用户名: 密码: 验证码:
高速铁路沥青混凝土轨下基础结构行为与材料设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内水泥混凝土无砟轨道被广泛采用,然而水泥混凝土材料脆性大、刚度高,相应轨下基础存在易开裂、噪声强、适应路基变形能力差、维护极其困难等问题。密实型沥青混凝土兼具强度与柔性且施工快速,具有防水、减振、抗裂、适应能力强等优点,可作为新型轨下基础材料。然而,高速铁路的高运行速度、高平顺性和高安全性对轨下基础结构的稳固性和耐久性提出了极高要求,使得开展结构行为与材料设计研究成为沥青混凝土轨下基础工程应用的必要前提。
     基于此,本文依托国家自然科学基金项目“高速铁路沥青混凝土轨下基础结构行为与指标体系”(No.50978222)、铁道部科技发展计划项目“无砟轨道路基面防水材料试验研究”(No.2007G042-N)以及西南交通大学博士创新基金项目“铁路沥青混凝土轨下基础材料指标体系”(2010),充分考虑铁路沥青混合料功能特性和工况环境,对沥青轨下基础结构形式分类、计算分析理论、力学行为特征、减振降噪性能、材料组成设计以及现场工程应用等进行了较为系统的研究。主要完成的工作和相应成果有:
     首先,开展文献与工程调研,系统归纳了国内外铁路沥青混凝土工程应用概况。将沥青混凝土轨下基础结构形式划分为灌注固结式(PAS)、路肩防水式(WAS)、垫层隔离式(L4S)和面层支撑式(SAS)。WAS相应材料称为防水层沥青混合料(SAMI),而IAS和SAS相应材料称为全断面沥青混合料(RACS)。对铁路轨道路基与公路柔性路面的结构理论以及沥青混合料配合比设计方法进行了归纳与借鉴,指出层状粘弹性理论与马歇尔设计方法分别是沥青混凝土轨下基础结构力学行为与材料组成设计研究的基础。
     其次,通过理论分析与推导,对IAS和SAS结构建立了基于层状粘弹性体系的沥青混凝土轨下基础简化分析模型。列车荷载竖向传递分析中,引入了扣件系统缓冲系数κ,得到了单个扣件系统所承受的最大压力Rd,再由叠加原理,将轨枕和轨道板对列车荷载的分担过程分别采用多条形非均布和单矩形均布的模式简化处理,并将传递后的列车荷载统一采用当量圆荷载作为层状模型的荷载输入。层状模型的粘弹性解由相应的弹性解通过“对应法则”得到,并以模型顶部竖向变形和沥青层底最大拉应力为分析指标,提出了轨下基础沥青层厚度准静态计算方法。
     然后,利用通用有限元软件ABAQUS,以路基面竖向加速度和变形、沥青层底横纵向水平拉应变为关键力学指标,采用线弹性本构对沥青轨下基础进行了结构选型计算,得出沥青层置于上基床表层为最优形式。针对优选的沥青有砟(RAC-T)和无砟结构(RAC-S),采用沥青混合料蠕变试验数据,通过广义Maxwell模型拟合得到的Prony级数参数进行线粘弹性有限元分析,揭示了沥青轨下基础结构的主要动力行为特征:
     ●列车时速160km至400km下,RAC-T和RAC-S结构的路基面竖向加速度最大幅值范围分别约±25m/s2和-15/+10m/s2,且衰减后幅值总体上随车速提高而增大,但车速基本不影响路基面竖向变形和沥青层底水平应变。
     ●增大沥青层厚度不仅可减小路基面竖向加速度幅值,也可减小路基面竖向变形及沥青层底的拉应变水平,其中厚度30cm的路基面竖向加速度及变形要比5cm时分别约减小20%和30%,同时沥青层厚小于10cm时应变响应幅值较大且波动特征明显。然而,当厚度超过20cm后各响应值随沥青层厚变化的差异减小。
     ●提高沥青层模量能略微减小路基面竖向加速度,但可显著减小竖向变形。沥青层底应变水平随沥青层模量的增大而显著减小,但模量提高到一定程度后沥青层底应变水平减小有限。轨下基础沥青层宜选择10-20cm厚较高模量密实型沥青混合料。
     再次,简要阐明铁路噪声振动的产生及传播机理,并通过ABAQUS程序对沥青轨下基础减振降噪性能进行了验证计算。由降噪分析,IAS和SAS相比S0可分别减小噪声水平达1.9-2.2dB和0.3-0.4dB;增厚沥青层和降低温度仅能降噪约0.1-0.2%,而车速由350km/h降到200km/h可降噪逾2%。由减振分析,有砟和无砟IAS结构的振动要比相应传统轨下基础振动分别减小约58%和71%;振动水平总体随车速提高而增大,但300-400km/h车速下的振动随车速变化程度比200-300km/h相应程度大2倍以上;沥青层由10cm增厚到20cm,轨下基础振动降幅超过10%,而沥青层厚由20cm到30cm时,其降幅仅约1%:沥青层动回弹模量8000-15000MPa下振动较低。
     再然后,采用30年极端最低气温将铁路沥青混合料应用气候划分为热区(>-9℃)、温区(≤-9℃>-21.5℃)和寒区(≤-21.5℃)。基于气候分区与结构力行为,开展混合料的室内配合比试验,建议SAMI和RACS级配类型分别为SAMI-10和RACS-25,并对二者提出以空隙率1%≤Va≤3%,渗透系数K≤10-4cm/s,标准马歇尔稳定度MS≥5kN,冻融劈裂强度比TSR(热区≥60%、寒区≥70%),低温线收缩系数C≤30με/℃和以1%≤Va≤3%,K≤10-4cm/s,MS≥8kN,热区TSR≥75%、寒区TSR≥85%,C≤30με/℃,抗弯拉强度RB≥4MPa及低温蠕变速率BS≥120με/s/MPa为技术指标体系的材料组成设计方法。
     最后,系统归纳了SAMI应用性施工,并借鉴公路沥青路面施工技术对包括RACS在内的轨下基础沥青混合料施工方案进行了分析,主要包括施工时序与混合料的准备、拌和、运输、摊铺、压实及质量控制,其中温度控制和施工连续是关键。
     研究表明,轨下基础路基面设置沥青层能起到防水隔渗、减振降噪和整体强化功能,有利于高速铁路线下土工基础的长期稳定。本文是国内率先针对高速铁路沥青混凝土轨下基础结构行为与材料设计开展的综合性研究,其成果对沥青混凝土轨下基础在我国高速铁路建设中的工程应用有一定的理论参考价值。
Presently the cement concrete ballastless track is widely applied in China's high-speed rail lines. However, due to high brittleness and stiffness of the cement concrete materials the railway substructure is easy to crack. In addition, it causes high noise level, poor resistance to subgrade deformation and difficulty in maintenance. Dense asphalt concrete with the characteristics of considerable strength and flexibility as well as easy construction should be one of the most important materials for new types of substructures in high-speed lines. However to meet the high level of traffic speed, ride quality and safety of the high-speed rails the substructures require high stability and durability. This increases the need for research on the structural behavior and asphalt mixture design of railway substructure.
