用户名: 密码: 验证码:
Mn(Ⅱ)取代磷酸铝和磷酸锰微孔化合物的水热合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Hydrothermal Synthesis and Charaterization of Mn(Ⅱ)-substituted Aluminophosphates and Manganese Phosphates
  • 作者:石磊
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2005
  • 导师:徐如人 ; 于吉红
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-05-01
  • 答辩委员会主席:庞文琴
摘要
本论文主要研究在Al-Mn-P 体系下,有机胺为模板剂,具有开放骨架结构的Mn(II)取代的磷酸铝分子筛的水热合成与表征,旨在进一步发现并研究其结构、组成的多样性以及潜在的应用价值;同时对具有优良磁学性质的磷酸锰化合物的合成和Al/P 比为4/5 的磷酸铝微孔化合物的合成进行了探索性研究。
    分别以三乙烯二胺为和1,3-丙二胺为模板剂成功合成出具有三维开放骨架的Mn(II) 取代的磷酸铝分子筛0.5[C6N2H14]·[MnAl3(PO4)4(H2O)2] 和[C3N2H12]·[MnAl3P4O17]·[H3O];它们都属于AFN 类型分子筛,骨架上25%的Al 原子被Mn(II)取代,不同的是它们非P 原子的配位状态;通过计算机分子模拟的方法推断主-客体相互作用不仅决定Mn(II)离子在磷酸铝分子筛(AFN)中的取代量和取代位置而且决定其配位状态。以异丙胺为模板剂,合成出具有GIS结构类型的MnAPO-GIS;以三乙烯四胺为模板剂,合成出具有开放骨架的Mn3Al6(PO4)12·4tren·11H2O,其中Mn 和Al 原子占据同一位置。以二乙烯三胺为模板剂得到具有三维间断结构的C4N3H16·Al4P5O20(H2O)2。
    同时得到不同维数的磷酸锰化合物,包括:一系列薄层状化合物MnPO-Ln,一个具有亚铁磁性质的层状化合物[NH4]2[Mn3P4O14(H2O)2]、一个具有反铁磁性质的层状化合物Mn6(H2O)2(HPO)4(PO4)2)·C4N2H12 和一个具有三维开放骨架的磷酸亚磷酸锰微孔化合物Mn5(μ-OH2)2(PO4)2(HPO3)2·2H2O。
Inorganic microporous materials have popular application in catalysis,adsorption, ion-exchange, separation and host-guest assemblies due to their uniquepore architectures. And the rational design and synthesis of new microporouscompounds, as well as the development of new synthetic ways are becoming thecentral topic of microporous materials chemistry. In the last decade, the synthesis ofnew materials that might combine the nanoporosity of zeolites with the magnetic andoptical properties, electronic conductivity and ferrodlectricity of transition metalphosphates such as MnPOs, VPOs, FePOs, ZnPOs and CoPOs have been reported inthe literature. Many of these materials exhibit unique structures and may havepotential applications in catalysis and magnetic field.
    This research is focused on the hydrothermal synthesis and structuralcharacterization of Mn(II)-substituted aluminophosphates and manganese phosphatestemplated by organic amine. Main results conclude:
    1. The MnAPO-14 has been synthesized hydrothermally in the presence of theDABCO template molecules. The MnO4(H2O)2 octahedra, AlO4 terahedra and PO4terahedra cross-link to form the 3-D open-framework [MnAl3P4O18H4]2-withdiprotonated DABCO template molecules located in the channels compensating thenegative charges. Its framework is analogous to aluminophosphate zeotype AFN inwhich 25% of the aluminum sites are replaced by Mn(II) atoms. This work suggests
    that the host-guest charge-density matching principle determines not only theconcentration of transition-metal ions but also the substitution sites in zeolitetopology.2. A Mn(II)-substituted aluminophosphate compound MnAPO-14-PDA has beensynthesized hydrothermally in the presence of the 1,3-PDA as the structure-directingagent. The linkages of MnO5 trigonal pyramidals, AlO6 octahedra, AlO4 and PO4terahedra form the 3-D open-framework [MnAl3P4O17]3-with diprotonated 1,3-PDAtemplate molecules and protonated H2O molecules located in the 8-MR channelscompensating the negative charges. Its framework is analogous toMnAPO-14-DABCO with zeotype AFN topology in which 25% of the aluminumsites are replaced by five-coordinated Mn(II) atoms. Our work demonstrate that thehost-guest interaction determines not only the substitution sites but also thecoordination modes of Mn(II) atoms in aluminophsphate zeolite frameworks.3. A Mn(II)-substituted aluminophosphate compound MnAPO-GIS has beensynthesized hydrothermally in the presence of the isopropylamine as thestructure-directing agent. The linkages of MnO4/AlO4 and PO4 tetrahedra form the3-D open-framework [MnAl2(PO4)3]-with the protonated distorted isopropylaminemolecules. Its structure is analogous to aluminophosphate with zeotype GIS topology.in which 33% of the aluminum sites are replaced by Mn(II) atoms.4. A three-dimensional an Manganese(II)-Substituted Aluminum PhophateMn3Al6(PO4)12·4tren·11H2O (noted compound MnAPO-tren and tren istris(2-aminoethyl)amine), has been synthesized hydrothermally. Theopen-framework built up from strict alteration of TO4/AlO4 and PO4 tetrahedrathrough corner-sharing vertex oxygen atoms. It contains 12-membered ring channels.The Mn atoms of the framework is bivalence proved by magnetic susceptibilitymeasurements, and the Mn2+ ions have no magnetism interactions, in agreement with
