用户名: 密码: 验证码:
脉冲电催化氧化处理染料废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电催化氧化法是一种高级电化学氧化技术,其主要利用具有催化性能的金属氧化物电极,产生具有强氧化能力的羟基自由基或其它自由基来氧化水中污染物,使其完全氧化分解为CO2和H2O,以达到去除废水中的有机物的目的。近些年来,电催化氧化法在处理难降解有机废水的方面引起了广泛关注。脉冲电解技术在节能和电极损耗方面有较强的优势。目前有关脉冲电解技术与电催化氧化技术相结合处理染料废水的报道颇少。本文提出构建脉冲电催化氧化体系,系统地考察了脉冲电催化氧化体系对酸性靛蓝染料模拟废水进行了降解处理;分析了酸性靛蓝在该体系中的反应动力学和矿化效果;研究了酸性靛蓝在该体系的降解途径和反应机理;对比该体系对不同染料的去除效率,考察了染料物化性质对处理效果的影响。论文取得了主要结论如下:
     (1)采用脉冲电催化氧化体系对酸性靛蓝溶液进行处理过程中,溶液初始浓度、电解质浓度、施加电压、脉冲频率等因素对其脱色效果均有一定影响,在反应过程中脱色率均能较好地符合一级反应动力学规律。建立了总反应的动力学模型,影响反应速率常数由强到弱依次为电解质浓度>施加电压>脉冲频率>反应物初始浓度。
     (2)pH值、酸性靛蓝初始浓度、电解质浓度、施加电压、脉冲频率和占空比对酸性靛蓝的矿化效果有一定的影响。得到最佳反应条件为:pH值为3,酸性靛蓝初始浓度为220mg/L,电解质NaCl浓度1.5g/L,施加电压15V,脉冲频率为4kHz,占空比为0.4。在最佳反应条件下处理180min,TOC去除率率为31.2%,废水的可生化性明显提高,单位处理TOC能耗为159kwh/kgTOC,电流效率为15.3%。
     (3)酸性靛蓝分子在脉冲电催化氧化的矿化过程是先通过酸性靛蓝分子中的C=C双键断裂,使水溶液脱色;随后将里面C-N键和C-S键进一步氧化为简单的苯环芳香化合物;芳香化合物的苯环进一步被氧化打开,形成结构简单的脂肪酸类物质,直到最后彻底矿化为CO2、H2O、NH4+和NO3-。
     (4)在脉冲电催化氧化体系对有机物去除是有羟基自由基和活性氯两种氧化机理共同作用的过程。反应180min后,TOC去除率为47.1%,其中为OH自由基氧化TOC去除率为13.8%,以活性氯氧化TOC所占的比例为33.3%。该反应体系中对有机物的去除过程以活性氯氧化机理为主。
     (5)分析了脉冲电催化氧化体系对15种染料的处理效果,染料的骨架结构、磺酸基个数、芳香环、偶氮双键个数以及变极异构现象等因素对处理效果有一定影响。偶氮染料的分子结构中分子量与磺酸基个数比值、无机性与有机性比值以及偶氮双键数目与TOC去除率间存在较好的线性相关性。分子量与磺酸基个数比值的贡献最为显著。
Electrocatalytic oxidation is an advanced electrochemical oxidation processes and theuesd of some metal oxides as electrode was benificical to the electrogeneration ofhydroxyl radicals and other radicals which would destroy the pollutants to carbon dioxideand water.In the recent years, there has developed great interest in the development ofenvironmentally firendly electrochemical methods to degrade recalcitrant organicpollutants in wasterwaters.The pulse electrolysis processes has a advantage in terms ofthat can reduce both the energy and electrode consumption. Up to now, little attention waspaid to the treatment of dye wastewater using the combination of pulse electrolysis andelectrocatalytic oxidation. Therefore, electrocatalytic oxidation of the dye indigo carmine(IC) with pulse electrolysis was systematically investigated in the present paper. Thekinetics and mineralization of the processes was studied. The degradation pathway andreactive mechanism of IC in the electrocatalytic oxidation system with pulse electrolysiswas explored. The treatment of15kinds of dyes was performed in the system. The effectof dye physico-chemical properties on the treatment efficiency was further studied. Theprimary results obtained are as follows:
     (1) During the processes, initial IC concentration, NaCl concentration, voltage andfrequency were observed to have effect on the discoloration efficiency. The reactionkinetics followed a pseudo-first order in the process. The total reaction kinetics equationwas established and the effect of the four parameters on the reaction rate followed theorder: NaCl concentration> voltage> frequency> IC concentration.