     This research presents a key and comprehensive work on the classification, visco-elastic modeling, dynamic behavior, noise attenuation and vibration control, mix design and field construction of asphalt railway substructures. The required task was accomplished through literature review, field investigation, laboratory testing and numerical analysis. The research was jointly-supported by the National Natural Science Foundation of China(Project No.50978222), and the China's Ministry of Railway (Project No.2007G042-N) as well as Southwest Jiaotong University (2010Doctoral Innovation Project). The major outcomes of this research are summarized as follows,
     Firstly, by the literature review and field investigation at home and abroad, the related substructures were classified Pouring Asphalt Substructure (PAS), Waterproofing Asphalt Substructure (WAS), Isolating Asphalt Substructure (IAS) and Supporting Asphalt Substructure (SAS). The material of WAS was named SAMI (Surface Asphalt Mixture Impermeable), and the related name of both IAS and SAS was RACS (Railway Asphalt Concrete Substructures). By reviewing the structural theories of track-subgrade and flexible pavement as well as the method of asphalt mix design in highway, considered the layered visco-elastic theory and the Marshall Design as the basis of the research on structural behavior and mix design respectively for railway asphalt substructures.
     Secondly, by analyzing the train loading features and summarizing the layered visco-elastic mechanics, a simple mathematical analysis with layered visco-elastic system was modeling for IAS and SAS, and a simple calculation method of the predicted depth for asphalt layer was forming with quasi-static analysis based on the model. Meanwhile, a parameter K introduced in this model was to evaluate the vertical buffering capacity of the fastener system, and then the maximum pressure Rd of a single fastener was calculated. Based on superposition principle, the vertical load transforming of sleepers and slabs were simply modeling with multiple non-uniformly distributed strip load and single uniformly distributed rectangular load respectively, then expressed both of them using the equivalent circular load as the input for the layered system. By doing this, the simple predicted method for the depth of asphalt layer could perform using the vertical deflectometer on subgrade surface layer and the largest horizontal tension stresses on the bottom of asphalt layer. Meanwhile, the visco-elastic solution of layered model derived from the related elastic solution by the "corresponding principle" between the elastic and visco-elastic.
     Thirdly, according to the numerical analysis by means of ABAQUS software, the vertical acceleration and deformation on subgrade surface as well as the transversal and longitudinal tension strain on the bottom of asphalt layer were taken as the key mechanical parameters. By comparison using linear elastic constitution, the structures with asphalt layer on the subgrade surface named RAC-T and RAC-S were considered as the optimum substructure patterns for ballasted and ballastless track respectively. From the linear visco-elastic FEM analysis with the Prony series parameters fitted in Maxwell model from the creep test of asphalt mix, the asphalt concrete substructures have the major mechanical behaviors as follows,
     ·To the different train speeds from160km/h to400km/h, the maximum acceleration amplitude of the subgrade surface in asphalt ballasted and ballastless trackbed was about±25m/s2and-15/+10m/s2respectively, and the attenuation amplitude generally increased over the speed. In addition, the train speed effect was negligible to the vertical deformation on the top of subgrade and to the horizontal strain on the bottom of asphalt layer.
     ·The four indices could be lower if asphalt layer thickness increased. The acceleration and deformation reduce about20%and30%respectively when the asphalt layer increased from5cm to30cm. Meanwhile, the strains obviously showed fluctuated feature with larger amplitude in the thickness less than10cm. However, the difference among each response was not too much if the thickness was over20cm.
     ·If modulus of asphalt layer increased the acceleration could be slightly lower, but the modulus can positively effect on the vertical deformation and the strain response as well, even though the lowering degree was limited when the modulus was great enough. Therefore, the dense-graded asphalt mix with higher modulus and10-20cm thickness is good for RACS.
     Fourthly, the mechanizations of noise and ground vibration induced by train were concisely reviewing by theoretical analysis. From the noise evaluation, the performance of noise attenuation from IAS and SAS were less about1.9-2.2dB and0.3-0.4dB respectively, and the thickness increased or temperature decreased of the asphalt layer can make the noise lowering about0.1-0.2%. However, the train speed decreased from350km/h to200km/h can make the noise decreased more than2%. As for the vibration, the level of the RAC-T and RAC-S were lower about58%and71%than the related standard structure respectively. The vibration of RAC-S was generally increased over the train speed increased while the rate of vibration change would increase about twice when the speed over300-400km/h more than200-250km/h. The vibration decreased more than10%when the depth of asphalt layer increased from10cm to20cm, but when the depth over20cm to30cm the decreased degree was only about1%. The vibration level would be lower when the asphalt layer with appropriate resilient modulus about8000-15000MPa.
     Fifthly, taking the climatic zones of highway asphalt mix as a reference, the railway asphalt mix climatic zones was divided as three parts as the Hot (>-9℃), the Warm (≤·9℃,>-21.5℃) and the Cold (≤-21.5℃) using the proposed specification of the minimum temperature in past30years. Based on the zones and the structural behaviors as well as the lab tests results, the optimum gradations for the mix of SAMI and RACS were in recommendation as SAMI-10and RACS-25, respectively. The mix design method was put forward with the key parameters as Permeability Coefficient (K≤10-4cm/s), Air Voids1%≤Vg≤3%), Marshall Stability (MS≥5kN), Tensile Strength Ratio (Hot-zone TSR≥60%, Cold-zone TSR≥70%) and Linear Contraction Coefficient in Low Temperature (C≤30με/℃) for SAMI. The Bending-Tension Strength (RR≥4MPa) as well as Bending Creeping Ratio in Low Temperature (BS≥20με/s/MPa) was added more with the above5terms (except for Hot-zone TSR≥75%, Cold-zone TSR≥85%) for RACS.
