B, Stewart,E.W.Transport phenomena.New York:1966
    [107] EI Wakil,M.M,Ueyhara,O.A.A theoretical investigation of the heating-up periodof injected fuel droplets vaporizing in air.NACA Technical Note.1954
    [108] Ranz,W.E,Marshall,W.R.Evaporation from drops-partsⅠ.Chem.Eng.Prog,1952(48):141-146P
    [109] David P,Schmidt.A Numerical Study of Cavitating Flow Through Various NozzleShapes.SAE971597
    [110] Huh,K.Y,Gosman,A.D,A Phenomenological Model of Diesel SprayAtomization. In Proceedings of The International Conference on MultiphaseFlows.1991(2):6-7P
    [111] Magnussen,B.F, Hjertag.B.H. On Mathematical Modeling of TurbulentCombustion with Special Emphasis on SOOT Formation and Combustion.TheCombustion Institute.1976:719-729P
    [112] Abraham,J. Bracco,F.V. Comparison of computed and measured Premixedcharge engine combustion.Combustion and Flame.1985(60):309-322P
    [113] Patterson,M.A,Kong,S-C,HamPson,G.J. Modeling the Effects of FuelInjection Characteristics on Diesel Engine SOOT and NOx Emissions.SAE940523
    [114] Tenser P A. Kinetics of Dispersed Carbon Formation. Combustion andFlame.1971(17):253-260P
    [115] Hiroyasu H,Kadota T,Arai M. Development and Use of Spray CombustionModeling to Predict Diesel Engine Efficiency and Pollutants Emissions.JSME,1983(26):569-575P
    [116] Fusco A, Knox-Kelecy A L, Foster D. Application of a Phenomenogical SOOTModel to Diesel Engine Combustion.COMODIA,1994:571-576P
    [117] Kazakov A,Foster DE.Modeling of soot formation during DI diesel combustionusing a Multi-step phenomenological model.SAE982463
    [118] Moss JB,Stewart CD,Young KJ.Modeling soot formation and burnout in a hightemperature laminar diffusion flame burning under oxygen-enrichedconditions.Combustion and Flame.1995(101):491-500P
    [119] Frenklach M,Wang H.Detailed modeling of soot particle nucleation andgrowth.Proceedings of the Combustion Institute.1991(3):1559-1566P
    [120] Martinot S,Roesler J.Comparison and coupling of homogeneous reactor and flamelibrary SOOT modeling approaches for diesel combustion.SAE2001-01-3684
    [121] Tao F,Golovitchev V,Chomiak J.A phenomenological model for the prediction ofSOOT formation in diesel spray combustion.Combustion and Flame.2004(136):270-282P
    [122]高孝洪.内燃机工作过程数值计算.国防工业出版社,1986:139-140页,152-153页
    [123]郭锋,资新运,姜大海.车用柴油机排放控制技术进展.环境保护科学.2005(31):1-3页
    [124]吴小江.降低柴油机污染物排放的措施.农机化研究.2006(5):204-205页
    [125]梁贵森,范建新,顾宏中.柴油机颗粒后处理技术研究.车用发动机.2003,24(2):25-26页
    [126]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004:55-60页
    [127]岑可法.姚强.高等燃烧学.浙江大学出版社,2002
    [128]田维.高速直喷柴油机混合气形成动态特性及其对燃烧过程的影响.吉林大学博士学位论文.2010:6-8页
    [129]岑可法.姚强.燃烧理论与污染控制.机械工业出版社,2004
    [130] Zhong B.J.Roslyakov P.V.Study on Prompt NOxEmission in Boilers.Journalof Thermal Science.1996(5):8-9P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700