    the fact that all the Mn(II)O4 are isolated, e. g. linked through the PO4 tetrahedra.5. A family of new lamellar manganese phosphates, designated MnPO-Ln,MnPO-DETA, MnPO-CHA, respectively, have been hydrothermally synthesized inthe present of long-chain primarily amines (amines: CnH2n+1NH2, n = 4, 6, 8) ordiethyltriamine or cyheylamine. In the structure of MnPO-Ln, the double layers ofn-butylamine, n-hexylamine and n-octylamine molecules are sandwiched by themanganese phosphate layers, respectively. Magnetic measurements show that theMn2+ ions in MnPO-L4 is mainly antifferromagnetic interactions. Because of thelimitation of the size of the crystals, we can not get the detailed information abouttheir structure, while the suitable synthesis routes lead to the even more lamellarmanganese phosphate.6. A two-dimensional layered manganese (II) pyrophosphate,[NH4]2[Mn3(P2O7)2(H2O)2] (MnPO-NH4), has been synthesized hydrothermally. Itsstructure is built up by MnO6 octahedra and P2O7 units, with ammonium NH4 +cations residing in the interlayer region. The manganese pyrophosphate layer consistsof infinite chains of cis and trans edge sharing MnO6 octahedra linked by P2O7 units.Magnetic susceptibility measurements show that this compound exhibitsferrimagnetic-like ordering below 3.2 K. Furthermore, magnetic exchange occurswithin the manganese-oxygen zigzag chains via the oxygen anions. There are twopossible superexchange pathways within these chains. The competition between twoopposite coupling interactions results in the ferromagnetic magnetism.7. A layered manganese (II) phosphate, Mn6(H2O)2(HPO4)4(PO4)2·C4N2H12(MnPO-PiP), has been synthesized hydrothermally in the present of pip. Itsstructure resembles to a manganese phosphate characterized by synchrotron powderX-ray diffraction. Differently from the P-1 space group, the MnPO-PiP have thehigher symmetry of C2/c. Magnetic measurements show that the Mn2+ ions inMnPO-L4 is mainly antifferromagnetic interactions. It is noted that water solvationcould lead to the lamellar framework easily. So the partially noaqueous media ispreferred.
引文
[1] 徐如人,庞文琴等编,《分子筛与多孔材料化学》,2004.
    [2] Everett D. H., in IUPAC Manful of Symbols and Terminology, Pure Apple. Chem. 1972, 31, 578.
    [3] Meier W.M., Olson D.H. & ocher Ch. Baer,Atlas of Elite Structure Types (4th edition).
    [4] Cronstedt A. F. and Vetenskaps K., Acad Handle Stockholm, 1756, 17,120.
    [5] Barrer R. M. and White E. A. D., J. Chem. Soc., 1952, 1561.
    [6] Milton R. M., US Patent. 2, 882, 243, 1959.
    [7] Breck D. M., US Patent. 3, 216, 789, 1965.
    [8] Breck D. M., US Patent. 3, 130, 007, 1964.
    [9] Sand L. B., US Patent. 3, 436, 174, 1969.
    [10] Barrer R. M. and Denny P. J., J. Chem. Soc., 1961, 971.
    [11] Argauer R. J. and Landolt G. R., USPat. 3, 702, 866, 1972.
    [12] Shannon M. D., Cassi J. L., Cox P. A. and Andrews S. J., Nature, 1991, 353, 417.
    [13] F. Delprato, L. Delmotte, J. L. Guth, L. Huve, Zeolites, 1990, 10, 54.
    [14] Lawton S. L. and Rohrbaugh W. J., Science, 1990, 247, 1319.
    [15] Lobo R. F. and Davis M. E., J. Am. Chem. Soc., 1995, 117, 3766.
    [16] R. F. Lobo. M. Pan, I. Chan, H. X. Li, R. C. Medrud, S. I. Zones, P. A. Crozier, M. E. Davis, Science, 1993, 262, 1543.
    [17] Zones S. I., Olmstead M. M., Santilli D. S., J. Am. Chem. Soc., 1992, 114, 4195.
    [18] Bialek R., Meier W. M., Davis M. E.and Annen M. J., Zeolites, 1991, 11, 438.
    [19] Nakagawa Y., US Patent. 5, 254, 514, 1993.
    [20] Nakagawa Y., US Patent. 5, 271, 921, 1993.
    [21] Zones S. I., EU. Patent. Appl. EP 231 019, 1987.
    [22] Weitamp J., Ernst S. and Kumar R., Appl. Catal., 1986, 27, 207.
    [23] Freyhardt C. C., Tsapatsis M., Lobo, Balkus Jr K. J. and Davis M. E., Nature, 1996, 381, 295. R. F.
    [24] Corma A., Diaz-Caba?as M. J., Martinez-Triguero J., Rey F. and Rius J., Nature, 2002, 418, 514.
    [25] Zones S. I., Yuen L.T., Nakagawa Y., Van Nordstrand R. A. and Toto S. D., Proc. 9th, Int. Zeol. Conf., Montrealm 1992, P163 & S. I. Zones, D. S. Santilli, P171.
    [26] Lobo R. F., Zones S. I. and Davis M. E., Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1995, 21, 47.
    [27] Lobo R. F., Zones S. I.and Davis M. E., etal., ZMPC’97, Sendai, Meeting, Sendai, 1997.
    [28] Taramasso M., Perego G. and Notari B., Proc. 5th Inter. Conf. on Zeolites, 1980, P40.