     (2) Several factors have effect on the TOC removal efficiency, such as pH value,initial IC concentration, NaCl addition, voltage, frequency and duty ratio. Under theoptimization condition of the process was performed at pH3,220mg/L IC,1.5g/L NaCl,15V,4kHz and duty ratio of0.4decreases in the TOC of31.2%was achieved after180min. Furthermore, the biodegradability of the water was improved significantly. Theenergy consumption was159kwh/kgTOC and the current efficiency was15.3%.
     (3) Decomposition of IC in the electrocatalytic oxidation reactor with pulseelectrolysis was proposed to be firstly initiated by the cleavage of C=C, which resulted in decolorization of the solution. Afterwards, the C-N and C-S were further oxidaized tosome benzene-type compounds and then to oxalic and oxamic acids resulted from thearomatic ring cleavage. Finally, these carboxylic acids were converted into CO2, H2O,NH4+and NO3-to accomplish an entire mineralization process.
     (4) The TOC removal efficiency was47.1%after180min treatment with3.5g/L NaCl.The removal of organic compound in this system was the process combined the oxidationof hydroxyl radical (·OH) and active chlorine (Cl2, HClO, and ClO-), which respectivelycontrubute to13.8%and33.3%of TOC removal efficiency.
     (5) Degradation of15kinds of dyes was performed in the system and found out thatsome factors such as dye stucture type, number of sulfonate group, number of azochromophore group and aromatic ring in the dye molecule had some effect on thetreatment efficiency. The quantitative relationship between the TOC removal efficiencyand molecular descriptors such as the ratio of the molecular weight to the number ofsulfonate group, the ratio of the hydrophilicity to the lipophilicity and the number of azochromophore group was studied. The results indicated that good linear correlations existbetween the TOC removal efficiency and their molecular descriptors. In particular, theratio of the molecular weight to the number of sulfonate group has most prominentcontribution to the TOC removal rate.
引文
[1]韩永奇,韩晨曦.我国染料工业发展趋势探析[J].中国石油和化工经济分析,2011,9:55-57
    [2] Sanromán. M.A, Pazos. M, Ricart. R, Cameselle.C. Electrochemicaldecolourisation of structurally different dyes[J]. Chemosphere.2004,57:233-239
    [3] Dong. Y.M, He.K, Zhao. B, Yin. Y, Yin. L, Zhang. A.M. Catalytic ozonation ofazo dye active brilliant red X-3B in water with natural mineral brucite[J]. CatalysisCommunications,2007,8:1599-1603
    [4] Yesilada. O, Asma. D, Cing. S. Decolorization of textile dyes by fungal pellets[J].Process Biochemistry,2003,38:933-938
    [5] Banat. I.M, Nigam. P, Singh. D, Marchant. R. Microbial decolorization oftextile-dye-containing effluents: a review[J]. Bioresoure Technology,1996,58:217-227
    [6]程万里.染料化学[M].中国纺织出版社.2010
    [7]路艳华,张峰.染料化学[M].中国纺织出版社.2009
    [8] Hessel. C, Allegre. C, Maisseu. M, Charbit. F, Moulin. P. Guidelines andlegislation for dye house effluents[J]. Journal of Evironmental. Management.2007,83:171-180
    [9] Rozzi. A, Ficara. E, Cellamare. C. M, Bortone. G. Characterization of textilewastewater and other industrial wastewaters by respirometric and titrationbiosensors[J], Water. Science and Technolgy,1999,40(1):161-168
    [10] Venceslau. M. C, Tom. S, Simon. J. J. Characterisation of textile wastewater: areview[J], Environmental Technology,1994,15(9):917-929
    [11]周学双.染料工业三废的特点及其对策[J].化工环保,1990,3.