     Finally, according to the experiences of highway pavement, the field construction technologies of SAMI was summarized and the construction proposal of RACS was optimally analyzed, including the construction time arrangement and the related preparation, production and transportation as well as paving, compaction and quality control of asphalt mix. Meanwhile, the processing continuity including temperature control is the key point.
     The conclusions showed that RACS has perfect functions in waterproofing and strengthening, which is exactly beneficial to the long-term service for the high-speed rails. The findings and recommendations of this research, as the first comprehensive framework on domestic asphalt railway substructure, contribute a theoretical reference for the engineering application of asphalt substructure for China's high-speed railway network construction.
引文
[1]中华人民共和国铁道部.中长期铁路网规划(2008调整)[EB/OL]. http://www.china-mor.gov.cn/tljs/tlt/201101/t20110108_6461.html,2011-01-08/2011-06-21.
    [2]何华武.中国高速铁路创新与发展[C].第七届世界高速铁路大会科学委员会.第7届世界高速铁路大会论文集(上),北京:中国铁道出版社,2010,1-6.
    [3]何华武.我国客运专线应大力发展无碴轨道[J].中国铁路,2005,(1):11-15.
    [4]BROWN E, KANDHAL P, ROBERTS F, et al. Hot Mix Asphalt Material, Mixture Design and Construction [M]. National Center for Asphalt Technology (NCAT),3rd Edition, NAPA Research and Education Foundation, Lanhan, Maryland,2009,720 pages.
    [5]CREEGAN P, MONISMITH C. Asphalt-concrete Water Barriers for Embankment Dams [M]. ASCE Press, New York,1996.
    [6]日本国有铁道研究所编.土工结构物设计标准和解说[M].陈耀荣等译.北京:中国铁道出版社,1982.
    [7]MOMOYA Y. New Railway Roadbed Design [J]. Railway Technology Avalanche,2007, (20):118.
    [8]MOMOYA Y, SEKINE E. Reinforced Roadbed Deformation Characteristics under Moving Wheel Loads [J]. Quarterly Report of Railway Technical Research Institute (RTRI),2004,45(3):162-168.
    [9]MOMOYA Y, SEKINE E, TATSUOKA F. Deformation Characteristics of Railway Roadbed and Subgrade under Moving-Wheel Load [J]. Soils and Foundations, Japanese Geotechnical Society,2005,45(4):99-118.
    [10]MOMOYA Y, SEKINE E. Performance-based Design Method for Railway Asphalt Roadbed [J]. Doboku Gakkai Ronbunshuu E,2007,63(4):608-619.
    [11]MOMOYA Y, HORIIKE T, Ando K. Development of Solid Bed Track on Asphalt Pavement [J]. Quarterly Report of RTRI,2002,43(3):113-118.
    [12]INUI S, UMEDA S, IWASAKI I. Practical Performance of the Track System with Asphalt Treating Method [J]. Quarterly Report of RTRI,1975,16(4):154-155.
    [13]EUROPEAN ASPHALT PAVEMENT ASSOCIATION (EAPA). Asphalt in Railway Tracks [EB/OL].http://www.eapa.org/usr_img/position_paper/asphalt_railway_tracks.pdf, 2003-10/2010-06-22.
    [14]RAIL.ONE. GETRAC(?)-the Ballastless Track System on Asphalt [EB/OL]. http://www. railone.de/fileadmin/dateien/03_Broschueren/EN/Getrac_en_01.pdf, Pfliederer Track Systems,2007-07/2011-06-22.
    [15]LEYKAUF G, LECHNER B, STAHL W. Trends in the Use of Slab Track/Ballastless Tracks [J]. Railway Track Review (RTR),2006,46(Special):10-17.
    [16]RAIL.ONE. Innovative Technology for the Rail Transportation of Tomorrow [EB/OL]. http://www.railone.com/fileadmin/dateien/03_Broschueren/EN/EN_Fernverkehr_201008 20.pdf, Pfliederer Track Systems,2010-08-20/2011-06-22.
    [17]LECHNER B. Ballastless Tracks on Asphalt Pavements Design and Experiences in Germany [C]. Proceedings of the 7th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim,2005,2729:5-20.
    [18]RAIL.ONE. ATD-G and RHEDA CITY GREEN-The Green Tracks for Urban Traffic [EB/OL].http://www.railone.com/fileadmin/dateien/03_Broschueren/EN/gruene_gleise_e n_01.pdf, Pfliederer Track Systems,2007-06/2011-06-22.
    [19]IWNICKI S. Future Trends in Railway Engineering [C]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2009, 23(12):2743-2750.
    [20]RAIL AND RECHERCHE. Asphalt Travels from Highways to Railway [J]. Jan/Feb/Mar,2005, (34):23-27.
    [21]ROBINET A, CUCCARONI A. Sub-ballast Layer Made of Bituminous Material. Proceedings of 7th Word Congress on High-speed Rail, Beijing:China Railway Press, 2010:727-730.
    [22]GOURVISH T. The High Speed Rail Revolution:History and Prospects [R]. HS2, Published on Mar.11,2010,44 pages.
    [23]TEIXEIRA P, LOPEZ-PITA A. Viability of Using Bituminous Subballast Layer on High-Speed Ballasted Tracks [C]. Proceedings of the BCRA2005-International Conference on Bearing Capacity of Roads, Railways and Airfields Conference, Trondheim, Norway,2005:27-29.
    [24]BUONNANO A. The Use of Bituminous Mix Subballast in the Italian State Railways [C]. The 2nd Eurasphalt and Eurobitume Congress, Barcelona,2000.
    [25]TEIXEIRA P. State of the Art on the Use of Bituminous Subballast on European High-Speed Rail Line [C]. Workshop on Railroad Track Design Including Asphalt Trackbed, BCR2A conference-Eight International Conference on Bearing Capacity of Roads, Railways and Airfields. The University of Illinois at Urbana-Campaign, USA,2009.