    [29] 庞文琴,景晓燕,张密林,高等学校化学学报,1982, 3, 577.
    [30] 裘式纶,吉林大学博士学位论文,1988.
    [31] Yu J. H., Xu R. R. Rich structure chemistry in the aluminophosphate family. Acc.Chem. Res., 2003, 36, 481-490.
    [32] Yu J., Li J. Y., Xu R. R. Solid State Sci., 2000, 2, 181-192.
    [33] Roberts M. A., Sankar G., Thomas J. M., Jones R. H., Du H., Chen J., Pang W., Xu R. Nature, 1996, 381, 401.
    [34] Lercher J. A., Jentys A. In Handbook of Porous Solids; Schüth F., Sing K. S. W., Weitkamp J. Eds.; Wiley-VCH: Weinheim Germany, 2002.
    [35] Rama swamy P. and Sivasanker S. Catal. Lett. 1993, 22, 239.
    [36] Mal N. K.and Ramaswamy P., Appl. Catal., A 1996, 143, 75.
    [37] Tuan V. A., Falconer J. L. and Noble R.D., Microporous Mesoporous Mater. 2000, 41, 269.
    [38] S. Li, V. A. Tuan, J. L. Falconer, R. D. Noble, Microporous Mesoporous Mater. 2003, 58, 137.
    [39] Tu?ar N. N., Logar N. Z., Ar?on, Thibault-Starzyk F., Risti?, Rgji? N., Kau?i? V., Chem. Mater. 2003, 15, 4745-4750.
    [40] Wilson S. T., Look B. M., Messina C. A., Cannon T. R. and Flannigan E. M., J. Am. Chem. Soc., 1982, 104, 1146.
    [41] Flanigen E. M., Lok B. M., Patton R. L. et al. Aluminophosphate Molecular Sieves and the periodic Table. Proc. Of the 7th Intl. Zeolite Conf. Kodansha-Elsevier, Murakam Y, Lijima A, Ward J W (Eds) 1986, 103-112.
    [42] Chen J., Pang W. and Xu R. Topics in Catalysis, 1999, 9, 93.
    [43] Yu J., Xu R., Li J., Solid State Sci., 2000, 2, 181.
    [44] Bennett J. M., Dytrych W. J., Pluth J. J., Richardson Jr. J. W., Smith J. V.. Zeolites, 1986, 6, 349.
    [45] Dessau R. M., Schlenker J. L., Higgins J. B., Zeolites, 1990, 10, 522.
    [46] Davis M. E., Saldarriaga. C., Montes C., Garces J., Crowder C., Nature, 1988, 331, 698.
    [47] Huo Q., Xu R., Li S., Ma Z., Thomas J. M., Jones R. H., Chippendale A. M., J. Chem. Soc. Chem. Commun., 1992, 875.
    [48] Chen J., Pang W., Xu R. Topics in Catalysis., 1999, 9, 93-103.
    [49] Wang K., Yu J., Miao P., Song Y., Li J., Shi Z., Xu R. J. Chem. Mater., 2001, 11, 1898-1902.
    [50] Kongshaug K O., Fjellvag H., Lillerud K P. Microporous. Mesoporous. Mater., 1999, 32, 17-28.
    [51] Kongshaug K O., Fjellvag H., Lillerud K P. J. Mater. Chem., 1999, 9, 1591-1598.
    [52] Maeda K., Tuel A., Baerlocher Ch. J. Chem. Soc., Dalton Trans., 2000, 14, 2457-2462.
    [53] Riou D., Loiseau Th., Férey G. J. Solid State Chem., 1992, 99, 414-418.
    [54] Yan W., Yu J., Shi Z., Xu R. Chem. Commun., 2000, 15, 1431-1432.
    [55] Yu J., Williams I D. J. Solid State Chem., 1998, 136, 141-144.
    [56] Yu J., Terasaki O., Williams I D., Qiu S., Xu R. Supramol. Science., 1998, 5, 297-302.
    [57] Morgan K R., Gainsford G J., Milestone N B. Chem. Commun., 1997, 1, 61-62.
    [58] Leech M A., Cowley A R., Prout K., Chippindale A M. Chem. Mater., 1998, 10, 451-456.
    [59] Jones R H., Thomas J M., Xu R., Huo Q., Xu Y., Cheetham A K., Bieber D J. J. Chem. Soc., Chem. Commun., 1990, 17, 1170-1172.
    [60] Williams I D., Yu J., Gao Q., Chen J., Xu R. Chem. Commun., 1997, 14, 1273-1274.
    [61] Gao Q., Chen J., Li S., Xu R. J. Solid State Chem., 1996, 127, 145-150.
    [62] Ayi AA., Choudhury A. and Natarajan S. J. Solid State Chem., 2001, 156, 185-193.
    [63] Wei B., Yu J., Shi Z., Qiu S., Li J. J. Chem. Soc. Dalton Transactions., 2000, 15, 1979-1980.
    [64] Bircsak Z., Harrison W T A. Chem. Mater., 1998, 10, 3016-3019.
    [65] Sugiyama K., Hiraga K., Yu J., Zheng S., Qiu S., Xu R., Terasaki O A. Acta Cryst., 1999, 55C, 1615-1617.
    [66] Wei B., Zhu G., Yu J., Qiu S., Xiao F., Terasaki O. Chem. Mater., 1999, 11, 3417-3419.
    [67] Yu J., Sugiyama K., Togashi N., Hiraga K., Terasaki O., Qiu S., Xu R. Chem. Mater., 1998, 10, 3636-3642.