    [12]马凤霞,刘坤,孟凡霞等. Keggin和Dawson结构多金属氧酸盐光催化脱色偶氮染料[J].化学研究与应用,2009,21(7):1042-1045
    [13] Kim. T.H, Park. C, Yang. J. Comparison of disperse and reactive dye removals bychemical coagulation and Fenton oxidation[J]. Journal of Hazardous Materials.2004,112:95-103
    [14] Wang. S.B, Zhu. Z.H. Effects of acidic treatment of activated carbons on dyeadsorption[J]. Dye and Pigments.2007,75:306-314.
    [15] Malik. P.K. Use of activated carbons prepared from sawdust and rice-husk foradsorption of acid dyes: a case study of acid yellow36[J]. Dyes and Pigments,2003,56:239-249
    [16] Qada. E. N.E, Allen. S.J, Walker. G.W. Adsorption of basic dyes from aqueoussolution onto activated carbons[J]. Chemical. Engineering. Journal.2008,135:174-184.
    [17]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,1997,17(5):7-10
    [18]于敏,崔进发.超滤膜处理分散染料废水[J].工业用水与废水,2003,34(5):36-38
    [19] Qin. J.J, O. M.H, Kekre. K.A. Nanofiltration for recovering wastewater from aspecific dyeing facility[J]. Separation and Purification Technology,2007,56:199-203
    [20] Yu. S.C, Chen. Z.W, Cheng. Q.B, Lu. Z.H, Liu. M.H, Gao. C.J. Application ofthin-film composite hollow fiber membrane to submerged nanofiltration of anionicdye aqueous solutions[J]. Separation and Purification Technology,2012,88:121-129.
    [21]田玉萍,熊娇.三种混凝剂处理大红染料废水的脱水研究[J].工业用水与废水,2012,43(1):68-70
    [22]毛杰,李志华,吕建平.络合萃取法处理回收K-红BB染料[J].安徽科技学院学报,2011,25(3):18-21
    [23]叶祖芬,杜启云,王韬. Fenton试剂法处理偶氮类染料废水的实验研究[J].天津工业大学学报,2009,28(2):47-50
    [24] Swaminathan. K, Sandhya. S, Sophia. A.C, Pachhade. K, Subrahmanyam. Y.V.Decolorization and degradation of H-acid and other dyes using ferrous-hydrogenperoxide system[J].Chemosphere.2003,50:619-625
    [25]石建敏,李巧玲,周仁贤等.二氧化钛光催化降解水溶性分散染料的研究[J].水处理技术.2002,02:105-109.
    [26] Tang. W.Z. UV/TiO2Photo-catalytic oxidation of commercial dyes in aqueoussolutions[J]. Chemosphere.1995,31:4157-4170
    [27] Abussaud B A, Ulkem N, Berk D, et al. Wet Air Oxidation of Benzene[J].Industrial&Engineering Chemistry Research.2008,47(13):4325-4331.
    [28] Luck F. Wet air oxidation past, present and future[J]. Catalysis Today.1999,53:81-91.
    [29] Masaaki. H, Ohki. H, Takahiro Sato,Hiromitsu. T, Kiyoshi. S, Yuunosuke. N,Kazumi.H, Hideaki. H. Improved activity of Rh/CeO2-ZrO2three-way catalyst byhigh-temperature ageing [J]. Catalysis Communications.2010,11:317-321.
    [30] Liotta. L. F, Gruttadauria. M, Carlo. G. Di, Perrini. G, Librando. V. Heterogeneouscatalytic degradation of phenolic substrates Catalysts activity[J]. Journal ofHazardous Materials.2009,162:588-606.
    [31]王鹏,孙柳.催化湿式氧化法处理高浓度染料废水的研究[J].染料染色.2006,43(5):53-55
    [32] Arslan-Alaton. I, Ferry. J.L. APPlication of Polyoxotungstates as EnvironmentalCatalysts: Wet Air Oxidation of Acid Dye Orange П[J]. Dyes and Pigments,2002,54:25-36
    [33] Rajeshwar K, Ibanez J G, Swain G M. Electrochemistry and environment [J].Journal of Applied Electrochemistry,1994,24:1077-1091.