    [26]TEIXEIRA P, LOPEZ-PITA A, Casas C, et al. Improvements in High-Speed Ballasted Track Design Benefits of Bituminous Subballast Layers [J]. Transportation Research Record:Journal of the Transportation Research Board, No.1943, Transportation Research Board of the National Academies,Washington, D.C.,2006:43-49.
    [27]TEIXEIRA P, FERREIRA P, LOPEZ-PITA A, et al. The Use of Bituminous Subballast on Future High-Speed Lines in Spain:Structural Design and Economical Impact [J]. International Journal of Railway,2009,2(1):1-7.
    [28]MARKINE V, MAN A, JOVANOVIC S, et al. Optimum Design of Embedded Rail Structure for High-speed Lines [EB/OL]. http://www.esveld.com/Download/ TUD/RE2000.pdf, Accessed on 2011-06-23.
    [29]ESVELD C. Recent developments in slab track [J]. European Railway Review,2003, (2):81-85.
    [30]HUURMAN M., MARKINE V, MAN A. Design Calculations for Embedded Rail in Asphalt [C]. Proceedings of Railway Engineering-2002 Conference, London, UK,3 rd-4th July 2002. ISBN 0-947644-49-0.
    [31]ESVELD C. Developments in High-Speed Track Design [EB/OL]. http://www.esveld.com/Download/TUD/ANT187_Keynote_Esveld_web.pdf, Accessed on 2011-06-28.
    [32]ROSE J, TEIXEIRA P, VEIT P. International Design Practices, Applications, and Performances of Asphalt/Bituminous Railway Trackbeds, GEORAIL 2011 International Symposium, Paris, France, May 19-20,2011.
    [33]READ J, WHITEOAK D. The Shell Bitumen Handbook [M]. The 5th Edition, The Shell Bitumen Handbook, Chapter 20.2, Railway Applications,2004, pp.425.
    [34]ROSE J, BROWN E, OSBORNE M. Asphalt Trackbed Technology Development:The First 20 Years [J]. Transportation Research Record 1713, Transportation Research Board, 2000:1-9.
    [35]ROSE J, TEIXEIRA P, RIDGWAY N. Utilization of Asphalt/Bituminous Layers and Coatings in Railway Trackbeds-A Compendium of International Applications [C]. Proceedings of the 2010 Joint Rail Conference, JCR2010-36146, Urbana, Illinois, April 27-29,2010.
    [36]ASPHALT INSTITUTE. Hot Mix Asphalt for Quality Railroad and Transit Trackbeds. Informational Series IS-137,1998, pp.10.
    [37]ASPHALT INSTITUTE. The Asphalt Handbook, MS-4,7th Edition, Chapter 15.3, Railway Roadbeds,2007, pp.832.
    [38]HUANG Y, LIN C, DENG X, et al. KENTRACK-A Computer Program for Hot-Mix Asphalt and Conventional Ballast Railway Trackbeds [M]. Asphalt Institute (Publication RR-84-1) and National Asphalt Pavement Association (Publication QIP-105),1984.
    [39]ANDERSON J, ROSE J. In-Situ Test Measurement Techniques within Railway Track Structures [C] 2008, ASME/IEEE/ASCE Joint Rail Conference Proceedings, Wilmington, DE, Apr.2008,21 pages.
    [40]ROSE J. ANDERSON J. Long-Term Performance of Asphalt Underlayment Trackbeds for Special Trackbed Applications [C]. American Railway Engineering and Maintenance-of-Way Assoc.2006 Ann. Conf. Proc, Louisville, KY, Sep.2006,27 pages.
    [41]ROSE J, STITH J. Pressure Measurements in Railroad Trackbeds at the Rail/Tie Interface Using Tekscan Sensors [C]. American Railway Engineering and Maintenance-of-Way Association,2004 Annual Conf. & Expo., Nashville, TN, Sep.2004,21 pages.
    [42]ROSE J, LI D, WALKER L. Tests and Evaluations of In-Service Asphalt Trackbeds [C]. Proceedings of the American Railway Engineering and Maintenance-of-Way Association, 2002 Annual Conference & Exposition, Washington, DC, Sep.2002,30 pages.
    [43]ROSE J. Asphalt Trackbeds:Selection, Design, Installation Practices, Long-Term Performances and Material Properties [C]. Proceedings of Railway Engineering-2000 the 3rd International Conference and Exhibition, London, July 5-6,2000.
    [44]COPE D. Construction and Experience of Asphalt Based Track on British Railways [C]. Procedings 2nd Eurobitume Symp, Cannes, Oct.1981:241-244,, Reprinted in a Special Publication of Asphalt Technology, Jan.1982. Institute of Asphalt Technology, Dorking.
    [45]许琰,李家林.沥青道床新型轨下基础[J].铁道建筑,1980,(1):4-9.
    [46]黄长绥,孙中正.铁路沥青道床的应用与发展[J].铁道工程学报,1991,(3):132-140.
    [47]刘连荣.对我国高速铁路轨下基础型式和强化基床的探讨[J].铁道标准设计,1994,(5):7-11.
    [48]刘彬,魏永幸.客运专线铁路无砟轨道路基防排水体系的思考[J].铁道工程学报,2008,(6):36-39.
    [49]方明镜,魏永幸,邱延峻.客运专线路基面防水设计方案[J].路基工程,2008,(5):20-21.
    [50]邱延峻,魏永幸.客运专线无砟轨道路基面防水型沥青混合料指标体系与配制技[J].铁道学报,2008,30(5):85-91.
    [51]TALBOT A. Second Progress Report of the Special Committee on Stresses in Railroad Track [C]. Proceedings of the AREA, Vol.21,1920, pp.645-814.
    [52]TALBOT A. Stresses in Railroad Track-Reports of the Special Committee on Stresses in Railroad Track [C]. Seventh Progress Report, American Railway Engineering and Maintenance of Way Association, AREMA,1934.
    [53](日)佐藤吉彦.新轨道力学[M].徐涌译,北京:中国铁道出版社,2001.
    [54]TIMOSHENKO S. Method of Analysis of Statical and Dynamical Stresses in Rail [C]. Proceedings of 2nd International Cong. for Appl. Mech., Zurich,1926, pp.407-418.
