用户名: 密码: 验证码:
适用于饱和黏土循环动力分析的边界面塑性模型及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嵌入式海洋结构诸如桩基、吸力锚、桶型基础以及拖曳锚等,往往处于极其复杂和恶劣的海洋环境条件,通常需深嵌于海床土以提供承载性能。因此,该类结构及其周围的海洋土体将直接或间接地承受由风、浪、流等导致的长期、持续、低频循环载荷的作用。海洋土尤其是海洋软土的非线性动力特性在循环载荷下将发生一系列演变,进而会引起嵌入式海洋结构循环承载性能的巨大变化。鉴于此,本文建立了适用于该类结构循环承载力评估的数值分析模型。
     首先,基于临界状态理论建立了能合理反映饱和黏土循环稳定和循环退化动力特性的无弹性域边界面塑性模型。以应力反向点作为边界面的广义各向同性硬化中心,提出了广义各向同性硬化准则。低应力水平下,边界面随着广义各向同性硬化中心的运动在应力空间中达到循环稳定状态;高应力水平下,引入与塑性偏应变有关的损伤变量实现边界面的收缩,以模拟土体循环刚度和强度的退化。该模型包含两类参数,即临界状态参数和塑性模量形函数参数,均具有明确的物理意义。对于单调加载事件的模拟,仅需要临界状态参数;对于循环加载事件的计算,需由常规室内试验测定动剪切模量和阻尼比,进而确定形函数参数。结合大量的国内外试验,对边界面模型进行考察,涉及的因素包括土质、固结水平、应力水平、加载方式(单向、双向循环,应力和应变控制)以及超固结比等,结果表明,该模型对等压固结饱和黏土的循环稳定和循环退化特性均能较为合理地反映。
     其次,通过分离土体初始各向异性和后继各向异性在本构模型中的描述,即土体初始各向异性由边界面的初始旋转模拟,而后继应力诱发各向异性由广义各向同性硬化准则中的运动硬化部分确定,克服了原模型无法反映土体初始各向异性的缺陷;设计一系列简单加载、复杂加载的静、动力数值试验,并与解析解和试验数据进行了对比,验证了该种分离初始和后继各向异性描述做法的合理性;在不增加模型参数及复杂性的前提下,实现了等向硬化、运动硬化和旋转硬化准则功能的结合;分别基于广义Mises准则三维化方法和SMP准则变换应力法将该模型推广至三维应力空间,首次实现了SMP变换应力法在循环动力边界面塑性模型中的应用;对比分析了两种三维化方法在边界面模型中的应用性能。弥补了目前国际范围内针对循环动力本构模型三维化方法对比研究的缺乏。
     再次,建立了可以反映土体循环稳定和循环退化的三维各向异性边界面塑性模型的隐式和显式积分格式,并将其开发进ABAQUS软件;针对常规隐式回映积分算法需要映射回归当前应力点、子增量步显式积分算法需要修正当前应力点至屈服面上,而无弹性域边界面模型内无屈服面的矛盾,修正了传统隐、显式积分算法,提高了该两种算法在无弹性域边界面塑性模型中的应用能力;结合饱和土体静、动三轴试验和刚性浅基础承载力边值问题,从精确性、稳定性、高效性方面对这两种积分格式在无弹性域边界面中的性能进行对比分析;给出两种积分算法在无弹性域边界面模型中的详细流程,具有极强的可重复性;由于本文建立的边界面塑性模型包含了各向同性硬化、运动硬化和旋转硬化等弹塑性模型要素,能够代表较为广泛的弹塑性本构模型,因此针对该模型的积分算法和数值开发对同类模型具有指导意义。
     最后,针对目前已有的四种极限承载力确定标准,不能同时适用于不同类型的载荷—位移曲线的问题,对嵌入式海洋结构的各类载荷—位移曲线进行了系统研究,建议了具有普适性的极限承载力确定标准;采用本文建立的边界面塑性模型,基于ABAQUS平台,以法向承力锚(Vertically Loaded Plate Anchor, VLA)为例,开展了嵌入式海洋工程结构循环承载力分析,结果表明VLA表现出三种典型循环承载特性:循环稳定、循环次稳定和循环退化;VLA-海床土耦合系统的循环刚度也表现出相应的三种典型特性;针对VLA循环破坏时的两种典型位移曲线,建议了循环承载力的确定标准;考察了载荷均值、载荷幅值、载荷周次对循环承载力的影响;建议了嵌入式海洋结构循环承载力的分析流程,以此作为综合评估循环载荷作用下结构稳定性的基本依据。
The embedded offshore structures, such as the pile anchor, suction caissonanchor, the suction bucket foundation and the drag anchor, which need to withstandunder the extremely complicated ocean environment, are often deeply embedded inthe seabed to keep their stability and functionality. Inevitably, the embedded offshorestructure and its surrounding soil are subjected to the long-term, low-frequency cyclicloading caused by the winds, waves and currents. Hence, the evolvement of the cyclicbehavior of the seabed soil could induce the great change of the bearing capacity ofthe embedded offshore structures. With regard to the problem, a dynamic model forassessing the cyclic bearing capacity of the embedded offshore structures is presentedin the paper.