    [34] Robinson. R, Mcmullan. G, Marchant. R, Nigam. P. Remediation of dyes in textileeffluent: a critical review on current treatment technologies with a proposedalternative[J]. Bioresoure Technology.2001,77:247-245.
    [35]董磊,乔俊莲,闫丽等.微波协同活性炭处理蒽醌类染料废水研究[J].水处理技术.2010,36(1):40-43
    [36] Wang. L.Y, Zhang. X.G, Shi. Y.P, Zhang. Z.X. Microwave-assisted solvent-freesynthesis of some hemicyanine dyes[J]. Dyes and Pigments.2004,62:21-25.
    [37] Vinodgopal. K, Peller. J, Makogon. O, Kamat. P.V. Ultrasonic mineralization ofa reactive textile azo dye, remazol black B[J]. Water Research.1998,32:3646-3650.
    [38]周烈,刘绍刚,周泽广.超声波降解染料废水的实验研究[J].广西民族大学学报(自然科学版),2006,12(4):96-99
    [39] Rehorek. A, Toube. M, Gubitz. G.Application of Power Ultrasound for Azo DyeDegradation[J].Ultrasonics Sonochemistry,2004,11:177-182
    [40] Ince. N.H, Tezcanli-Guyer. G. Impacts of pH And Molecular Structure onUltrasonic Degradation of Azo Dyes[J]. Ultrasonics,2004,42:591-596
    [41] Wu. J.N, Doan. H, Upreti. S. Decolorization of aqueous textile reactive dye byozone[J]. Chemical Engineering Journal.2008,142:156-160.
    [42] Turhan. K, Durukan. I, Ozturkcan. A, Turgut. Z. Decolorization of textile basicdye in aqueous solution by ozone[J]. Dyes and Pigments.2012,92:897-901.
    [43] Knapp. J.S, Newby. P.S. The micrrobiological decoloeization of an industrialeffluent containning a diazo-linked chromhore[J]. Water Research,1995,29(7):1801-1809
    [44] Li. Z.J, Zhang. X.W, Lin. J, Han. S, Lei. L.C. Azo dye treatment withsimultaneous electricity production in an anaerobic–aerobic sequential reactor andmicrobial fuel cell coupled system[J]. Bioresource Technology.2010,101:4440-4445.
    [45] Panswad. T, Luangdilok. W. Decolorization of reactive dyes with differentmolecular structures under different environment conditions[J]. Water Research.2000,34(17):4177-4184
    [46]袁海生,戴玉成,曹云等.白腐真菌染料脱色菌株的筛选及一色齿毛菌脱色条件的研究[J].菌物学报.2010,29(3):429-436
    [47] Georgiou. D, Metallinou. C, Aivasidis. A, Voudrias. E, Gimouhopoulos.k.Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobicdigestion and acetate-consuming bacteria [J]. Biochemical. Engineering. Journal.2004,19:75-79.
    [48]郭梅,路福平,刘晓尧等.基因工程菌漆酶对蒽醌染料的脱水研究[J].环境科学与技术.2009,32(4):133-136
    [49]索娜,贺鹏.电催化氧化法处理硝基苯废水的研究[J].工业安全与环保.2010,36(3):31-34
    [50] Fernades. A, Morao. A, Magrinho. M, Lopes. A, Goncalves. I. Electrochemicaldegradation of C.I. Acid Orange7[J]. Dyes and Pigments.2004,614:287-296
    [51] Basha. C.A, Sendhil. J, Selvakumar. K.V, Muniswaran. P.K.A, Lee. C.W.Electrochemical degradation of textile dyeing industry effluent in batch and flowreactor systems[J]. Desalination.2012,285:188-197
    [52] Ca izares, P., Sáez, C., Sánchez-Carretero, A., Rodrigo, M.A. Synthesis of noveloxidants by electrochemical technology[J]. Journal of Applied Electrochemistry.2009,39:2143-2149.
    [53] Hmani. E, Elaoud. S.C, Samet. Y, Abdelhedi. R. Electrochemical degradation ofwaters containing O-Toluidine on PbO2and BDD anodes[J]. Journal of HazardousMaterials.2009,170:928-933.