    [68] Chippindale A M., Powell A V., Bull L M., Jones R H., Cheetham A K., Thomas J M., Xu R. J. Solid State Chem., 1992, 96, 199-210.
    [69] Oliver S., Kuperman A., Lough A., Ozin G A. Chem. Mater., 1996, 8, 2391-2398.
    [70] Oliver S., Kuperman A., Lough A., Ozin G A. Chem. Commun., 1996, 15, 1761-1762.
    [71] Chippindale A M., Walton R I. J. Solid State Chem., 1999, 145, 731-738.
    [72] Xu Y., Zhang B., Chen X., Liu S., Duan C., You X. J. Solid State Chem., 1999, 145, 220-226.
    [73]. Jones R H., Thomas J M., Xu R., Huo Q., Cheetham A K., Powell A V J. J. Chem. Soc., Chem. Commun., 1991, 18, 1266-1268.
    [74] Gao Q., Li B., Chen J., Li S., Xu R., Williams I D., Zheng J., Barber D. J. Solid State Chem., 1997, 129, 37-44.
    [75] Thomas J M., Jones R H., Xu R., Chen J., Chippindale A M., Natarajan S., Cheetham A K. J. Chem. Soc., Chem. Commun., 1992, 13, 929-931.
    [76] Chippindale A M., Cowley A R., Huo Q., Jones R H., Law A D. J. Chem. Soc., Dalton. Trans., 1997, 15, 2639-2643.
    [77] Williams I D., Gao Q., Chen J., Nagi L., Lin Z., Xu R. Chem. Commun., 1996, 15, 1781-1782.
    [78] Yu J., Li J., Sugiyama K., Togashi N., Terasaki O., Hiraga K., Zhou B., Qiu S., Xu R. Chem. Mater., 1999, 11, 1727-1732.
    [79] Jones R H., Chippindale A M., Natarajan S., Thomas J M. J. Chem. Soc., Chem. Commun., 1994, 5, 565-566.
    [80] Barrett PA., Jones R H. J. Chem. Soc., Chem. Commun., 1995, 19, 1979-1980.
    [81] Oliver S., Kuperman A., Lough A., Ozin G A. Inorg. Chem., 1996, 35, 6373-6380.
    [82] Togashi N., Yu J., Zheng S., Sugiyama K., Hiraga K., Terasaki O., Yan W., Qiu S., Xu R. J. Mater. Chem., 1998, 8, 2827-2831.
    [83] Yao Y., Natarajan S., Chen J., Pang W. J. Solid State Chem., 1999, 146, 458-463.
    [84] Vidal L., Gramlich V., Patarin J., Gabelica Z. Chem. Lett., 1999, 3, 201-202.
    [85] Yu J., Williams I D. J.Solid State Chem., 1998, 136, 141-144.
    [86] Oliver S., Kuperman A., Lough A. Ozin G A., Chem. Mater., 1996, 7, 2391-2398.
    [87] Oliver S., Kuperman A., Lough A., Ozin G A. Inorg. Chem., 1996, 35, 6373-6380.
    [88] Yu J., Sugiyama K., Zheng S., Qiu S., Chen J., Xu R., Sakamoto Y., Terasaki O., Hiraga K., Light M., Hursthouse M B., Thomas J M. Chem. Mater., 1998, 10,1208-1211.
    [89] Vidal L., Gramlich V., Patarin J., Gabelica Z. Eur. J. Solid. State Chem., 1998, 35, 545-563.
    [90] Jones R H., Thomas J M., Chen J., Xu R., Huo Q., Li S., Ma Z. J. Solid State Chem., 1993, 102, 204-208.
    [91] Wang K, Yu J., Shi Z., Miao P., Yan W., Xu R. J. Chem. Soc. Dalton Trans., 2001, 12,1809-1812.
    [92] Yan W., Yu J., Shi Z., Miao P., Wang K., Wang Y., Xu R. Microporous and Mesoporous Mater., 2001, 50,151-158.
    [93] Yan W., Yu J., Xu R., Zhu G., Xiao F., Han Y., Sugiyama K., Terasaki O. Chem. Mater.,2000, 12, 2517-2519.
    [94] Feng P., Bu X., Stucky G D. Inorg. Chem., 2000, 39, 2-3.
    [95] Wei B., Zhu G. S., Yu J. H., Qiu S. L., Xiao F. S., Terasaki O., Chem. Mater. 1999, 11, 3417
    [96] (a) Feng P.Y., Bu X.H., and Stucky G.D. Nature, 1997, 388, 735-741; (b) Bennett J.M., and Marcus B.K. Stud. Surf. Sci. Catal., 1988, 37, 269-279; (c) Akolekar D.B., and Kaliaguine S. J. Chem. Soc., Faraday Trans., 1993, 89, 4141-4147 (d) Bennett J.M., and Marcus B.K. Stud. Surf. Sci. Catal., 1988, 37, 269-279, (e) D.B. Akolekar, Zeolites, 1995, 15, 583-590; (f) Tu?ar N. N., Risti? A., Meden A., Kau?i? V., Microporous Mesoporous Mater. 2000, 37, 303-311; (g) McCusker L.B., Brunner G. O., and Ojo A.F. Acta Crystallogr., 1990, A46, C59; (h) Baur W. H.,
    Joswig W., Kassner D., Bieniok A., Finger G. and Kornatowski J. Z. Kristallogr., 1999, 214,
    154-159; (i) Christensen A.N., Jensen T. R., Norby P., and Hanson J.C. Chem. Mater., 1998, 10,
    1688-1693; (j) Wright P.A., Jones R.H., Natarajan S., Bell R.G., Chen J.S.,. Hursthouse M. B, and
    Thomas J.M. Chem. Commun., 1993, 633-635; (k) Muncaster G., Sankar G., Catlow C.R.A.,
    Thomas J.M., Bell R.G., Wright P.A., Coles S., Teat S.J., Clegg W., and Reeve W., Chem. Mater.,
    1999, 11, 158-163; (l) Bu X., Feng P., Gier T.E. and Stucky G.D. J. Solid State Chem., 1998, 136,
    210-215; (m) Noble G.W., Wright P.A., Lightfoot P., Morris R.E., Hudson K.J., Kvick A., and
    Graafsma H., Angew. Chem., Int. Ed., 1997, 36, 81-83; (n) Patinec V., Wright P. A., Lightfoot P.,
    Aitken R. A., and Cox P. A. J. Chem. Soc., Dalton Trans., 1999, 3909-3911 ; (o) G.W. Noble, P.A.