     Firstly, within the critical state framework, a new bounding surface plasticitymodel without elastic region suitable for capturing the cyclic shakedown anddegradation of saturated clay is developed. By taking the stress reversal point as thegeneralized homological center, the generalized hardening rule is proposed. Withmovement of the generalised homological centre, at lower stress amplitudes, thecyclic process ends at a steady state, and cyclic shakedown is reached. At higher stressamplitudes, a damage parameter related to the accumulated deviatoric plastic strain isincorporated into the form of the bounding surface, which is hence able to contract tomodel degradations in stiffness and strength. The model requires the critical stateparameters and the hardening modulus parameters, all of them have clear physicalmeanings. For the monotonic loading, only the former is needed, for the cyclicloading, the latter should be calibrated by the laboratory tests related with the dynamicshear modulus and the damping ratio. The developed model is validated throughundrained isotropic cyclic triaxial tests in normally consolidated and overconsolidatedsaturated clay under both one-way and two-way loadings. Both cyclic shakedown anddegradation are well reproduced by the model.
     Secondly, by describing the initial anisotropy and stress-induced anisotropyseparately, i.e., the former is taken into account through adopting an inclinedbounding surface at the start of shearing loading but without further rotation in the subsequent shearing event and the latter is considered by the kinematic role of thegeneralised hardening rule, the proposed model is improved to reflect the effects ofinitial anisotropy. A series of simple monotonic loading test and complicated cyclicloading tests are carried out. By compared with the analytical and experimental results,the rationality and efficiency of the assumption are verified. Thus, without increasingany model parameter and complexity, the functionality of the isotropic, kinematic androtational hardening rule are included in the newly proposed bounding surface model.Furthermore, the new anisotropic bounding surface model is generalised to3-D stressspace by the Von-Mises criterion method and the transformed stress method based onthe SMP criterion, respectively. In addition, The comparative analysis of the twomethods is systematically carried out to compensate for the lack in the study ofgeneralising the2-D model to3-D stress space for the constitutive model for cyclicbehaviour of saturated clay.
     Thirdly, the proposed bounding surface model in the paper is integrated by theimplicit return mapping and the sub-stepping integration schemes respectively andimplemented into ABAQUS. Two necessary modifications have been made for theimplicit and the sub-stepping integration schemes when applied to the boundingsurface model without elastic region. Because there is no yield surface in the type ofthe model, which the conventional implicit algorithm returns the stress state back to,or the sub-stepping integration corrects the drift of the stress state to. The applicabilityof the two integrations to the type model without the yield surface is enhanced.Furthermore, the comparative studies on the accuracy, robustness and efficiency of thetwo integrations for this kind of the bounding surface model are carried out both onthe soil element level and a coupled analysis of a rigid square footing on a normallyconsolidated saturated clay. In addition, the procedures of the two integrationalgorithms are given in detail, which can be highly reproduced. It should be noted thatthe model is a representative of a class bounding surface model with vanishing elasticregion which includes the typical model characteristics, i.e., the isotropic, kinematicand rotational hardening, the integrations for the model does provide a guidance forthe similar work.
     Finally, due to that the existing criterion of the ultimate bearing capacity can not suitable for different types of load-displacement curves, a new criterion is establishedbased on the systematical analysis on all types of load-displacement curves. Byadopting the bounding surface model which has implemented in ABAQUS, the cyclicbearing capacity of the embedded offshore structure (the Vertically Loaded Anchor,VLA) is investigated. It shows that VLA has three typical types of displacementresponses under cyclic loading, i.e., the cyclic shakedown, the cyclic hypo-shakedownand the cyclic degradation. The stiffness of the coupled embedded offshorestructure-soil system shows the similar characteristics correspondingly. A criterion fordetermining the cyclic bearing capacity of the embedded offshore structure isproposed. The effects of the mean value and amplitude of the cyclic loading as well asthe number of cycles are investigated. The procedure for assessing the cyclic bearingcapacity is developed, which can be used for further evaluating the stability of theembedded offshore structures.
引文
[1] Andersen KH, Lauritzsen R. Bearing capacity for foundations with cyclicloads[J]. Journal of Geotechnical Engineering, ASCE,1988,114(5):540-555.
    [2] Moses GG, Rao SN. Behavior of marine clay subjected to cyclic loading withsustained shear stress[J]. Marine Georesources Geotechnology,2007,25:81-96.
    [3] Guidance for use of the BSH standard "Design of Offshore Wind Turbines"[S].2012.
    [4] Anderson KH. Bearing capacity under cyclic loading-offshore, along the coast,and on land[J]. Canadian Geotechnical Journal,2009,46:513-535.
    [5] Rao SN, Prasad YVSN. Uplift behavior of pile anchors subjected to lateralcyclic loading[J]. Journal of Geotechnical Engineering,1993,119(4):786-790.
    [6] Prasad YVSN, Rao SN. Experimental studies on foundations of Compliantstructures-II.Under cyclic loading[J]. Ocean Engineering,1994,21(1):15-27.
    [7] Allersma HGB, Kierstein A, Maes AD. Centrifuge modeling on suction pilesunder cyclic and long term vertical loading[A].The10th International Offshoreand Polar Engineering Conference[C]: California: ISOPE,2000.
    [8] Kevin JM, Fred H. Cyclic axial loading of drilled shafts in cohesive soil[J].Journal of Geotechnical Engineering,1994,120(9):1481-1497.
    [9] Bye A, Erbrich CT, Rognlien B, Tjelta TI. Geotechnical design of bucketfoundations[A]. Offshore Technology Conference[C]: Houston: OTC,1995.
    [10] Byrne BW, Houlsby GT. Experimental investigations of response of suctioncaissons to transient vertical loading[J]. Journal of Geotechnical andEnvironmental Engineering,2002,128(11):926-939.
    [11] Byrne BW, Houlsby GT. Experimental investigations of response of suctioncaissons combine loading[J]. Journal of Geotechnical and EnvironmentalEngineering,2004,130(3):240-253.