    [54] Pacheco. M.J, Santos. V, Ciríaco. L, Lopes. A. Electrochemical degradation ofaromatic amines on BDD electrodes[J]. Journal of Hazardous Materials.2011,186:1033-1041.
    [55] Koparal, A.S., Yavuz, Y., Gurel, C., Ogutveren, U.B. Electrochemical degradationand toxicity reduction of C.I. Basic Red29solution and textile wastewater byusing diamond anode[J]. Journal of Hazardous Materials.2007,145:100-108.
    [56] Raghu, S., Ahmed Basha, C. Electrochemical treatment of Procion Black5B usingcylindrical flow reactor-a pilot study[J]. Journal of Hazardous Materials.2007,139:381-390.
    [57] Zaied, M., Chutet, E., Peulon, S., Bellakhal, N., Desmaziéres, B., Dachraoui, M.,Chaussé, A. Spontaneous oxdidative degradation of indigo carmine by thin films ofbirnessite electrodeposited onto SnO2[J]. Applied Catalysis B: Environmental.2011,107:42-51.
    [58] Chatzisymeon. E, Xekoukoulotakis. N.P, Coz. A, Kalogerakis. N, Mantzavinos. D.Electrochemical treatment of textile dyes and dyehouse effluents[J]. Journal ofHazardous Materials.2006, B137:998-1007.
    [59] Martínez-Huitle. C.A, Ferro. S. Electrochemical oxidation of organic pollutants forthe wastewater treatment: direct and indirect processes[J]. Chemical SocietyReviews.2006,35:1324-1340.
    [60] Scialdone. O, Randazzo. S, Galia. A, Silvestri. G. Electrochemical oxidation oforganics in water: role of operative parameters in the absence and in the presenceof NaCl[J]. Water. Research.2009,43:2260-2272.
    [61] Panizza. M, Kapalka. A, Comninellis. C. Oxidation of organic pollutants on BDDanodes using modulated current electrolysis[J]. Electrochimica. Acta.2008,53:2289-2295.
    [62] Malpass. G.R.P, Miwa. D.W, Mortari. D.A, Machado. S.A.S, Motheo. A.J.Decolorisation of real textile waste using electrochemical techniques: effect of thechloride concentration[J]. Water. Research.2007,41:2969-2977.
    [63] Malpass. G.R.P, Miwa. D.W, Machado. S.A.S, Motheo. A.J. Decolorisation of realtextile waste using electrochemical techniques: effect of electrode composition[J].Journal of Hazardous Materials.2008,156:170-177.
    [64] Panizza. M, Cerisola. G. Influence of anode material on the elctrochemicaloxidation of2-naphthol: Part2. Bulk electrolysis experiments[J]. Electrochimica.Acta.2004,49:3221-3226.
    [65] Panizza. M, Cerisola. G. Application of diamond electrodes to electrochemicalprocesses[J]. Electrochimica. Acta.2005,51:191-199.
    [66] Comninellis.C. Electrocatalysis in the electrochemical conversion/combustion oforganic pollutants for waste water treatment[J]. Electrochimica Acta.1994,39:1857-1862.
    [67] Comninellis C, Pulgarin C. Anodic oxidation of phenol for waste water treatment[J]. Journal of Applied Electrochemistry.1991a,21:703-708.
    [68] Ribordy P. Electrochemical versus photochemical pretreatment of industrialwastewater [J]. Water Science and Technology.1997,35(4):293-302
    [69] Panizza. M, Bocca. C, Cerisola. G. Electrochemical treatment of wastewatercontaining polyaromatic organic pollutant[J]. Water Reseach.2000,34(9):2601-2605.
    [70]杨蕴哲,杨卫身,杨凤林等.电化学法处理高含盐活性艳蓝KN-R废水的研究[J].化工环保.2005,25(3):178-181.
    [71] Thanos. J.C.G, Fritz. H.P, Wabner. D. The influence of the electrolyte and thephysical conditions on ozone production by the electrolysis of water[J]. Applied.Electrochemical.1984,14:389-399
    [72]王开红,岳琳,郭建博.电催化氧化法处理染料废水影响因素及动力学[J].环境工程学报.2012,6(8):2640-2644.