    [55]铁木辛克.工程中的振动问题[M].胡人礼译,北京:人民铁道出版社,1978.
    [56]沙湖年慈.铁路线路[M].铁道部设计总局技术处译,北京:人民铁道出版社,1959.
    [57]LYON D. The Calculation of Track Forces due to Dipped Rail Joints, Wheel Flats and Rail Welds [M]. The Second ORE Colloquium on Technical Computer Programs,1972.
    [58]JENKINS H, et al. The Effect of Track and Vehicle Parameters on Wheel/Rail Vertical Dynamic Forces [J]. Railway Engineering Journal,1974,3(1):2-16.
    [59]SATO Y, MIURA S. Tolerance of Bent-Angle between Railway Structures Determined by Running Safety and Running Comfort [J]. Quarterly Report of RTR1,1973,14 (3):147-150.
    [60]SATO Y. Study on High Frequency Vibration in Track Operated with High Speed Trains, Quarterly Report of RTRI,1977,24(2):109-114.
    [61]AHLBECK, D, et al. The Developmemt of Analytical Models for Railroad Track Dynamics [M]. Railroad TrackMechanical & Technology, Pergamon Press,1978.
    [62]NEWTON S, CLARK R. An Investigation into the Dynamic Effects on the Track of Wheel Flats on Railway Vehicles [J]. Journal of Mechanical Engineering Science,1979, 21(4):287-297.
    [63]CLARK, R, P. DEAN A, ELKINS J, et al. An Investigation into the Dynamic Effects of Railway Vehicle Running on Corrugated Rails [J]. Journal of Mechanical Engineering Science,1982,24(2):65-76.
    [64]GRASSIE S, GREGORY R, HARRISON D, et al. The Dynamic Response of Railway Track to High Frequency Vertical/Lateral/Longitudinal Vibration Excitation [C]. Proceedings of Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1982,24(2):77-102.
    [65]CAI Z. Modeling of Rail Track Dynamics and Wheel Rail Interaction[D]. PhD Dissertation, Dep. of Civil Eng., Queen's University, Kingston, Ontario, Canada,1992.
    [66]FERMER M, NIELSEN J. Wheel/Rail Contact Forces for Flexible Versus Solid Wheels Due to Tread Irregularities[J]. Vehicle System Dyna.,1994,23(Suppl.):142-157.
    [67]RIPKE B, KNOTHE K. Simulation of High Frequency Vehicle-Track Interactions. Interaction of Railway Vehicles with the Track and its Substructure, Vehicle System Dynamics,1995,24(Suppl.):72-85.
    [68]OSCARSSON J, DAHLBERG T. Dynamic Train/Track/Ballast Interation-Computer Models and Full-Scale Experiments [J]. Vehicle System Dynam.,1998,28(Suppl.):73-84.
    [69]FROHLING R. Low Frequency Dynamic Vehicle/Track Interaction:Modelling and Simulation [J]. Vehicle System Dynamics,1998,28(Suppl.):30-46.
    [70]OSCARSSON J. Dynamic Train-Track Interaction:Linear and Non-linear Track Models with Property Scatter [D]. PhD Dissertation, Dept of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden,2001.
    [71]李定清.轨道接头区轮轨动力效应的研究[D].博士学位论文,长沙:长沙铁道学院,1984.
    [72]王澜.轨道结构随机振动理论及在轨道结构减振研究中的应用[D].博士学位论文,北京:铁道科学研究院,1988.
    [73]翟婉明.车辆-轨道垂向系统的统一模型及耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [74]翟婉明,蔡成标,史炎等.车辆-轨道相互作用统一模型及软件的试验验证[J].铁道学报,1996,18(4):42-46.
    [75]雷晓燕,杜厚智.轨道结构空间自由振动分析[J].铁道工程学报,1998,(1):108-114.
    [76]雷晓燕,陈水生.高速铁路轨道结构空间动力分析[J].铁道学报,2000,22(5):76-80.
    [77]喻天胜,林红.移动荷载作用下的轨道-地基系统的动力响应[J].武汉理工大学学报,2001,23(9):33-35.
    [78]翟婉明.车辆-轨道耦合动力学研究的新进展[J].中国铁道科学,2002,23(2):1-14.
    [79]HEATH D., WATERS J, SHENTON M, et al. Design of Conventional Rail Track Foundation [J]. Proceedings of the Institution of Civil Engineers,1972,51(3):251-267.
    [80]RAYMOND G. Design for Railroad Ballast and Subgrade Support [J]. Journal of the Geotechnical Engineering Division,1978,104(GT1):45-60.
    [81]LI D, SELIG E. Method for Railroad Track Foundation Design I:Development [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997a,124(4):316-322.
    [82]LI D, SELIG E. Method for Railroad Track Foundation Design Ⅱ:Application [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997b,124(4):322-329.
    [83]ESVELD C. Modern Railway Track [M]. MRT Productions, Zaltbommel, the Netherlands,2001.
    [84]SELIG E, WATERS J. Track Geotechnology and Substructure Management [M]. Thomas Telford Publications, London,2000.
    [85]SVEC O, RAYMOND G. Nonlinear Analysis Rail Track and Support [C]. Second International Conference on Numerical Methods in Geomechanics, ASCE, New York, USA,1976, pp.540-550.
    [86]TAYABJI S, MARSHALL T. Considerations in the Analysis of Conventional Railway Track Support System[J]. Transportation Eng. Journal, ASCE,1977,103(TE2):279-292.
    [87]ADEGOKE C, CHANG C. SELIG E. Study of Analytical Models for Track Support Systems [J]. Transportation Research Record 733, TRB,1979, pp.12-20.
    [88]HUANG Y. Pavement Analysis and Design [M]. The 2nd Edition, Prentice Hall, ISBN: 0131424734,2004:1-3.
    [89]STEELE D. Application of the Classification and Group Index in Estimating Desirabe Subbase and Total Pavement Thickness [C]. Proceddings of Highway Research Board, 1945,pp.388-392.
    [90]POTER O. Development of the Original Method for Highway Design:Symposium on Development of CBR Flexible Pavement Design Method for Airfields [C]. Transactions, ASCE, pp.461-467.