    Wright, and A. Kvick, J. Chem. Soc., Dalton Trans., 1997, 4485-4490; (p) Wright P. A., Maple M.
    J., Slawin A. M. Z., Patinec V., Aitken R. A., Welsh S., and Cox P. A. J. Chem. Soc., Dalton
    Trans., 2000, 1243-1248 ; (q) Marler B., Patarin J., and Sierra L., Microporous Materials, 1995,
    5, 151-159
    [97]. Risti? A, Tu?ar N. N., Ar?on I., Starzyk F. T., Han?el D., Czyzniewska J., Kau?i? V., Microporous Mesoporous Mater. 2002, 56, 303-315
    [98] Tu?ar N. N., Mali G., Ar?on I., Kau?i? V., Siahkali A. G., Dwyer J., Microporous Mesoporous Mater. 2002, 55, 203-216
    [99] Sinha A. K., Satyanarayana C. V. V., Srinivas D., Sivasanker S., Ratnasamy P., Microporous Mesoporous Mater. 2000, 55-56, 471-481
    [101] Pluth J. J., Smith J. V., Richardson J. W., J. Phys. Chem. 1988, 92, 2734.
    [100] Weckhuysen B. M., Rao R. R., Martens J. A., Schoonheydt R. A., Eur. J. Inorg. Chem. 1999, 565-577
    [102] Hartmann M., Kevan L., Chemical Review, 1999, 99(3), 635
    [103] Bu X. H., Feng P. Y., Stucky G. D. Science, 1997, 278, 2080
    [104] McCuster L. B., Brunner G. O., Oju A. F., ibid. 1990, C55, 46
    [105] Parise J. B., Inorg. Chem., 1985, 24, 4312.
    [106] Wei B., Yu J. H., Shi Z., Qiu S. L., Yan W. F., Terasaki O. Chem. Mater. 2000, 12, 2065-2067
    [107] (a) Feng S., Xu R., Yang G., Sun H., Chem. J. Chin. Univ., 1988, 4, 1; (b)冯守华,吉林大学博士学位论文,1986.
    [108] Estermann M. E., McCusker L. B., Boelocher C., Merrouche A., Kessler H., Nature, 1991, 352, 320.
    [109] Kan Q., Glasser F. P., Xu R., J. Mater. Chem., 1993, 3, 983.
    [110] Chippindale A. M., Walton R. I., Turner C., J. Chem. Soc. Chem. Commun. 1995, 1261.
    [111] Loiseau T., Ferey G. Oxyfluorinated microporous compounds, VII. J. Solid State Chem.,1994, 111, 403~415.
    [112] Loiseau T., Ferey G. J. Mater. Chem., 1996, 6, 1073~1074.
    [113] Sassoye C., Loiseau T., Taulelle F., Férey G. Chem. Commun., 2000, 11, 943~944.
    [114] Sassoye C., Marrot J., Loiseau T., Férey G. Chem. Mater., 2002, 14, 1340~1347.
    [115] Lionel Beitone, Jér?me Marrot, Thierry Loiseau, Gérard Férey, Marc Henry, Clarisse Huguenard, Axel Gansmuller, and Francis Taulelle . J. Am. Chem. Soc., 2003, 125, 1912~1922.
    [116] Walton R I., Millange F., Loiseau T., O’Hare D., Ferey G. Angew. Chem. Int. Ed., 2000, 39, 4552~4555.
    [117] Chippindale A. M., Peacock K. J., Cowley A. R. J. Solid State Chem., 1999, 145, 379~386.
    [118] Lin C-H, Wang S-N, Lii K-H, J. Am. Chem. Soc., 2001, 123, 4649~4650.
    [113] Stalder S. M., Wilkinson A. P., Chem. Mater., 1997, 9, 2168.
    [115] Bond A. D., Chippindale A. M., Cowley A. R., Readman J. E., Zeolites, 1997, 19, 326-333
    [116] Chippinale A. M., Bond A. D., Cowley A. R., Powell A. V., Chem. Mater. 1997, 9, 2830-2835
    [117] Chippindale A. M., Cowley A. R., Microporous Mesoporous Mater. 1998, 21, 271-279
    [118] Lin C. H., Wang S. L., Chem. Mater. 2002, 14, 96-102
    [114] Yu J. H., Chen J. S., Xu R.R., Microsporous Materials, 1996, 5, 333-336
    [119] Hsu K. F., Wang S. L., Chem. Commun. 2000, 135-136
    [120] Hsu K. F., Wang S. L., Inorg. Chem. 2000, 39, 1773-1778
    [121] Feng S. H. and Xu R. R., Acc. Chem. Res., 2001, 34, 239.