    [12] Rao SN, Kumar ND, Sundar V. Influence of cyclic load on model cassionseawalls embedded in marine clay[A]. Cyclic Behavior of Soils andLiquefaction Phenomena [C]: Bochum: Taylor&Francis Group,2004.
    [13] Kelly RB, Houlsby GT, Byrne BW. Transient vertical loading of model suctioncaissons in a pressure chamber [J]. Geotechnique,2006,56(10):665-675.
    [14] Lu XB, Wu YR, Jiao BT, Wang SY. Centrifugal experimental study of suctionbucket foundations under dynamic loading[J]. Acta Mechanica Sinica,2007,23(6):689-698.
    [15] Wang YH, Lu XB, Wang SY, Shi ZM. The response of bucket foundation underhorizontal dynamic loading[J]. Ocean Engineering,2006,33(7):964-973.
    [16] Wang JH, Yang HM. Model tests and numerical simulation on bearing capacityof bucket foundations in soft clay under vertical static and cyclic loads[A]. The17th International Offshore and Polar Engineering Conference[C]: California:ISOPE,2007.
    [17] Clukey EC, Morrison M J, Garnier J et a1. The response of suction caisson innormally consolidated clays to cyclic TLP loading conditions[A]. OffshoreTechnology Conference[C]: Houston: OTC,1995.
    [18] El-Gharbawy, Roy Olson. The cyclic pullout capacity of sunction caissonfoundations[A]. The Ninth International Offshore and Polar EngineeringConference[C]: Brest: ISOPE,1999:660-667.
    [19] Chen W, Randolph MF. Uplift capacity of suction caissons under sustained andcyclic loading in soft clay[J]. Journal of Geotechnical and EnvironmentalEngineering,2007,133(11):1352-1363.
    [20] Anderson KH, Pool JH, Browns SF, et al. Cyclic and static laboratory tests ondrammen clay[J]. Journal of the Geotechnical Engineering Division, ASCE,1980,106(5):499-529.
    [21] Iskander M, El-Gharbawy, Olson R. Performance of suction caissons in sandand clay[J]. Canada Geotechnical Journal,2002,39(3):576-584.
    [22] Allersma HGB. Centrifuge tests on monotonic and cyclic loaded caissons[A].Cyclic Behavior of Soils and Liquefaction Phenomena[C]: Bochum:Taylor&Francis Group,2004.
    [23]刘晶磊,循环载荷作用下软粘土中张紧式吸力锚承载力研究[D],天津大学,2012.
    [24] Bemben SM, Kupferman M. The vertical holding capacity of marine anchorflukes subjected to static and cyclic loading[A]. Offshore TechnologyConference [C]: Texas: OTC,1973.
    [25] Ponniah DA, Finlay TW. Cyclic behavior of plate anchor[J]. CanadianGeotechnical Journal,1988,25:374-381.
    [26] Datta MSK, Gulhati G, Achari. Behavior of plate anchors in soft cohesive soilsunder cyclic loading[J]. Indian Geotechnical Journal,1990,20(3):206-224.
    [27] Singh SP, Ramaswamy SV. Response of plate anchors to sustained-cyclicloading[J]. Indian Geotechnical Journal,2002,32(2):161-172.
    [28] Singh SP, Ramaswamy SV. Behavior of plate anchors under short-term cyclicloading[J]. Soft Soil Engineering, London: Taylor&Francis Group,2007.
    [29] Singh SP, Ramaswamy SV. Influence of frequency on the behaviour of plateanchors subjected to cyclic loading[J]. Marine Georesources and Geotechnology,2008,26:36-50.
    [30] Hyodo M, Yamamoto Y, Sugiyama M. Undrained cyclic shear behaviour ofnormally consolidated clay subjected to initial static shear stress[J]. SoilsFoundation,1994,34(4):1-11.
    [31] Li S, Huang MS. Undrained long-term cyclic degradation characteristics ofoffshore soft clay [C]//In: Huang MS, Yu X, Huang Y, editors. Soil Dynamicsand Earthquake Engineering;2010, Jun3-5; Shang Hai, China; New York:ASCE,2010, p.263-271.
    [32] Gerber TM, Rollins KM. Cyclic p-y curves for a pile in cohesivesoil[C]//Proceedings of the Geotechnical Earthquake Engineering and SoilDynamics-IV. California: Geotechnical Special Publication,2008:1-10.
    [33] Matlock H. Correlation for design of laterally loaded pile in soft clay
    [C]//Offshore Technology Conference: Houston:1970, p.1577-1594.
    [34] Reese LC, Cox WR, Koop FD. Analysis of laterally loaded piles in sand
    [C]//Offshore Technology in Civil Engineering: Hall of Fame Papers from theEarly Years. Houston:1974, p.473-483.
    [35]高明,陈锦珍,郑国芳等,桩在侧向静、动、循环荷载下的性能研究及p-y曲线建议公式[J],海洋工程,1988,6(3):34-43.
    [36]田平,王惠初,黏土中横向周期性荷载桩的p-y曲线统一法[J],河海大学学报,1993,21(1):9-14.
    [37] Rajashree SS, Sundaravadivelu R. Degradation model for one-way cyclic lateralload on piles in soft clay[J]. Computers and Geotechnics,1996,19(4):289-300.
    [38] Randolph MF. RATZ Version4-2: Load Transfer Analysis of Axially LoadedPiles[M].2003.