    [73]李庆新,汤亚飞,蔡鹤生等.电催化氧化处理酸性蒽醌绿2Ж废水[J].环境科学与技术,2007,30(7):93-95.
    [74]刘弋潞,卢维奇,黄贵明.电催化氧化法处理印染废水的实验研究[J].化学与生物工程,2009,16(2):58-60.
    [75] Doan. D, Türkdemir. H. Electrochemical oxidation of textile dye indigo[J]. Journalof Chemical Technology and Biotechnology.2005,80:916-923
    [76] Wang. C T, Chou. W L, Kuo. Y M, Chang. F.L. Paired removal of color and CODfrom textile dyeing wastewater by simultaneous anodic and indirect cathodicoxidation[J]. Journal of Hazardous Materials.2009,169:16-22
    [77] Vlyssides. A.G, Loizidou. M, Karlid. P K, Zorpas. A.A, Papaioannou. D.Electrochemical oxidation of a textile dye wastewater using a Pt/Ti Electrode[J].Journal of Hazardous Materials.1999,70:41-52.
    [78] Kannan. N, Sivadurai. S.N, Berchmans. L J, Vijayavalli. R. Removal of phenoliccompounds by electrooxidation method[J]. Journal of Environmental Science andhealth, A.1995,30:2185-2203.
    [79] Gattrell. M, Kirk. D.W. The electrochemical oxidation of aqueous phenol at aglassy carbon electrode[J]. The Canadian Journal of Chemical Engineering.1990,68(6):997-1003.
    [80]崔玉虹,刘正乾,刘志刚等. Ce掺杂钛基二氧化锡电极的制备及电催化性能研究[J].功能材料.2004,35:2035-2040.
    [81]崔玉虹,冯玉杰,刘峻峰. Sb掺杂钛基SnO2电极制备、表征及其电催化性能研究[J].功能材料.2005,36:234-238
    [82]李善评,曹翰林,胡振.稀土La掺杂Ti/Sb-SnO2电极的制备及性能研究[J].无机化学学报.2008,24(3):369-374.
    [83]尹红霞,张雁,郝玉翠.电化学催化氧化降解水中甲基橙的研究[J].环境科学与技术.2008,31(2):88-91.
    [84] Lozano. B.C, Comnonellis. C, Battisti. A.D. Service life of Ti/SnO2-Sb2O5anodes[J]. Journal of Applied Electrochemistry.1997,27:970-974.
    [85] Yavuz. Y, Koparal. A.S. Electrochemical oxidation of phenol in a parallel platereactor using ruthenium mixed metal oxid electrode[J]. Journal of Hazardous Materials.2006,136(2):296-302.
    [86] Song. S, Fan. J.Q, He. Z.Q, et al. Electrochemical degradation of azo dyes C.I.Reactive Red195by anodic oxidation on Ti/SnO2-Sb/PbO2electrodes[J].Electrochimica. Acta.2010,55:3606-3613.
    [87] Clenments. J.S. Preliminary investigation of prebreakdown phenomena andchemical reactions using a pulsed high-voltage discharge in water[J]. IEEE,19Transactions on Industry Applications.1987,23(2):224-235.
    [88] Willberg. D.M, Lang. P.S. Degradation of4-Chlorophenol,3,4-Dichloroaniline,and2,4,6-Trinitrotoluene in an electrohyaulic discharge reactor[J]. EnvironmentalScience. Technology.1996,30:2526-2534.
    [89] Sugiarto.A.T, Ohshima. T, Sato.M. Advanced oxidation processes using pulsedstreamer coroma discharge in water[J]. Thin Solid Films.2002,407:174-178.
    [90]李胜利,李劲.脉冲放电对印染废水脱色效果的实验研究[J].环境科学,1996,17(1):13-16.
    [91]何正浩,邵瑰玮,王万林,李劲,李胜利,杨怀远,张瑜,杜建敏.脉冲电晕放电处理焦化废水的研究[J].高电压技术.2003,4:29-31.
    [92]高翔,秦鹏,吴祖良.高压脉冲电晕降解液相苯酚的实验研究[J].浙江大学学报(工学版),2010,2:310-314.