    [122] Hung L. C., Kao H. M., Lii K. H., Chem. Mater., 2000, 12, 2411.
    [123] Choi C. T. S., Anokhina E. V., Day C. S., Zhao Y., Taulelle F., Huguenard C., Gan Z. H., Lachgar A., Chem. Mater., 2002, 14, 4096.
    [124] Mrak M., Kolitsch U., Lengauer C., Kau?i? V., Tillmanns E., Inorg. Chem. 2003, 42, 598.
    [125] Chang W. M., Wang S. L., Chem. Mater. 2005, 17, 74-80
    [126] Dhingra S. S., Haushalter R. C. J. Chem. Soc.,Chem. Common., 1993, 1665~1667.
    [127] Williams I. D., Yu J. H., Du H. B., Chen J. S., Pang W. Q. Chem. Mater., 1998, 10, 773.
    [128]Thirumurugan A., Natarajan S. Dalton Trans. 2003, 17, 3387~3391.
    [129] 杜红宾,新型无机微孔晶体的合成与表征,吉林大学博士论文,1997。
    [130] Harrison W. T. A., Gier T. E., Moran K. L., Nicol J. M., Eckert H., Stucky G. D., Chem. Mater., 1991, 3, 27.
    [131] Harrison W. T. A., F.Phillips M. L., Chem.Commun, 1996, 2771.
    [132] Harrison W. T. A., F.Phillips M. L., Chem. Mater., 1997, 109, 603.
    [133] Neeraj S., Natarajan S., Rao C N R.. Chem. Commun., 1999, 2, 165~166.
    [134] Yang G-Y., Sevov S. C. J. Am. Chem. Soc., 1999, 121, 8389~8390.
    [135] Zhu J., Bu X. H., Feng P. Y., Stucky G. D., J. Am. Chem. Soc. 2000, 122, 11563.
    [136] (a) Lightfoot P., Cheetham A. K., J. of Solid State Chem., 1989, 78, 17-22; (b) Carling S. G.,Day P., Visser D., Inorg. Chem. 1995, 34, 3917-3927; (c) Leroux F., Mar A., Payen C., GuyomardD., Verbaere A., Piffard Y., J. of Solid State Chem. 1995, 115, 240-246; (d) Escobal J., Pizarro J.L., Mesa J., Lezama L., Olazcuaga R., Arriortua M. I., Rojo T. Chem. Mater. 2000, 12, 376; (e)Chippindale A. M., Gaslain F. O. M., Cowley A. R., Powell A. V. J. Mater. Chem. 2001, 11, 3172; (f) Kongshag K. O., Fjellv?g H., P.Lillerad K. J. Solid State Chem. 2001, 156, 32; (g) Song
    Y., Zavalij P. Y., Chernova N. A., Whittingham M.S. Chem. Mater. 2003, 15, 4968; (h) Thoma S.
    G., Bonhomme F., Cygan R. T., Chem. Mater. 2004, 16(11), 2068-2075; (i) Chippindale A. M.,
    Gaslain F. O. M., Bond A. D., Powellc A. V. J. Mater. Chem. 2003, 13, 1950; (j) Chippindale A.
    M., M. Gaslain F. O., Bondb A. D. andPowell A. V. J. Mater. Chem., 2003, 13, 1950–1955; (k)
    Tong W., Xia G. G., Tian Z. R., Liu J., Cai J., Suib S. L., and Hanson J. C. Chem. Mater. 2002,
    14, 615-620; (l) Neeraj S., Noy M. L., Cheetham A. K. Solid State Sci. 2002, 4, 397; (m) Stock
    N., Naturforsch Z., 2002, 57B, 187-192; (n) Fenández S., Mesa J. J., Pizarro J. L., Lezama L.,
    Arriortua M. I., Olazcuaga R., Rojo T. Chem. Mater. 2000, 12, 2092-2098; (o) Fenández S.,
    Pizarro J. L., Mesa J. J., Lezama L., Arriortua M. I., Olazcuaga R., Rojo T. Inorg. Chem. 2001, 40,
    3476-3483; (p) Kong D., Li Y., Ouyang X., Prosvirin A. V., Zhao H., Ross J. H., Dunbar K. R.,
    Clearfield A., Chem. Mater. 2004, 129; (q) Guillou N., Gao Q., Forster P M., Chang J –S.,
    Noguès M., Park S –E., Férey G., Cheetham A K. Angew. Chem. Int. Ed., 2001, 40, 2831~2834.
    [138] K. H. Lii, Y. F. Huang, Zina V., Chem. Mater., 1998, 10, 2599.
    [139] Cavellec M., Riou D., Greneche J. M., Férey G., J. Magn. Mater. 1996, 163, 173.
    [140] Cavellec M., Riou D., Greneche J. M., Férey G., Inorg. Chem., 1997, 36, 2187.
    [141] Kemnitz E., Wloka M., Trojanov S. I., Stiewe A., Angew. Chem. Int. Ed. Engl. 1996, 35, 2667.
    [142] Wloka M., Trojanov S. I., Kemnitz E., J. Solid. State. Chem., 1998, 135, 293.
    [143] Natarajan S., Attfield M. P., Cheetham A. K., Angew. Chem. Int. Ed. Engl. 1997, 36, 978.
    [144] Natarajan S., Ayyappan S., Cheetham A. K., Rao C. N. R., Chem. Mater., 1998, 10, 1627.