    [91]BARBER E. Application of Triaxial Compression Test Reseults to the Calculation of Flexible Pavement Thickness [C]. Proceedings of Highway Research Board,1946, pp.26-39.
    [92]MCLEOD N. Some Basic Problems in Flexible Pavement Design [J]. Proceedings of Highway Research Board,1953, pp.91-118.
    [93]BURMISTER D. The General Theory of Stresses and Displacements in Layered Systems Ⅰ [J]. Journal of Applied Physics,1945,16(2):89-94.
    [94]BURMISTER D. The General Theory of Stresses and Displacements in Layered Systems Ⅱ [J]. Journal of Applied Physics,1945,16(3):126-127.
    [95]BURMISTER D. The General Theory of Stresses and Displacements in Layered Systems Ⅲ [J]. Journal of Applied Physics,1945,16(5):296-302.
    [96]牟岐鹿楼.表面局部受刚体压缩的半无限弹性体的三维应力问题[J].日本机械学会论文集,第21卷,第111号,1955.
    [97]牟岐鹿楼.表面受剪切荷载作用的半元限弹性体的三维应力问题[J].日本机械学会论文集,第22卷,第119号,1956.
    [98]SCHIFFAM R. Gerneral Analysis of Stresses and Displacements in Layered Elastic Systems [C]. Proceedings of the International Conference on the structureal Design of Asphalt Pavements, Michigan,1962:365-375.
    [99]VERSTRAETEN J. Stress and Displacements in Elastic Layered Systems [C]. Gerneral Theory-Numerical Calculations in Four Layered Systems with Continuous Interface, Proceedings of the Second International Conference on the Structural Design of Asphalt Pavements,1967.
    [100]PEUTZ M, VAN KEMPEN H, JONES A. Layered Systems under Normal Surface Loads- 'BISTRO' Computer Program [C]. Koninklijke/Shell-Laboratorium, Amsterdam, the Netherlands, HRB,1968,228.
    [101]DE JONG D, PEUTZ M, KORSWAGEN A. Layered Systems under Normal Surface and Tangenitial Surface Loads- 'BISAR' Computer Program [R]. Koninklijke/Shell-L aboratorium, Amsterdam, the Netherlands, External Report AMSR,1973.
    [102]许志鸿.双层弹性体系在圆形均布水平荷载作用下的应力与位移[J].同济大学学报,1978,(4):55-68.
    [103]王凯.N层弹性连续体系在圆形均布垂直荷载作用下的力学计算[J].土木工程学院,1982,(2):65-76.
    [104]王凯.N层弹性连续体系在双圆均布复合荷载作用下的力学计算[J].固体力学学报,1983,(1):136-153.
    [105]王凯.N层弹性滑动体系在双圆均布复合荷载作用下的力学计算[J].西北公路运输科技,1981,(3):15-38.
    [106]WANG K. Analysis and Caculation of Stresses and Displacements in Layered Elestic Systems [J]. Acta Mechanica Sinica, August,1987,3(3):251-260.
    [107]王凯.层状弹性体系理论及其在半刚性基层沥青路面分析中的应用[J].中国公路学报,1990,(4):32-41.
    [108]朱照宏.多层弹性体系应力分析计算程序的编制[R].同济大学,1983:1-33.
    [109]郭文复.多层半无限弹性体在圆形荷载作用下的解析解[J].力学学报,1984,(3):282-289.
    [110]邓学均.弹性多层地基上刚性路面板的力学分析[J].岩土工程学报,1986,(5):31-38.
    [111]吴晋伟.多层路面的应力分析.中南公路工程[J].1983,(2):73-92.
    [112]郭大智.多层柔性路面中应力与位移计算[C].中国公路学会道路工程学会一九八三年年会论文选集,1984:183-186.
    [113]中华人民共和国行业标准.公路沥青路面设计规范(JTG D50-2006)[S].北京:人民交通出版社,2006.
    [114]KERKHOVEN R, DORM ON G. Some Considerations on the California Bearing Ratio Method for the Design of Flexible Pavment [M]. Shell Bitumen Monograph, No.1.
    [115]SAAL R, PELL P. Kolloid-Zeitschrif MI [M]. Helf 1,1960, pp.61-71.
    [116]AASHTO. AASHTO Guide for Design of Pavement Structures [S]. American Association of State Highway and Transportation Officials, Washington, D.C.,1993.
    [117]RICHARD W, TIMM D, WEST R. Phase iii NCAT test Track findings. Report of NCAT, Dec.2009, Auburn, AL.
    [118]CRAWFORD C. The Rocky Road of Mix Design [M]. National Asphalt Pavement Association, Hot Mix Asphalt Technology, Winter 1989.
    [119]RICHARDSON C. The Modern Asphalt Pavement [M]. John Wiley & Sons, New York, Second Edition,1972.
    [120]VALLERGA B, LOVERING W. Evolution of the Hveem Stabilometer Method of Designing Asphalt Paving Mixtures [C]. Proceedings of Association of Asphalt Paving Techonologists, Vol.54,1985.
    [121]WHITE T. Marshall Procedures for Design and Quality Control of Asphalt Mixtures [C]. Proceedings of Association of Asphalt Paving Techonologists, Vol.54,1985.
    [122]FOSTER C. Development of Marshall Procedures for Designing Asphalt Paving Mixtures [M]. National Asphalt Pavement Association, NAPA IS 84,1982.
    [123]KANDHAL P, KOEHLER W. Mashall Mix Design Method:Current Practices [C]. Proceedings of Association of Asphalt Paving Technologists, Vol.54,1985.
    [124]FHWA. Background of Superpave Asphalt Mixture Design and Analysis [R]. Federal Highway Administration, Report No. FHWA-SA-95-003,1995.
    [125]KANDHAL P, COOLEY L. The Restricted Zone in the Superpave Aggregate Gradation Specification. National Cooperative Highway Research Program NCHRP Report 464. Transportation Research Board, National Research Council, DC,2001.
    [126]HAND A, EPPS A. Impact of Gradation Relative to Superpave Restrict zone on Hot-Mix Asphalt Performance [J], Transportation Research Record No.1767. Transportation Research Board, National Research Council, Washington, DC,2001:158-166.