    [93]张波,杨峰,王成敏,吴成笃.高压脉冲放电处理KN-B染料废水的试验[J].江苏大学学报(自然科学版).2009,4:410-414.
    [94] Long, Warren.p. Uniflox EM dash a machine employing the method ofelectroflocculation for enhanced soap separation[C]. TAPPI Alkaline PulpingConference Preprint, Nov7-10,1977,347-354.
    [95] Svetashova, Dobrevskij. Effect of electric current pulse shape on efficiency ofelctrochemical treatment of water containing petroleum products[J]. Khimiya ITekhnologiya Vody.1992,856-859.
    [96] Goncharov, Aleksandrov. Activated coagulation of waste water effluents[J]. Kozh.Obuvn. Prom-st(2),2000,35,29.
    [97]前川孝明.含有机物的废水的处理方法和装置[P].中国专利:1343182,2002-04-03.
    [98]詹伯君,郭仲庆.植绒印花废水脉冲电解处理[J].污染防治技术,1997,10(3):169-172.
    [99]詹伯君.脉冲电解电参数分析和电源试验设计[J].机电工程,1997,4:38-39.
    [100]熊方文,余蜀灵.脉冲电解工业污水技术[J].工业水处理,1990,10(2):10-12.
    [101]杨红斌,荆秀艳,杨胜科,王文科.石墨电极-低压脉冲电解含油废水影响因素研究[J].环境工程学报.2010,4(1):13-16.
    [102] Chen.G. Electrochemical technologies in wastewater treatment, Separation andPurification Technology.2004,38:11-141
    [103] Murugananthan. M, Latha. S.S, Raju. G.B, Yoshihara. S. Anodic oxidation ofketoprofen-an anti-inflamatory drug using boron doped diamond and platinumelectrodes[J]. Journal of Hazardous Materials.2010,180:753-758.
    [104] Ciríaco. L, Anjo. C, Correia. J, Pacheco. M.J, Lopes. A. Electrochemcaldegradation of Ibuprofen on Ti/Pt/PbO2and Si/BDD electrodes[J].Electrochemistry Communications.2010,12:70-74.
    [105] Aquino. J.M, Rocha-Filho. R.C, Bocchi. N, Biaggio. S.R. Electrochemicaldegradation of the Reactive Red141dye on a β-PbO2anode assessed by theresponse surface methodology[J]. Journal of the Brazilian Chemical Society.2010,21:324-330.
    [106] Xue. B, Zhang. Y, Wang.J.Y. Electrochemical Oxidation of Bisphenol A onTi/SnO2-Sb2O5/PbO2Anode for Waste Water Treatment[J]. ProcediaEnvironmental. Sciences.2011,10:647-652
    [107] Han. W.Q, Chen. Y, Wang. L.J, Sun. X.Y, Li. J.S. Mechanism and kinetics ofelectrochemical degradation of isothiazolin-ones using Ti/SnO2–Sb/PbO2anode[J].Desalination.2011,276:82-88.
    [108]杨春维,王栋,郭建博等.水中有机物高级氧化过程中的羟基自由基检测方法比较.环境污染治理技术与设备,2006,7(1):136-141
    [109]毛文永.环境污染与致癌[M].北京:科学出版社,1981.
    [110] Wu. T, Zhao. G. H, Lei. Y.Z, Li. P.Q. Distinctive tin dioxide anode fabricated bypulse electrodeposition: High oxygen evolution potential and efficientelectrochemical degradation of fluorobenzene [J]. Physical Chemistry,2011,115:3888-3898
    [111] Chiang. L.C, Chang. J.E, Wen. T.C. Indirect oxidation effect in electrochemicaloxidation treatment of landfill leachate[J]. Water Research.1995,29:671-678.
    [112] Vijayaraghavan. K, Ramanujam. T.K, Balasubramanian.N. In situ hypochlorousacid generation for treatment of tannery wastewaters [J]. Journal of Environmental.Engineering.1998,124:887-891.
    [113] Vijayaraghavan. K, Ramanujam. T.K, Balasubramanian.N. In situ hypochlorousacid generation for the treatment of textile wastewater[J]. Color. Technology.2001,117:49-54.