    [145] Serre C., Guillou N., Férey G., J. Mater. Chem. 1999, 9, 1185.
    [146] 刘云凌,吉林大学博士学位论文,2000.
    [147] Soghomonian V., Chen Q., Haushalter R C., Zubieta J., O’Connor C J. Science, 1993, 259, 1596-1599.
    [148] Fernández S., L. Pizarro J., Mesa J. L., Lezama L., Arriortua M. I., Rojo T., Int. J. Inorg. Mater. 2001, 3, 331.
    [149] Fernández S., Mesa J. L., Pizarro J. L., Lezama L., Arriortua M. I., Olazcuaga R., Rojo T., Chem. Mater. 2000, 12, 2092.
    [150] Bonavia G., DeBord J., Haushlter R. C., Rose D., Zubieta J., Chem.Mater. 1995, 7, 1995.
    [151] Fernandez S., Mesa J.L., Pizarro J.L., Lezama L., Arriortua M. L., Rojo T., Chem. Mater. 2003, 15, 1204.
    [152] Fernández S., Mesa J. L., Pizarro J. L., Lezama L., Arriortua M. I., Rojo T., Chem. Mater.2002, 14, 2300.
    [153] Shi Z., Li G. H., Zhang D., Hua J., Feng S. H., Inorg. Chem. 2003, 42, 2357.
    [154] Shi Z., Zhang D., Li G. H., Wang L., Lu X. Y., Hua J., Feng S. H., J. Solid State Chem. 2003, 172, 464.
    [149] Harrison W. T. A., Solid State Sci. 2003, 5, 297.
    [155] Harrison W. T. A., Int. J. Inorg. Mater. 2001, 3, 187.
    [156] Rodgers J. A., Harrison W. T. A., J. Chem. Soc. Chem. Commun. 2000, 2385.
    [157] Liang J., Wang Y., Yu J. H., Li Y., Xu R. R., J. Chem. Soc. Chem. Commun. 2003, 882.
    [158] Wang Y., Yu J., Du Y., Shi Z. et al, J. Chem. Soc., Dalton Trans., 2002, 4060.
    [159] Wittmann A., Fortschr, Miner. 1966, 43, 230.
    [160] O’Keeffe M., Yaghi O M. Germanate zeolites: constrasting the behavior of germanate and silicate structures built from cubic T8O20 unites (T=Ge or Si). Chem.Eur. J ,1999, 5(10), 2796-2801.
    [161] Li H., Laine A., O’Keeffe M., Yaghi O M. Supertetrahedral sulfide crystals with giant cavities and channels. Science, 1999, 283, 1145-1147.
    [162] 陈接胜,吉林大学博士学位论文,1989.
    [163] Gier T. E., Bu X., Feng P., Stucky G. D., Nature, 1998, 395, 154.
    [164] Chakrabarti S., Natarajan S., J. Chem. Soc., Dalton Trans., 2002, 3874.
    [165] Johnson C. D., Skakle J. M. S., Johnston M. G., Feldmann J., Macphee D. E., J. Mater. Chem., 2003, 13, 1429.
    [166] Li S., Xu R., Lu Y., Xu Y.,In Proceedings of 9th IZC, Montreal, 1992, 345.
    [167] Bu X., Feng P., Stucky G. D., Chem. Mater., 1999, 11, 3423.
    [168] Dadachov M. S., Sun K., Conradsson T., Zou X., Angew. Chem., Int. Ed. Engl., 2000, 39, 3674.
    [169] Zhou Y., Zhu H., Chen Z., Chen M., Zhu Y., Zhang H., Zhao D., Angew. Chem., Int. Ed. Engl., 2001, 40, 2166.
    [170] Li H., Eddaoudi M., Yaghi O. M., Angew. Chem., Int. Ed. Engl.,1999, 38, 653.
    [171] Median E., Iglesias M., Monge M. A., Puebla E. G., Chem. Commun., 2001, 2548.
    [172] Julius N. N., Choudhury A., Rao C. N. R., J. Solid State Chem., 2003, 170, 124.
    [173] Harrison W. T. A., Phillips M. L. F., Stanchfield J., Nenoff T. M., Angew. Chem., Int. Ed., 2000, 39, 3808.
    [174] Choudhury A., Udayakumar D., Rao C. N. R., Angew. Chem., Int. Ed., 2002, 41, 158.
    [175] Udayakumar D., Rao C. N. R., J. Mater. Chem., 2003, 13, 1635.
    [176] Dai Z. M., Chen X. B., Shi Z., Zhang D., Li G. H., Feng S. H., Inorg. Chem., 2003, 42, 908.
    [177] Dai Z. M., Shi Z., Li G. H., Chen X. B., Lu X. Y., Xu Y. H., Feng S. H., J. Solid State Chem., 2003, 172, 205.
    [178] Choudhury A., Krishnamoorthy J., Rao C. N. R., Chem. Commun., 2001, 2610.
    [179] Paul G., Choudhury A., Rao C. N. R., J. Chem. Soc., Dalton Trans., 2002, 3859.
    [180] Paul G., Choudhury A., Rao C. N. R., Chem. Commun., 2002, 1904.
    [181] Paul G., Choudhury A., Sampathkumaran E. V., Rao C. N. R., Angew. Chem. Int. Ed., 2002, 41, 4297.
    [182] Norquist A.J., Thomas P. M., Doran M., O’Hare D.,Chem.Mater.,2002, 14, 5179.