    [127]ZHANG J, COOLEY L, HURLEY G Effect of Superpave Defined Restricted Zone on Hot Mix Asphalt Performance [R]. Report No. IR-03-04, National Center for Asphalt Technology, Auburn, AL, November.2003.
    [128]MALLICK R, BUCHANAN S, BROWN E, et al. An Evaluation of Superpave Gyratory Compaction of Hot Mix Asphalt [R]. Report No.98-5, National Center for Asphalt Technology, Auburn, AL, Janurary,1998.
    [129]BUCHANAN M, MAREK C, POWELL J. Superpave and the Aggregate Industry [C]. ASTM Committee D04, Road and Paving Materials, Symposium on Expreiences with Superpave Mix Design, Dallas, Texas, Dec.6,2005.
    [130]WESTTRACK FORENSIC TEAM. Superpave Mixture Design Guide [R]. WestTrack Forensic Team Consensus Report, No. FHWA-RD-01-052, Federal Highway Administration, Washington, DC, Feb.2001.
    [131]EPPS J, HAND A, SEEDS S, et al. Recommended Performance-Related Specification for Hot-Mix Asphalt Construction:Results of the Westrack Project [R]. National Cooperative Highway Research Program, NCHRP Report 455, Transportation Research Board, National Academies Press, Washington D.C.,2002.
    [132]WILLIAMS R, STUART K. Evaluation of Laboratory Accelerated Wheel Test Devices [C]. Proceedings, The 9th Road Engineering Association of Asia and Australasia Conference, Wellington, New Zealand, May 1998.
    [133]中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40-2004)[S].中华人民共和国交通部,北京:人民交通出版社,2004.
    [134]陈志忠,于斌,王恒斌Superpave技术现状及对我国沥青路面技术的启示[J].合肥工业大学学报(自然科学版),2002,25(1):71-75.
    [135]袁迎捷.基于Superpave的沥青胶浆流变特性与级配优化研究[D].西安:长安大学博士学位论文,2004.
    [136]叶阳升,罗梅云.浅谈客运专线路基结构与填料标准[C].铁道科学技术新进展—铁道科学研究院五十五周年论文集,提速及客运专线,2005:205-214.
    [137]ROSE J, BRYSON L. Hot Mix Asphalt Railway Trackbeds:Trackbed Materials, Performance Evaluations, and Significant Implications [C]. International Conference on Perpetual Pavements, Columbus, Ohio, Sep.30-Oct.2,2009.
    [138]潘程睿.无砟轨道路基面防水沥青混合料试验研究[D],西南交通大学,2008年.
    [139]章天扬.高速铁路沥青混凝土轨下基础轮轨滚动噪声数值模拟研究[D].西南交通大学,2010年.
    [140]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2011.
    [141]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2006.
    [142]郭大智,任瑞波.层状粘弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [143]周云.粘弹性阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [144]张肖宁.实验粘弹原理[M].哈尔滨:哈尔滨船舶工程学院出版社出版,1991.
    [145]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.
    [146]方明镜,艾长发,邱延峻等.砂粒式沥青混合料低温弯曲蠕变试验研究.中国铁道科学,2010,31(2):12-17.
    [147]李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].博士学位论文,北京:铁道部科学研究院,2000.
    [148]SCRAMM G. Permanent Way Technique and Permanent Way Economy [M]. English Translation by Hans Lange, Otto Elsnen Verlagsgesellschaft Oarmstadt,1961.
    [149]郝瀛.铁道工程[M].北京:中国铁道出版社,1999.
    [150]QIU Y, DENNIS N, ELLIOTT R. Design Criteria for Permanent Deformation of Subgrade Soils in Flexible Pavements for Low-volume Roads [J]. Soils and Foundations,2000,40(1):1-10.
    [151]QIU Y, DENNIS N, ELLIOTT R. Stress Distribution in Subgrade Soils and Application in the Design of Flexible Pavements [J]. Geotechnical Engineering Journal, 1999,30(3):221-233.
    [152]QIU Y, DENNIS N, ELLIOTT R. Deformation Characteristics of Subgrade Soils under Repeated Loading [J]. Geotechnical Engineering Journal,1999,30(2):85-97.
    [153]KIM J, BYRON T, SHOLAR G, et al. Comparison of a Three-Dimensional Viscoelastic Pavement Model to Full-Scale Field Tests [C]. Proc. of 86th Annual Transportation Research Board, Washington, DC,2007.
    [154]KIM J, ROQUE R, BYRON T. Viscoelastic Analysis of Flexible Pavements and Its Reological Effects on Top-down Cracking [J]. J. Mater. Civ. Eng.,2009,21(7):324-332.
    [155]ELSEIFI M, AL-QADI I, YOO P. Viscoelastic Modeling and Field Validation of Flexible Pavements. J. Eng. Mech.,2006,132(2):172-178.
    [156]KIM, J. General Viscoelastic Solutions for Multilayered Systems Subjected to Static and Moving Loads [J]. J. Mater. Civ. Eng.,2011,23 (7):1007-1016.
    [157]孙常新,梁波,杨泉.秦沈客运专线路基动应力响应分析[J].兰州铁道学院学报,2003.22(4):110-112.
    [158]苏谦,蔡英.高速铁路路基结构变形分析[J].路基工程,2000,(1):1-3.
    [159]许俊超,童小东,潘卫东.高速铁路路基结构的动力有限元分析[J].2006,(5):20-22.
    [160]魏永幸,邱延峻.高速铁路无砟轨道路基面支承刚度研究[J].铁道工程学报,2010,(7):15-20.
    [161]蔡成标,翟婉明,王开云.遂渝线路基上板式轨道动力性能计算及评估分析[J].中国铁道科学,2006,27(4):17-22.
    [162]范生波.高速铁路无砟轨道路基动响应测试分析[D].工学硕士学位论文,西南交通大学,2010.
    [163]雷晓燕.铁路轨道结构数值分析方法[M].北京:中国铁道出版社,2008.
    [164]HIBBITT, KARLSSON & SORENSEN, INC. ABAQUS/Standard User.s Manual, ABAQUS/CAE User's Manual, ABAQUS Keywords Manual, ABAQUS TheoryManual [M].HKS Inc.,2010.