    [39] Coronel M, Seidel M. A new approach for assessing offshore piles subjected tocyclic axial loading[J]. Geotechnik,2011,34:1-19.
    [40] Foss I, Dahlberg, Kvalstad T. Foundation desigh for gravity structures withrespect to failure in cyclic loading[C]//Offshore Technology Conference:Houston: OTC3114, p.535-545.
    [41] David NC. A soil model for the evaluation of displacement and pore pressuresin foundation of offshore gravity structures subjected to cyclicloading[C]//Preceedings of International Symposium on Numerical Models inGeomechanics,1982:368-376.
    [42] Wu K, Ma MY, Chen R. Numerical analysis of cyclic bearing capacity ofsuction bucket foundation based on elasto-plastic FEM[J]. EGJE, Bund B,2010:1-13.
    [43] Iwan DW. On a class of models for the yielding behaviour of continuous andcomposite systems[J]. Journal of Applied Mechanics,1967,34:612-617.
    [44] Masing G. Eigenspannungen and Verfestigung beim Messing[C]//Proceedings ofthe2nd International Congress of Applied Mechanics, Zurich,1926, p.332-335.
    [45] Vlahos G, Cassidy MJ, Byrne BW. The behaviour of spudcan footings on claysubjected to combined cyclic loading[J]. Applied Ocean Research,2006,28:209-221.
    [46] Cassidy MJ. Non-linear analysis of jack-up structures subjected to randomwaves[D]. PhD Thesis, University of Oxford, UK,1999.
    [47] Emdadifard M, Hosseini SMMM. Numerical modeling of suction bucket undercyclic loading in saturated sand[J]. EJGE, Bund B,2010:253-268.
    [48]范庆来,软土地基上深埋式大圆筒结构稳定性研究[D],大连理工大学,2007.
    [49] Carter JP, Booker JR,Wroth CP. A critical state soil model for cyclic loading[J].In: Pande GN, Zienkiewicz OC, editors. Soil Mechanics-Transient and CyclicLoads, New York: John Wiley&Sons Ltd,1982, p.219-252.
    [50] Hardin BO, Black W L. Vibration modulus of normally consolidated clay:design equations and curves[J]. Journal of the Soil mechanics and FoundationEngineering,1968,94(2):353-369.
    [51] Hardin BO, Dmevich VP. Shear modulus and damping in soil:measurement andparameter effects[J]. Journal of the Soil mechanics and Foundation Engineering,1972,98(6):603-624.
    [52] Dmevich VP, Hardin BO. Shear modulus and damping in soil:design equationsand curves[J]. Journal ofthe Soil mechanics and Foundation Engineering,1972,98(7):667-692.
    [53]王志良,王余庆,韩清宇,不规则循环剪切荷载作用下的黏弹塑性模型[J],岩土工程学报,1980,2(3):10-20.
    [54]栾茂田,土动力非线性分析中的变参数Ramberg-Osgood本构模型[J],地震工程与工程振动,1992,12(2):69-77.
    [55] Provest JH, Catherine MK. Shear stress-strain curve generation from simplematerial parameters[J]. Journal of Geotechnical Engineering,1967,34(3):11-19.
    [56] Pyke R. Nonlinear soil models for the application to simple shear to soilsamples[C]//Proceedings of ASCE,1979, p.715-726.
    [57] Puzrin A, Frydman S,Talesnick M. Kinematic hardening of soft clay in simpleshear[J]. International Journal for Numerical and Analytical Methods inGeomechanics,1995,19:769-791.
    [58] Rao SN, Panda AP. Non-linear analysis of undrained cyclic strength of softmarine clay[J]. Ocean Engineering,1999,26:241-253.
    [59]蔡元强,柳伟,徐长节,基于修正Iwan模型的软黏土动应力-应变关系研究[J],岩土工程学报,2007,29(9):1314-1319.
    [60] Idriss IM, Dobry R, Dolye EH, Singh RD. Nonlinear behavior of soft claysduring cyclic loading conditions[J]. Journal of the Geotechnical EngineeringDivision, ASCE,1978,104:1427-1447.
    [61] Mroz Z, Norris VA, Zienkiewicz OC. An anisotropic critical state model forsoils subject to cyclic loading[J]. Geotechnique,1981,31(4):451-469.
    [62] Dafalias YF, Popov EP. A model of non-linearly hardening materials forcomplex loading[J]. Acta Mechanica,1975,21:173-192.
    [63] Elgamal A, Yang Z, Parra E. Computational modeling of cyclic mobility andpost-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering,2002,22(4):259-271.
    [64] Dafalias YF, Herrmann LR. Bounding surface formulation of soil plasticity[J].In: Pande GN, Zienkiewicz OC, editors. Soil Mechanics-Transient and CyclicLoads, New York: John Wiley&Sons Ltd,1982, p.253-282.
    [65] Al-Tabbaa A, Wood MD. An experimentally based "bubble'' model for clay[C].In: MOG III, Pietruszczak S, Pande GN, editors, Proceedings of3rdInternational Conference on Numerical Models in Geomechanics; ElsevierApplied Sciences: Amsterdam,1989, p.91-99.
    [66] Crouch RS, Wolf JP. Unified3D critical state bounding-surface plasticity modelfor soils incorporating continuous plastic loading under cyclic paths. Part II:calibration and simulations[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,1994,18:759-784.
    [67] Crouch RS, Wolf JP, Dafalias YF. Unified critical-state bounding-surfaceplasticity model for soil[J]. Journal of Engineering Mechanics,1994,120(11):2251-2270.