    [183] Doran M., Norquist A. J., O’Hare D., Chem. Commun., 2002, 2946.
    [184] Bull I., Wheatley P. S., Lightfoot P., Morris R. E., Sastre E., Wright P. A., Chem. Commun., 2002, 1180.
    [185] 于吉红,吉林大学博士学位论文,1995.
    [186] Chui S. S. Y., Lo S. M. F., Charmant J. P. H., Orpen A. G. O., Williams I. D., Science, 1999, 283, 1148.
    [187] Li H., Eddaoudi M., O’Keeffe M., Yaghi O. M., Nature, 1999, 402, 276.
    [188] Clearfield A., Roberts B. D., Inorg. Chem. 1988, 27, 3237.
    [189] Alberti G., Costantino U., Vivani R., Zappelli P., Mater. Res. Soc, Symp. Roc., 1991, 233, 95.
    [190] Syllvester P., Cahill R., Clearfield A., Chem. Mater. 1994, 6, 1890.
    [191] Xiang S, Zhang YL, Xin Q, Li C. Asymmetric Epoxidation of Allyl Alcohol on Organic-Inorganic Hybrid Chiral Catalysts Grafted onto surface of Silica and on the Mesopores of MCM-41. Angew. Chem. Intl. Ed., 2002, 41(5), 821-824
    [192] Férey G., Chem. Mater. 2001, 13, 3084.
    [193] Rabenau A., Angew. Chem. Int. Ed. Engl., 1985, 24, 1026.
    [194] Schafer H., Chemical Transport Reactions, Academic Press, New York, 1964.
    [195] Bibby D. M., Dale M. P., Nature, 1985, 317, 153.
    [196] Sugimoto M., Takatsu K., Kawata N., Konishi T., Proc. of 7th International Zeolite Conference, Tokyo, 1986, 193.
    [197] Van Erp W. A., Kouwenhoven H. W., Nanne J. M., Zeolites, 1987, 7, 286.
    [198] Feng S.. Xu J., Xu R., Yang G., Chen Z., Li G., Chem. J. Chinese Univ. (English.Ed) 1988, 4, 9.
    [199] Xu W., Dou T., Liu S., Chinese Patent, CN 88100228A. 1988.
    [200] Liu C., Li S., Tu K., Xu R., J. Chem. Soc. Chem. Commun. 1993, 1645.
    [201] Gao Q., Li B., Chen J., Li S., Xu R., J. Solid. State. Chem., 1997, 129, 37.
    [202] Gao Q., Chen J., Xu R., Yue Y., Chem. Mater., 1997, 9, 457-462.
    [203] Xie Y., Qian Y., Wang W., Zhang S., Zhang Y., Science, 1996, 272, 1926.
    [204] Zhao Y., Zhu G., Jiao X., Liu W., Pang W., J. Mater. Chem., 2000, 10, 463.
    [205] Arafat A., Jansen J. C., Ebaid A. R., Van Bekkum H., Zeolites, 1993, 13, 162.
    [206] Girnus I., Jancke K., Vetter R., Richer-Mendau J., Caro J., Zeolites, 1995, 15, 35.
    [207] Fang M., Du H., Xu W., Meng X., Pang W., Microporous Materials, 1997, 9, 59.
    [208] Han Y., Ma H., Qiu S., Xiao F., Microporous and Mesoporous Materials, 1999, 30, 321.
    [209] Akporiaye D.E. et al. J. Phys. Chem.,1996, 100, 16641.
    [210] Yanagisawa T., Shimizu T., Kuroda K.and Kato D., Bull Chem Soc Jpn, 1990, 63, 988.
    [211] Ayi A.A., Choudhury A., Natarajan S., Neeraj S.and Rao C. N. R., J. Mater. Chem., 2001, 11, 1181.
    [212] Choudhury A., Neeraj S., Natarajan S. and Rao C. N. R., J. Mater. Chem., 2002, 12, 1044.
    [213] Lin W., Chen J., Sun Y., Pang W., J. Chem. Soc., Chem. Commun., 1995, 2367.
    [214] van de Goor G., Behrens P., Felsche J., Microporous Mater. 1994, 2, 493.
    [215] 徐文旸,董晋湘,窦涛,李建权,中国专利,89108240.9, 1989.
    [216] 徐文旸,李建权,中国专利,88106196.4, 1988.
    [217] Schafer H., Chemical Transport Reactions, Academic Press, New York,1964.
    [218] D. M.Bibby, M.P. Dale, Nature, 1985, 317, 153.
    [219] 李国文,庞文琴,中国专利,1987.
    [220] 周群,李宝宗,裘式纶,庞文琴,高等学校化学学报,1999, 20, 693.
    [221] 周群,庞文琴,裘式纶,贾明君,中国专利,ZL 93 1 17593.3, 1996.
    [222] Jandeleit B., Schaefe r D. J., Powers T. S., Turner H. W.et al. Angew. Chem. Intl. Ed., 1999, 38/17, 2495.
    [223] Cooper E. R., Andrews C. D., Wheatley P. S., Webb P. B., Wormald P., Morris R. E. Nature, 2004, 430, 1012-1016
    [224] Lee S., Shantz D. F, Chem. Mater., 2005, 17, 409-417
    [225] Wang H., Holmberg B. A., Yan Y., J. Am. Chem. Soc., 2003, 33, 9928
    [226] Breck D.W., Flanigen E.M., Molecular Sieves, Academic Press, 1968, P49.
    [227] Kerr G. T., J. Phys. Chem., 1966, 70, 1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700