    [114] Rajkumar. D, Palanivelu. K. Electrochemical degradation of cresols for wastewatertreatment[J]. Industrial&Engineering Chemistry Research.2003,42:1833-1839
    [115] Rajkumar. D, Kim. J.G, Palanivelu. K. Indirect electrochemical oxidation of phenolin the presence of chloride for wastewater treatment[J]. Chemical. Engineering.Technology.2005,28:98-105.
    [116] Ammar. S, Abdelhedi. R, Flox. C, Arias. C, Brillas. E. Electrochemical degradationof the dye indigo carmine at boron-doped diamond anode for wastewatersremediation[J]. Environmental Chemistry Letters.2006,4:229-233.
    [117] Martínez-Huitle. C.A, Brillas. E. Decontamination of wastewaters containingsynthetic organic dyes by electrochemical methods: a general review[J]. Applied.Catalysis. B: Environmental.2009,87:105-145.
    [118] Basha. C.A, Sendhil. J, Selvakumar. K.V, Muniswaran. P.K.A, Lee. C. W.Electrochemical degradation of textile dyeing industry effluent in batch and flowreactor systems. Desalination[J].2012,285:188-197.
    [119] Mohan. N, Balasubramanian. N, Basha. C.A. Electrochemical oxidation of textilewastewater and its reuse[J]. Journal of Hazardous Materials.2007,147:644-651.
    [120] Chen CM, MShih ML, Lee SZ, Wang JS. Increased toxicity of textile effluents bya chlorination process using sodium hypochlorite [J]. Water Science andTechnology,2001,43:1-8
    [121] Card J C, Valentin G, Storck A. The activated carbon electrode: A new,experimentally verified mathematical model for the potential distribution [J].Journal of the Electrochemisty Society.1990,137:2736-2745.
    [122] Zhang. S.J, Yu. H.Q, Li. Q. R. Radiolytic degradation of Acid Orange7: Amechanistic study [J]. Chemosphere,2005,61:1003-1011.
    [123] Mohandass Ramya, Bhaskar Anusha, S. Kalavathy. Decolorization andbiodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae [J].Biodegradation,2008,19:283–291
    [124] Urzedo, de APFM., Nascentes, CC., Diniz, MER., Catharino, RR., Eberlin, MN.,Augusti, R.,2007. Indigo carmine degradation by hypochlorite in aqueous mediummonitored by electrospray ionization mass spectrometry[J], Mass Spectrometer.21,1893-1899.
    [125] Ammar, S., Abdelhedi, R., Flox, C., Arias, C., Brillas, E.,2006. Electrochemicaldegradation of the dye indigo carmine at boron-doped diamond anode forwastewaters remediation[J]. Environmental Chemisty Letters.4,229-233.
    [126]章杰.世界染料工业发展新动向[J].化工技术经济.2006,24(11):46-52
    [127]陈晔,陈刚,陈亮,黄满红.偶氮染料分子结构对其生物脱色影响的研究进展[J].环境科学与技术.2011,34(8):65-69
    [128]董永春,刘春燕,刘瑞华,朱红星,余彩香.偶氮染料分子结构与氧化脱色性能的定量关系[J].纺织学报.2006,27(1):16-19
    [129]田长顺,刘祖文.偶氮染料分子结构与脱色性能的定量关系研究[J].工业用水与废水.2008,39(4):10-12
    [130] Muthukumar. M, Sargunamani. D, Selvakumar. N. Statistical analysis of the effectof aromatic, azo and sulphonic acid groups on decolouration of acid dye effluentsusing advanced oxidation process [J]. Dyes and Pigments.2005,65:151-158
    [131]周元祥,崔康平,李湘凌,许为义.微电解对不同结构染料脱色效果研究[J].环境化学.2006,25(3):367-369
    [132]王凌峰.次氯酸钠法处理难降解有机印染废水的研究[D].济南:山东大学.2011.
    [133]陈灿.铁屑法处理含染料废水的实验研究[D].北京:清华大学.2002.
    [134]黑木宣彦.染色理论化学[M].陈水林,译.北京:纺织工业出版社,1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700