    [68] Stallebrass SE. The effect of recent stress history on the deformation ofoverconsolidated soils[D]. PhD Thesis, City University, UK,1990.
    [69] Banerjee PK, Yousif NB. A plasticity model for the mechanical behaviour ofanisotropically consolidated clay[J]. International Jounral for Numerical andAnalytical Methods in Geomechanics,1986,10(4):521-541.
    [70] Anandarajah A, Dafalias YF. Bounding surface plasticity. III: Application toanisotropic cohensive soils[J]. Journal of Engineering Mechanics, ASCE,1986,112(12):1292-1318.
    [71] Ling HI, Yue D, Kaliakin VN,Themelis NJ. Anisotropic elasto-plastic boundingsurface model for cohesive soils[J]. Journal of Engineering Mechanics, ASCE,2002,129(7):748-758.
    [72] Liang RY, Ma F. Anisotropic plasticity model for undrained cyclic behavior ofclays. I: Theory[J]. Journal of Geotechnical Engineering,1992,118(2):229-245.
    [73] Liang RY, Ma F. Anisotropic plasticity model for undrained cyclic behavior ofclays II: Verification[J]. Journal of Geotechnical Engineering,1992,118(2):246-265.
    [74]黄茂松,刘明,柳艳华,循环荷载下软黏土的各向异性边界面模型[J],水利学报,2009,40(2):188-193.
    [75]王建华,要明伦,软黏土不排水循环特性的弹塑性模拟[J],岩土工程学报,1996,18(3):11-18.
    [76] Li T, Meissner H. Two-surface plasticity model for cyclic undrained behavior ofclays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(7):613-626.
    [77] Yu HS, Khong C, Wang J. A unified plasticity model for cyclic behavior of clayand sand[J]. Mechanics Research Communications,2007,34:97-114.
    [78] Sridhanya KV, Rajagopal K, Lakshmana RC. Modeling of degradation of clayeysoils under repeating loading[C]//Proceeding of the12thInternationalConference of International Association for Computer Methods and Advances inGeomechanics;2008, Oct1-6; Goa, India;2008, p.877-82.
    [79] Liu MD, Carter JP. Structured Cam Clay Model[J]. Canadian GeotechnicalJournal,2002,39(6):1313-1332.
    [80] Wheeler SJ, Naatanen A, Karstunen M, Lojander M. An anisotropicelastoplastic model for soft clays[J]. Canadian Geotechnical Journal2003,40(2):403-418.
    [81] Potts DM, Zdravkovic L. Finite element analysis in geotechnical engineering:theory[B]. Thomas Telford: London,1999.
    [82] Gajo A, Wood MD. A kinematic hardening constitutive model for sands: themultiaxial formulation[J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,1999,23:925-964.
    [83] Dafalias YF, Manzari MT, Papadimitriou AG. Saniclay: simple anisotropic clayplasticity model[J]. International Journal for Numerical and Analytical Methodsin Geomechanics,2006,30:1231-1257.
    [84]李涛,Meissner H,循环荷载作用下饱和黏性土的弹塑性双面模型[J].土木工程学报,2006,39(1):92-97.
    [85] Argyris JH, Faust G, Szimat J, Warnke P, Willam K. Recent developments infinite element analyses of prestressed,concrete reactor vessels[J]. NuclearEngineering and Design,1974,28:42-75.
    [86] Lagioia R, Puzrin AM, Potts DM. A new versatile expression for yield andplastic potential surfaces[J]. Computers and Geotechnics,1996,19(3):171-191.
    [87] Liu MD, Carter JP. Evaluation of the Sydney soil model[C]//Advances inGeotechnical Engineering: The Skempton, London Conference,2004,1:498-509.
    [88] Matsuoka H, Nakai T. A new failure criterion for soils in three dimensionalstress[C]//In: Vermeer PA et al. editors, Conference on Deformation and Failureof Granular Materials, Delft,1982, p.253-263.
    [89] Matsuoka H, Yao YP, Sun DA. The Cam-clay models revised by the SMPcriterion[J]. Soils and Foundations,1999,39(1):81-95.
    [90] Khalili N, Liu MD. On generalization of constitutive models from twodimensions to three dimensions[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2008,32:2045-2065.
    [91] Simo JC, Taylor RL. Consistent tangent operators for rate-independentelasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering1985,48:101-118.
    [92] Simo JC, Taylor RL. Return mapping algorithm for plane stresselasto-plasticity[J]. International Journal for Numerical Methods in Engineering,1986,22:649-670.
    [93] Simo JC, Hughes T. Computational inelasticity[B]. Interdisciplinary AppliedMathematics Series. Springer,2000.
    [94] Sloan SW. Substepping scheme for numerical integration of elastoplasticstress-strain relations[J]. International Journal for Numerical Methods inEngineering,1987,24:893-911.
    [95] Sloan SW, Abbo AJ, Sheng DC. Refined explicit integration of elastoplasticmodels with automatic error control[J]. Engineering Computations,2001,18(1/2):121-54.
    [96] Abbo AJ, Sloan SW. An automatic load stepping algorithm with error control[J].International Journal for Numerical Methods in Engineering,1996,39:1737-59.
    [97] Sheng DC, Sloan SW. Loading stepping schemes for critical state models[J].International Journal for Numerical Methods in Engineering,2001,50:67-93.
    [98] Ortiz M, Simo JC. Analysis of a new class of integration algorithms forelasto-plastic constitutive relations[J]. International Journal for NumericalMethods in Engineering,1986,32:353-366.