    [165]LI Y, METCAL F. Two-step Approach to Prediction of Asphalt Concrete Modulus from Two-phase Micromechanical Models [J]. Material of Civil Engineering,2005, 17(4):407-415.
    [166]ROSE J, BEI S. Comparisons of Railroad Track and Substructure Computer Model Predictive Stress Values and In-Situ Stress Measurements [C]. Proc. of the AREMA, 2004 Annual Conference & Exposition, Nashville, TN, September,17 pages.
    [167]郑健龙,钱国平,应荣华.沥青混合料热粘弹性本构关系试验测定及其力学应用[J].工程力学,2008,25(1):34-41.
    [168]廖公云,黄晓明ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008.
    [169]KIM J, LEE H, Kim N. Determination of Shear and Bulk Moduli of Viscoelastic Solids from the Indirect Tension Creep Test [J]. J. Eng. Mech.,2010,136(9),1067-1075.
    [170]KIM J, SHOLAR G, KIM S. Determination of Accurate Creep Compliance and Relaxation Modulus at a Single Temperature for Viscoelastic Solids [J]. J. Mater. Civ. Eng.,2008,20(2):147-156.
    [171]THOMPSON D. Theory of Generation of Wheel/Rail Rolling Noise. In:V.V. Krylov, Editor, Noise and Vibration from High Speed Trains [M]. Thomas Telford Publishing, London,2001, pp.3-26.
    [172]MAUCLAIRE B. Noise Generated by High-speed Trains. New Information Acquired by SNCF in the Field of Acoustics Owing to the High-speed Test Programme [C]. Proc. Inter. Noise 90,1990,371-374.
    [173]OERTLI J. The STAIRRS Project, Work Package 1:A Cost Effectiveness Analysis of Railway Noise Reduction on a European Scale [J]. J. Sound Vib.,2003,267,431-437.
    [174]TRUAX BARRY, Sound Propagation [EB/OL]. http://www2.sfu.ca/sonic-studio/handbook/Sound_Propagation.html, Accessed on 24-April-2010.
    [175]HARRIS C. Absorption of Sound in Air versus Humidity and Temperature [J]. Journal of the Acoustical Society of America,40, pp.148.
    [176]INGARD U. A Review of the Influence of Meteorological Conditions on Sound Propagation [J]. Journal of the Acoustical Society of America,25, pp.405.
    [177]WIENER, KEAST. Experimental Study of the Propagation of Sound over Ground [J]. Journal of the Acoustical Society of America,31, pp.724.
    [178]AYLOR D. Noise Reduction by Vegetation and Ground [J]. Journal of the Acoustical Society of America,51, pp.197.
    [179]DAVIS B. Reducing Noise from Forges and Foundries-The Handbook of the Black Country Forging and Foundry Project [EB/OL]. http://www.isvr.co.uk/bcffp/forge.htm, Accessed on 26-April-2010.
    [180]KAYNIA A, MADSHUS C, ZACKRISSON P. Ground Vibration from High-speed Trains:Prediction and Countermeasure [J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126,531-537.
    [181]KRYLOV V. Generation of Ground Vibrations by Superfast Trains [J]. Applied Acoustics,44,1995,149-164.
    [182]TAKEMIYA H. Simulation of Track-ground Vibrations due to High-speed Trains [C]. Proceedings of the Eighth International Congress on Sound and Vibration, Hong Kong, China,2001,2875-2882.
    [183]LAI C, CALLERIO A, FACCIOLI E, et al. Mathematical Modelling of Railway-induced Ground Vibrations [C]. Proceedings of the International Workshop Wave 2000, Bochum, Germany,2000,99-110.
    [184]SHENG X, JONES C, PETYT M. Ground Vibration Generated by a Load Moving along a Railway Track [J]. Journal of Sound and Vibration,1999,228 (1):129-156.
    [185]SHENG X, JONES C, THOMPSON D. A Theoretical Model for Ground Vibration from Trains Generated by Vertical Track Irregularities [J]. Journal of Sound and Vibration,2004,272 (3-5):937-965.
    [186]SHENG X, JONES C, THOMPSON D. A Theoretical Study on the Influence of The Track on Train-induced Ground Vibration [J]. Journal of Sound and Vibration,2004,272 909-936.
    [187]MADSHUS C, KAYNIA A. High-speed Railway Lines on Soft Ground:Dynamic Behaviour at Critical Train Speed [J]. Journal of Sound and Vibration,2000,231(3): 689-701.
    [188]HUNG H, YANG Y. A Review of Researches on Ground-borne Bibrations with Emphasis on Those Induced by Trains [J]. Proc. Natl. Sci. Counc. ROC(A),2001,25, No. (1):1-16.
    [189]HAJEK J, BLANEY C, HEIN D. Mitigation of Highway Traffic-Induced Vibration, Session on Quiet Pavements:Reducing Noise and Vibration [C].2006 Ann. Conf. of the Transportation Association of Canada, Charlottetown, Prince Edward Island.
    [190]ESHLEMAN R. Vibration Standards, In Shock and Vibration Handbook [M]. C.M. Harris and Crede, C.E., eds.,2nd ed., McGraw-Hill, NY,1976, Ch.19.
    [191]BACKMANN H, AMMANN W. Vibrations in Structures (Induced by Man\ands Machines) [M],Int. Assoc. for Bridge and Structural Engng, IABSE-AIPC-IVBH, (1987), Zuerich,69.
    [192]沈金安.道路沥青及沥青混合料的气候分区及关键技术指标[J].中国公路学报,1997,(3):1-9.
    [193]中华人民共和国行业标准.公路工程沥青及沥青混合料试验规程(JTJ 052-2000)[S].北京:人民交通出版社,2000.
    [194]沈金安.沥青及沥青混合料的路用性能[M].北京:人民交通出版社,2001.
    [195]中华人民共和国行业标准.公路工程骨料试验规程(JTG E42-2005)[S].北京:人民交通出版社,2005.
    [196]CREEGAN J, MONISMITH. Asphalt-Concrete Water Barriers for Embankment Dams [M]. New York, NY:ASCE Press,1996, xiii 169 pp.
    [197]中华人民共和国行业标准.客运专线铁路无砟轨道路基面防水层沥青混合料暂行技术条件[S].科技基[74].北京:中国铁道出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700