    [99] Jeremic B, Sture S. Implicit integration in elastoplastic geotechnics[J].Mechanics of Cohesive-frictional Materials,1997,29(2):165-183.
    [100] Macari EJ, Weihe S Arduino P. Implicit integration of elastoplastic constitutivemodels for frictional materials with highly non-linear hardening functions[J].Mechanics of Cohesive-Frictional Materials,1997,2(1):1-29.
    [101] Wissmann JW, Hauck C. Efficient elastic-plastic finite element analysis withhigher order stress point algorithms[J]. Computers and Structures,1983,17:89-95.
    [102] So owski WT, Hofmann M, Hofstetter G, Sheng DC, Sloan SW. A comparativestudy of stress integration methods for the Barcelona Basic Model[J].Computers and Geotechnics,2012;44:22-33.
    [103] Zhao JD, Sheng DC, Rouania M,Sloan SW. Explicit integration of complex soilmodels[J]. International Journal for Numerical and Analytical Methods inGeomechanics,2005,29(12):1209-1229.
    [104] Manzari MT, Nour MA. On implicit integration of bounding surface plasticitymodels[J]. Computers&Structures,1997,63:385-395.
    [105] Rouainia M, Wood DM. Implicit numerical integration for a kinematichardening soil plasticity model[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2001,25:1305-1325.
    [106] Borja RI, Lin CH, Montans FJ. Cam-clay plasticity Part IV: implicit integrationof anisotropic bounding surface model with nonlinear hyper-elasticity andellipsoidal loading function[J]. Computer Methods in Applied Mechanics andEngineering,2001,190:3293-3223.
    [107] Andrianopoulos KI, Papadimitriou AG, Bouckovalas GD. Explicit integration ofbounding surface model for the analysis of earthquake soil liquefaction[J].International Journal for Numerical and Analytical Methods in Geomechanics,2009,34(15):1586-1614.
    [108] Potts D, Ganendra D. An evaluation of substepping and implicit stress pointalgorithms[J]. Computer Methods in Applied Mechanics and Engineering,1994,119:341-354.
    [109] Manzari MT,Prachathananukit R. On integration of cyclic soil plasticitymodel[J]. International Journal for Numerical and Analytical Methods inGeomechanics,2001,25(6):525-549.
    [110] Roscoe KH, Burland JB. On the generalized stress-strain behaviour of 'wet'clay[J]. Engineering Plasticity, Cambridge University,1968:535-608.
    [111] Mroz Z,Norris VA. Elastoplastic and viscoplastic constitutive models for soilswith application to cyclic loading[J]. In: Pande GN, Zienkiewicz OC, editors.Soil Mechanics-Transient and Cyclic Loads, New York: John Wiley&Sons Ltd,1982, p.173-217.
    [112] Gbaboussi J, Momen H. Plasticity model for cyclic behavior of sands[C]//Proceedings of the3rd Intenrational Conference on Numerical Methods inGeomechanics, Aachen,1979:423-434.
    [113] Ghaboussi J, Momen H. Modelling and analysis of cyclic behaviour of sands[J].In: Pande GN, Zienkiewicz OC editors. Soil Mechanics-Transient and CyclicLoads. Constitutive Relations and Numerical Treatment, John Wiley&Sons Ltd.,1982, p.313-342.
    [114] Hashiguchi H. Subloading surface model in unconventional plasticity[J].Journal of Solids Structure,1989,25(8):917-945.
    [115] Krieg RD. A practical two-surface plasticity theory. Journal of AppliedMechanics, ASME,1975,42:641-646.
    [116] Bardet JP. Bounding surface modeling of cyclic sand behavior[J]. Journal ofEngineering Mechanics,1986,112(11):1198-1217.
    [117] Dafalias YF. An anisotropic critical state clay plasticity model[J]. MechanicsResearch Communications,1986,13:341-347.
    [118] Khalili N, Habte MA,Valliappan S. A bounding surface plasticity model forcyclic loading of granular soils[J]. International Journal for Numerical andAnalytical Methods in Engineering,2005,63:1939-1960.
    [119] Yue DY. Anisotropic and time dependent bounding surface model for clays andits application to a containment system constructed over a soft foundation[D].PhD Thesis, Columbia University,2001.
    [120] Jiang W. New kinematic hardening model. Journal of Engineering Mechanics,120(10):2201-2222.
    [121] Zergoun M, Vaid YP. Effective stress response of clay to undrained cyclicloading[J]. Canadian Geotechnical Journal,1994,31:714-727.
    [122] Hu LM, Ding JW, Liu HX. Mechanical Behavior of Marine Clay Under WaveLoading[J]. International Journal of Offshore and Polar Engineering,2010,20(1):72-79.
    [123] Yu HS. CASM: A unified state parameter model for clay and sand[J].International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:621-653.
    [124]钟辉虹,黄茂松,吴世明,循环荷载作用下软黏土变形特性研究[J],岩土工程学报,2002,24(2):629-632.
    [125] Lee SR, Oh S. An anisotropic hardening constitutive model based ongeneralized isotropic hardening rule for modeling clay behavior[J]. InternationalJournal for Numerical and Analytical Methods in Geomechanics,1995,19:683-703.
    [126] Chen ES, Buyukozturk O. Constitutive model for concrete in cycliccompression[J]. Journal of Engineering Mechanics,1985,111(6):797-814.
    [127] Terzachi K, Peck RB. Soil mechanics in engineering practice[B].2nd Edition.New York: John Wiely and Sons,1967.
    [128] Taha RM, Ahmed J, Asmirza S. One-dimensional consolidation of kelangclay[J]. Pertanika Journal of Science&Technology,8(1):19-29.
    [129] Huat BBK, Othman K Jaffar AA. Geotechnical properties of malaysiam marineclays[J]. Journal of Inst Engineers Malaysis,56:23-33.
    [130] Nakase A, Kamei T, Kusakabe O. Constitutive parameters estimated byplasticity index[J]. Journal of Geotechnical Engineering,1988,114:844-858.
    [131] Dafalias YF. On cyclic and anisotropic plasticity[D]. PhD Thesis, UniversityofCalifornia, Berkeley,1975.
    [132] Ducan JM, Chang CY. Nonlinear analysis of stress and strain in soils[J]. Journalof the Soil Mechanics and Foundations Division,1970,96(5):1629-1653.
    [133] Shin DS, Ju YT, Lee KH et al. Development of a modified Duncan-Changmodel for soils[C]//In: Bloss DM, editor. Proceedings of the10th InternationalSymposium on Numerical Models in Geomechanics. Leiden, Taylor&Francis,2007:93-98.
    [134]刘祖德,陆士强,杨天林等.应力路径对填土应力-应变关系的影响及其应用[J],岩土工程学报,1982,4(4):45-55.
    [135]王伟,宋新江,凌华,卢廷浩,周干武,滨海相软土应力–应变曲线复合指数–双曲线模型[J],岩土工程学报,2010,32(9):1455-1459.
    [136] Wang ZL, Dafalias YF, Shen CK. Bounding surface hypoplasticity model forsand[J]. Journal of Engneering Mechanics,1990,116(5):24-35.
    [137] Papadimitriou AG, Bouckovalas GD, Dafalias YF. Plasticity model for sandunder small and large cyclic strains[J]. Journal of Geotechnical andGeoenvioronmental Enginnering, ASCE,2001,127(11):973-983.
    [138] Sangrey DA, Henkel DJ, Esrig MI. The effective stress response of a saturatedclay soil to repeated loading[J]. Canadian Geotechnical Journal,1969;6(3):241-52.
    [139] Zhou J, Gong XN. Strain degradation of saturated clay under cyclic loading[J].Canadian Geotechnical Journal,2001,38:208-212.
    [140] Matasovic N, Vucetic M. Generalized cyclicdegradation-pore-pressuregeneration model for clays[J]. Journal of Geotechnical Engineering, ASCE,1995,121(1):33-42.
    [141] Matasovic N,Vucetic M. A pore pressure model for cyclic straining of clay[J].Soils and Foundation,1992,32(3):156-173.
    [142] Bishop AW,Henkel DJ. The measurement of soil properties in the triaxial test[B].Edward Arnold Publishers Ltd, London,1957.
    [143]刘功勋,复杂应力条件下饱和海洋土剪切特性研究[D],大连理工大学,2011.
    [144]霍海峰,循环荷载作用下饱和黏土的力学性质研究[D],天津大学,2012.
    [145] Lefebvre G, LeBoeuf D. Stability threshold for cyclic loading of saturatedclay[J]. Canadian Geotechnical Journal,1989,26(1):122-131.
    [146]周建,龚晓南,循环荷载作用下饱和软粘土应变软化研究[J],土木工程学报,2000,33(5):75-78.
    [147]高广运,时刚,顾中华,冯世进,一个考虑循环荷载作用的简化模型[J],岩土力学,2008,29(5):1195-1199.
    [148]陈仲颐,王洪瑾,周景星,土力学[B].北京:清华大学出版社,1994.
    [149]王军,蔡元强,徐长节,循环荷载作用下软黏土刚度软化特征试验研究[J],岩土力学,2007,28(10):2138-2144.
    [150] Kuntsche K. Tests on clay[J]. In: Grudehus, Darve, Vardoulakis, editors.Constitutive relations for soils. Rotterdam, the Netherlands,1982:71-84.
    [151] Graham J, Noonan ML, Lew KV. Yield states and stress-strain relationships in anatural plastic clay[J]. Canadian Geotechnical Journal,1983,20(3):502-516.
    [152] Ladd CC. Stress-strain behavior of anisotropically consplidated clays duringundrained behaviore of clays[C]//Proceeding of the6th InternationalConference on Soil Mechanics and Foundations Engineering; Montreal, Canada,1965, session1, p.282-286.
    [153] Stipho ASA. Experimental and theoretical investigation of the behavior ofansiotropically consolidated kaolin[D]. PhD Thesis, University College ofCardiff, UK,1978.
    [154] Casagrande A, Carrillo N. Shear failure of anisotropic materials [C]//Proceeding of. Boston Society of Civil Engineers,31:74-87.
    [155] Pietruszczak ST, Krucinski S. Description of anisotropic response of clays usinga tensorial measure of structural disorder[J]. Mechanics of Materials,1989,8:237-249.
    [156] Kavvadas MJ. A constitutive model for clays based on non-associatedanisotropic elasto-plasticity[C]//Proceedings of the Intenrational Conference onC onstitutive Laws for Engineering Materials-Theory and Application, Tuscon,Arizona,1982.
    [157] Whittle AJ. Evaluation of a constitutive model for overconsolidated clays[J].Geotechnique,1993,43(2):289-313.
    [158] Sekiguchi H, Ohta H. Induced anisotropy and time dependency inclays[C]//Proceedings of the9th International Conference of Soil Mechanicsand Foundations Engineering, Tokyo, Japan,1977, p.1475-1484.
    [159] Mroz Z, Norris VA, Zienkiewicz OC. Application of an anisotropic hardeningmodel in the analysis of elasto-plastic deformation of soils[J]. Geotechnique,1979,29(1):21-34.
    [160]胡存,刘海笑,适用于饱和粘土循环动力分析的新型边界面塑性模型[J],水利学报,2011,42(10):1192-1200.
    [161]胡存,刘海笑,黄维,考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J],岩土力学,2012,33(2):459-467.
    [162] Huang MS, Liu YH, Sheng DC. Simulation of yielding and stress-strainbehavior of shanghai soft clay[J]. Computers and Geotechnics,2011,38:341-353.
    [163] Chen SY, Zhang H, Zhang RT. An experimental study on stress-strain behaviourof soft clay along decreasing average normal stress paths[J]. In: Lee CF et al.,editors. Soft Soil Engineering, Lisse: Swets&Zeitlinger BV,2001, p.581-586.
    [164]曾玲玲,陈晓平,软土在不同应力路径下的力学特性分析[J],岩土力学,2009,30(5):1264-1270.
    [165] Yin ZY, Chang CS. Non-uniqueness of critical state line in compression andextension conditions[J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,2009,33:1315-1338.
    [166] Prashant A, Penumadu D. A laboratory study of normally consolidated kaolinclay[J]. Canadian Geotechnical Journal,2005,42:27-37.
    [167]孙德安,姚仰平,殷宗泽,基于SMP准则的双屈服面弹塑性模型的三维化[J],岩土工程学报,1999,21(5):631-634.
    [168]孙德安,姚仰平,殷宗泽,初始应力各向异性土的弹塑性模型[J],岩土力学,2000,21(3):221-226.
    [169]皱博,姚仰平,路德春,变换应力三维化方法在清华模型中的应用[J],岩石力学与工程学报,2005,24(23):4303-4307.
    [170]韩国城,连阵营,姚仰平,基于SMP准则的改进剑桥模型及其在基坑工程中的应用[J],大连理工大学学报,2002,42(1):93-97.
    [171] Oh S, Lee SR. Formulation of implicit stress integration and consistent tangentmodulus for an anisotropic hardenging constitutive model[J]. ComputerMethods in Applied Mechanics and Engineering,2001,191:255-272.
    [172] Hibbitte, Karlsson&Sorenson. ABAQUS/Standard user’s manual[M]. USA,2009.
    [173] Paulino GH, Liu Y. Implicit consistent and continuum tangent operators inelastoplastic boundary element formulations[J]. Computer Methods in AppliedMechanics and Engineering,2001,190:2157-2179.
    [174] Mohammad KH et al. Suction caisson foundation design for vortex-inducedvibration loading[C]//Offshore Technology Conference: Houston, OTC15239,2003, p.1-10.
    [175] Zienkiewicz OC, Chang CT, Betess P. Drained, undrained, consolidating anddynamic behavior assumption in soils, limits of validity[J]. Geotechniqueassumption in soils,1980,30:385-395.
    [176] Das BM, Shin EC. Laboratory model tests for cyclic load-induced settlement ofa strip foundation on a clayey soil[J]. Geotechnical and Geological Engineering,1996,4:213-225.
    [177] Vesic AS. Analysis of ultimate loads on shallow foundations[J]. Journal of theSoil Mechanics and Foundations Division, ASCE,1973,99:45-73.
    [178] Rowe RK, Davis EH. The behaviour of anchor plates in clay[J]. Geotechnique,1982,32(1):9-23.
    [179] Song ZH, Hu YX, Randolph MF. Numerical simulation of vertical pullout ofplate anchors in clay[J]. Journal of Geotechnical and GeoenvironmentalEngineering,2008,134(6):866-875.
    [180] Yang M, Murff JD, Aubeny CP. Undrained capacity of plate anchors undergeneral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(10):1383-1393.
    [181] Ghaly. Load-displacment prediction for horizontally loaded vertical plates[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(1):74-76.
    [182] Neely WJ,. Stuart JG., Graham J. Failure loads of vertical anchor plates insand[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1973,99(9):669-685.
    [183] Boushehrian AH,Hataf N Ghahramani A. Numerical study of cyclic behavior ofshallow foundations on sand[J]. Engineering and Technology,2009,34:607-610.
    [184]刘海笑,杨晓亮,法向承力锚极限抗拔力特性[J],海洋工程,2006,24(4):8-14.
    [185] Hanna AM, Ranjan G. Pullout-displacement of shallow vertical anchor plates[J].Indian Geotechnical Journal,1992,22(1):55-62.
    [186] Hanna A, Ayadat T, Sabry M. Pullout resistance of single vertical shallowhelical and plate anchors in sand[J]. Geotechnical and Geological Engineering,2007.
    [187] Merifield RS, Sloan SW, Yu HS. Stability of plate anchors in undrained clay[J].Geotechnique,2001,51(2):141-153.
    [188] Ghaly AM, Hanna AM. Ultimate pullout resistance of single vertical anchors[J].Canadian Geotechnical Journal,1994b,31(5):661-672.
    [189] Hanna TH, Sparks R. The behaviour of preloaded anchors in normallyconsolidated sands[C]//Proceedings of the8th international conference on soilmechanics and foundation engineering Moscow,1973,2:137-142.
    [190] Det Norshke Veritas. DNV. Design and installation of fluke anchors in clay[S].DNV RP-E302.2002.
    [191] Huang S, Pascoala R, Barltropb N, Guedes C. Assessment of the effect ofmooring systems on the horizontal motions with an equivalent force model[J].Ocean Engineering,2006,33:1644-1668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700